ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.71
Committed: Tue Mar 15 20:35:41 2016 UTC (8 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.70: +2 -2 lines
Log Message:
Enabled ambient cache corral at all levels

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.70 2015/05/21 05:54:54 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifndef OLDAMB
25
26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27
28 typedef struct {
29 COLOR v; /* hemisphere sample value */
30 float d; /* reciprocal distance (1/rt) */
31 FVECT p; /* intersection point */
32 } AMBSAMP; /* sample value */
33
34 typedef struct {
35 RAY *rp; /* originating ray sample */
36 int ns; /* number of samples per axis */
37 int sampOK; /* acquired full sample set? */
38 COLOR acoef; /* division contribution coefficient */
39 double acol[3]; /* accumulated color */
40 FVECT ux, uy; /* tangent axis unit vectors */
41 AMBSAMP sa[1]; /* sample array (extends struct) */
42 } AMBHEMI; /* ambient sample hemisphere */
43
44 #define AI(h,i,j) ((i)*(h)->ns + (j))
45 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
46
47 typedef struct {
48 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
49 double I1, I2;
50 } FFTRI; /* vectors and coefficients for Hessian calculation */
51
52
53 static int
54 ambsample( /* initial ambient division sample */
55 AMBHEMI *hp,
56 int i,
57 int j,
58 int n
59 )
60 {
61 AMBSAMP *ap = &ambsam(hp,i,j);
62 RAY ar;
63 int hlist[3], ii;
64 double spt[2], zd;
65 /* generate hemispherical sample */
66 /* ambient coefficient for weight */
67 if (ambacc > FTINY)
68 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
69 else
70 copycolor(ar.rcoef, hp->acoef);
71 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
72 return(0);
73 if (ambacc > FTINY) {
74 multcolor(ar.rcoef, hp->acoef);
75 scalecolor(ar.rcoef, 1./AVGREFL);
76 }
77 hlist[0] = hp->rp->rno;
78 hlist[1] = j;
79 hlist[2] = i;
80 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
81 /* avoid coincident samples */
82 if (!n && (0 < i) & (i < hp->ns-1) &&
83 (0 < j) & (j < hp->ns-1)) {
84 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
85 spt[0] = 0.1 + 0.8*frandom();
86 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
87 spt[1] = 0.1 + 0.8*frandom();
88 }
89 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
90 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
91 for (ii = 3; ii--; )
92 ar.rdir[ii] = spt[0]*hp->ux[ii] +
93 spt[1]*hp->uy[ii] +
94 zd*hp->rp->ron[ii];
95 checknorm(ar.rdir);
96 dimlist[ndims++] = AI(hp,i,j) + 90171;
97 rayvalue(&ar); /* evaluate ray */
98 ndims--;
99 if (ar.rt <= FTINY)
100 return(0); /* should never happen */
101 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
102 if (ar.rt*ap->d < 1.0) /* new/closer distance? */
103 ap->d = 1.0/ar.rt;
104 if (!n) { /* record first vertex & value */
105 if (ar.rt > 10.0*thescene.cusize)
106 ar.rt = 10.0*thescene.cusize;
107 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
108 copycolor(ap->v, ar.rcol);
109 } else { /* else update recorded value */
110 hp->acol[RED] -= colval(ap->v,RED);
111 hp->acol[GRN] -= colval(ap->v,GRN);
112 hp->acol[BLU] -= colval(ap->v,BLU);
113 zd = 1.0/(double)(n+1);
114 scalecolor(ar.rcol, zd);
115 zd *= (double)n;
116 scalecolor(ap->v, zd);
117 addcolor(ap->v, ar.rcol);
118 }
119 addcolor(hp->acol, ap->v); /* add to our sum */
120 return(1);
121 }
122
123
124 /* Estimate errors based on ambient division differences */
125 static float *
126 getambdiffs(AMBHEMI *hp)
127 {
128 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
129 float *ep;
130 AMBSAMP *ap;
131 double b, d2;
132 int i, j;
133
134 if (earr == NULL) /* out of memory? */
135 return(NULL);
136 /* compute squared neighbor diffs */
137 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
138 for (j = 0; j < hp->ns; j++, ap++, ep++) {
139 b = bright(ap[0].v);
140 if (i) { /* from above */
141 d2 = b - bright(ap[-hp->ns].v);
142 d2 *= d2;
143 ep[0] += d2;
144 ep[-hp->ns] += d2;
145 }
146 if (!j) continue;
147 /* from behind */
148 d2 = b - bright(ap[-1].v);
149 d2 *= d2;
150 ep[0] += d2;
151 ep[-1] += d2;
152 if (!i) continue;
153 /* diagonal */
154 d2 = b - bright(ap[-hp->ns-1].v);
155 d2 *= d2;
156 ep[0] += d2;
157 ep[-hp->ns-1] += d2;
158 }
159 /* correct for number of neighbors */
160 earr[0] *= 8./3.;
161 earr[hp->ns-1] *= 8./3.;
162 earr[(hp->ns-1)*hp->ns] *= 8./3.;
163 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
164 for (i = 1; i < hp->ns-1; i++) {
165 earr[i*hp->ns] *= 8./5.;
166 earr[i*hp->ns + hp->ns-1] *= 8./5.;
167 }
168 for (j = 1; j < hp->ns-1; j++) {
169 earr[j] *= 8./5.;
170 earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
171 }
172 return(earr);
173 }
174
175
176 /* Perform super-sampling on hemisphere (introduces bias) */
177 static void
178 ambsupersamp(AMBHEMI *hp, int cnt)
179 {
180 float *earr = getambdiffs(hp);
181 double e2rem = 0;
182 AMBSAMP *ap;
183 float *ep;
184 int i, j, n, nss;
185
186 if (earr == NULL) /* just skip calc. if no memory */
187 return;
188 /* accumulate estimated variances */
189 for (ep = earr + hp->ns*hp->ns; ep > earr; )
190 e2rem += *--ep;
191 ep = earr; /* perform super-sampling */
192 for (ap = hp->sa, i = 0; i < hp->ns; i++)
193 for (j = 0; j < hp->ns; j++, ap++) {
194 if (e2rem <= FTINY)
195 goto done; /* nothing left to do */
196 nss = *ep/e2rem*cnt + frandom();
197 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
198 --cnt;
199 e2rem -= *ep++; /* update remainder */
200 }
201 done:
202 free(earr);
203 }
204
205
206 static AMBHEMI *
207 samp_hemi( /* sample indirect hemisphere */
208 COLOR rcol,
209 RAY *r,
210 double wt
211 )
212 {
213 AMBHEMI *hp;
214 double d;
215 int n, i, j;
216 /* set number of divisions */
217 if (ambacc <= FTINY &&
218 wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight)))
219 wt = d; /* avoid ray termination */
220 n = sqrt(ambdiv * wt) + 0.5;
221 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
222 if (n < i)
223 n = i;
224 /* allocate sampling array */
225 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
226 if (hp == NULL)
227 error(SYSTEM, "out of memory in samp_hemi");
228 hp->rp = r;
229 hp->ns = n;
230 hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0;
231 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
232 hp->sampOK = 0;
233 /* assign coefficient */
234 copycolor(hp->acoef, rcol);
235 d = 1.0/(n*n);
236 scalecolor(hp->acoef, d);
237 /* make tangent plane axes */
238 if (!getperpendicular(hp->ux, r->ron, 1))
239 error(CONSISTENCY, "bad ray direction in samp_hemi");
240 VCROSS(hp->uy, r->ron, hp->ux);
241 /* sample divisions */
242 for (i = hp->ns; i--; )
243 for (j = hp->ns; j--; )
244 hp->sampOK += ambsample(hp, i, j, 0);
245 copycolor(rcol, hp->acol);
246 if (!hp->sampOK) { /* utter failure? */
247 free(hp);
248 return(NULL);
249 }
250 if (hp->sampOK < hp->ns*hp->ns) {
251 hp->sampOK *= -1; /* soft failure */
252 return(hp);
253 }
254 n = ambssamp*wt + 0.5;
255 if (n > 8) { /* perform super-sampling? */
256 ambsupersamp(hp, n);
257 copycolor(rcol, hp->acol);
258 }
259 return(hp); /* all is well */
260 }
261
262
263 /* Return brightness of farthest ambient sample */
264 static double
265 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
266 {
267 if (hp->sa[n1].d <= hp->sa[n2].d) {
268 if (hp->sa[n1].d <= hp->sa[n3].d)
269 return(colval(hp->sa[n1].v,CIEY));
270 return(colval(hp->sa[n3].v,CIEY));
271 }
272 if (hp->sa[n2].d <= hp->sa[n3].d)
273 return(colval(hp->sa[n2].v,CIEY));
274 return(colval(hp->sa[n3].v,CIEY));
275 }
276
277
278 /* Compute vectors and coefficients for Hessian/gradient calcs */
279 static void
280 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
281 {
282 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
283 int ii;
284
285 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
286 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
287 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
288 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
289 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
290 dot_e = DOT(ftp->e_i,ftp->e_i);
291 dot_er = DOT(ftp->e_i, ftp->r_i);
292 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
293 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
294 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
295 sqrt( rdot_cp );
296 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
297 dot_e*ftp->I1 )*0.5*rdot_cp;
298 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
299 for (ii = 3; ii--; )
300 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
301 }
302
303
304 /* Compose 3x3 matrix from two vectors */
305 static void
306 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
307 {
308 mat[0][0] = 2.0*va[0]*vb[0];
309 mat[1][1] = 2.0*va[1]*vb[1];
310 mat[2][2] = 2.0*va[2]*vb[2];
311 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
312 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
313 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
314 }
315
316
317 /* Compute partial 3x3 Hessian matrix for edge */
318 static void
319 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
320 {
321 FVECT ncp;
322 FVECT m1[3], m2[3], m3[3], m4[3];
323 double d1, d2, d3, d4;
324 double I3, J3, K3;
325 int i, j;
326 /* compute intermediate coefficients */
327 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
328 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
329 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
330 d4 = DOT(ftp->e_i, ftp->r_i);
331 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
332 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
333 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
334 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
335 /* intermediate matrices */
336 VCROSS(ncp, nrm, ftp->e_i);
337 compose_matrix(m1, ncp, ftp->rI2_eJ2);
338 compose_matrix(m2, ftp->r_i, ftp->r_i);
339 compose_matrix(m3, ftp->e_i, ftp->e_i);
340 compose_matrix(m4, ftp->r_i, ftp->e_i);
341 d1 = DOT(nrm, ftp->rcp);
342 d2 = -d1*ftp->I2;
343 d1 *= 2.0;
344 for (i = 3; i--; ) /* final matrix sum */
345 for (j = 3; j--; ) {
346 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
347 2.0*J3*m4[i][j] );
348 hess[i][j] += d2*(i==j);
349 hess[i][j] *= -1.0/PI;
350 }
351 }
352
353
354 /* Reverse hessian calculation result for edge in other direction */
355 static void
356 rev_hessian(FVECT hess[3])
357 {
358 int i;
359
360 for (i = 3; i--; ) {
361 hess[i][0] = -hess[i][0];
362 hess[i][1] = -hess[i][1];
363 hess[i][2] = -hess[i][2];
364 }
365 }
366
367
368 /* Add to radiometric Hessian from the given triangle */
369 static void
370 add2hessian(FVECT hess[3], FVECT ehess1[3],
371 FVECT ehess2[3], FVECT ehess3[3], double v)
372 {
373 int i, j;
374
375 for (i = 3; i--; )
376 for (j = 3; j--; )
377 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
378 }
379
380
381 /* Compute partial displacement form factor gradient for edge */
382 static void
383 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
384 {
385 FVECT ncp;
386 double f1;
387 int i;
388
389 f1 = 2.0*DOT(nrm, ftp->rcp);
390 VCROSS(ncp, nrm, ftp->e_i);
391 for (i = 3; i--; )
392 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
393 }
394
395
396 /* Reverse gradient calculation result for edge in other direction */
397 static void
398 rev_gradient(FVECT grad)
399 {
400 grad[0] = -grad[0];
401 grad[1] = -grad[1];
402 grad[2] = -grad[2];
403 }
404
405
406 /* Add to displacement gradient from the given triangle */
407 static void
408 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
409 {
410 int i;
411
412 for (i = 3; i--; )
413 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
414 }
415
416
417 /* Compute anisotropic radii and eigenvector directions */
418 static void
419 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
420 {
421 double hess2[2][2];
422 FVECT a, b;
423 double evalue[2], slope1, xmag1;
424 int i;
425 /* project Hessian to sample plane */
426 for (i = 3; i--; ) {
427 a[i] = DOT(hessian[i], uv[0]);
428 b[i] = DOT(hessian[i], uv[1]);
429 }
430 hess2[0][0] = DOT(uv[0], a);
431 hess2[0][1] = DOT(uv[0], b);
432 hess2[1][0] = DOT(uv[1], a);
433 hess2[1][1] = DOT(uv[1], b);
434 /* compute eigenvalue(s) */
435 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
436 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
437 if (i == 1) /* double-root (circle) */
438 evalue[1] = evalue[0];
439 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
440 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
441 ra[0] = ra[1] = maxarad;
442 return;
443 }
444 if (evalue[0] > evalue[1]) {
445 ra[0] = sqrt(sqrt(4.0/evalue[0]));
446 ra[1] = sqrt(sqrt(4.0/evalue[1]));
447 slope1 = evalue[1];
448 } else {
449 ra[0] = sqrt(sqrt(4.0/evalue[1]));
450 ra[1] = sqrt(sqrt(4.0/evalue[0]));
451 slope1 = evalue[0];
452 }
453 /* compute unit eigenvectors */
454 if (fabs(hess2[0][1]) <= FTINY)
455 return; /* uv OK as is */
456 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
457 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
458 for (i = 3; i--; ) {
459 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
460 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
461 }
462 VCOPY(uv[0], a);
463 VCOPY(uv[1], b);
464 }
465
466
467 static void
468 ambHessian( /* anisotropic radii & pos. gradient */
469 AMBHEMI *hp,
470 FVECT uv[2], /* returned */
471 float ra[2], /* returned (optional) */
472 float pg[2] /* returned (optional) */
473 )
474 {
475 static char memerrmsg[] = "out of memory in ambHessian()";
476 FVECT (*hessrow)[3] = NULL;
477 FVECT *gradrow = NULL;
478 FVECT hessian[3];
479 FVECT gradient;
480 FFTRI fftr;
481 int i, j;
482 /* be sure to assign unit vectors */
483 VCOPY(uv[0], hp->ux);
484 VCOPY(uv[1], hp->uy);
485 /* clock-wise vertex traversal from sample POV */
486 if (ra != NULL) { /* initialize Hessian row buffer */
487 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
488 if (hessrow == NULL)
489 error(SYSTEM, memerrmsg);
490 memset(hessian, 0, sizeof(hessian));
491 } else if (pg == NULL) /* bogus call? */
492 return;
493 if (pg != NULL) { /* initialize form factor row buffer */
494 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
495 if (gradrow == NULL)
496 error(SYSTEM, memerrmsg);
497 memset(gradient, 0, sizeof(gradient));
498 }
499 /* compute first row of edges */
500 for (j = 0; j < hp->ns-1; j++) {
501 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
502 if (hessrow != NULL)
503 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
504 if (gradrow != NULL)
505 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
506 }
507 /* sum each row of triangles */
508 for (i = 0; i < hp->ns-1; i++) {
509 FVECT hesscol[3]; /* compute first vertical edge */
510 FVECT gradcol;
511 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
512 if (hessrow != NULL)
513 comp_hessian(hesscol, &fftr, hp->rp->ron);
514 if (gradrow != NULL)
515 comp_gradient(gradcol, &fftr, hp->rp->ron);
516 for (j = 0; j < hp->ns-1; j++) {
517 FVECT hessdia[3]; /* compute triangle contributions */
518 FVECT graddia;
519 double backg;
520 backg = back_ambval(hp, AI(hp,i,j),
521 AI(hp,i,j+1), AI(hp,i+1,j));
522 /* diagonal (inner) edge */
523 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
524 if (hessrow != NULL) {
525 comp_hessian(hessdia, &fftr, hp->rp->ron);
526 rev_hessian(hesscol);
527 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
528 }
529 if (gradrow != NULL) {
530 comp_gradient(graddia, &fftr, hp->rp->ron);
531 rev_gradient(gradcol);
532 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
533 }
534 /* initialize edge in next row */
535 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
536 if (hessrow != NULL)
537 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
538 if (gradrow != NULL)
539 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
540 /* new column edge & paired triangle */
541 backg = back_ambval(hp, AI(hp,i+1,j+1),
542 AI(hp,i+1,j), AI(hp,i,j+1));
543 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
544 if (hessrow != NULL) {
545 comp_hessian(hesscol, &fftr, hp->rp->ron);
546 rev_hessian(hessdia);
547 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
548 if (i < hp->ns-2)
549 rev_hessian(hessrow[j]);
550 }
551 if (gradrow != NULL) {
552 comp_gradient(gradcol, &fftr, hp->rp->ron);
553 rev_gradient(graddia);
554 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
555 if (i < hp->ns-2)
556 rev_gradient(gradrow[j]);
557 }
558 }
559 }
560 /* release row buffers */
561 if (hessrow != NULL) free(hessrow);
562 if (gradrow != NULL) free(gradrow);
563
564 if (ra != NULL) /* extract eigenvectors & radii */
565 eigenvectors(uv, ra, hessian);
566 if (pg != NULL) { /* tangential position gradient */
567 pg[0] = DOT(gradient, uv[0]);
568 pg[1] = DOT(gradient, uv[1]);
569 }
570 }
571
572
573 /* Compute direction gradient from a hemispherical sampling */
574 static void
575 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
576 {
577 AMBSAMP *ap;
578 double dgsum[2];
579 int n;
580 FVECT vd;
581 double gfact;
582
583 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
584 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
585 /* use vector for azimuth + 90deg */
586 VSUB(vd, ap->p, hp->rp->rop);
587 /* brightness over cosine factor */
588 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
589 /* sine = proj_radius/vd_length */
590 dgsum[0] -= DOT(uv[1], vd) * gfact;
591 dgsum[1] += DOT(uv[0], vd) * gfact;
592 }
593 dg[0] = dgsum[0] / (hp->ns*hp->ns);
594 dg[1] = dgsum[1] / (hp->ns*hp->ns);
595 }
596
597
598 /* Compute potential light leak direction flags for cache value */
599 static uint32
600 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
601 {
602 const double max_d = 1.0/(minarad*ambacc + 0.001);
603 const double ang_res = 0.5*PI/hp->ns;
604 const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
605 double avg_d = 0;
606 uint32 flgs = 0;
607 FVECT vec;
608 double u, v;
609 double ang, a1;
610 int i, j;
611 /* don't bother for a few samples */
612 if (hp->ns < 12)
613 return(0);
614 /* check distances overhead */
615 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
616 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
617 avg_d += ambsam(hp,i,j).d;
618 avg_d *= 4.0/(hp->ns*hp->ns);
619 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
620 return(0);
621 if (avg_d >= max_d) /* insurance */
622 return(0);
623 /* else circle around perimeter */
624 for (i = 0; i < hp->ns; i++)
625 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
626 AMBSAMP *ap = &ambsam(hp,i,j);
627 if ((ap->d <= FTINY) | (ap->d >= max_d))
628 continue; /* too far or too near */
629 VSUB(vec, ap->p, hp->rp->rop);
630 u = DOT(vec, uv[0]);
631 v = DOT(vec, uv[1]);
632 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
633 continue; /* occluder outside ellipse */
634 ang = atan2a(v, u); /* else set direction flags */
635 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
636 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
637 }
638 /* add low-angle incident (< 20deg) */
639 if (fabs(hp->rp->rod) <= 0.342) {
640 u = -DOT(hp->rp->rdir, uv[0]);
641 v = -DOT(hp->rp->rdir, uv[1]);
642 if ((r0*r0*u*u + r1*r1*v*v) > hp->rp->rot*hp->rp->rot) {
643 ang = atan2a(v, u);
644 ang += 2.*PI*(ang < 0);
645 ang *= 16/PI;
646 if ((ang < .5) | (ang >= 31.5))
647 flgs |= 0x80000001;
648 else
649 flgs |= 3L<<(int)(ang-.5);
650 }
651 }
652 return(flgs);
653 }
654
655
656 int
657 doambient( /* compute ambient component */
658 COLOR rcol, /* input/output color */
659 RAY *r,
660 double wt,
661 FVECT uv[2], /* returned (optional) */
662 float ra[2], /* returned (optional) */
663 float pg[2], /* returned (optional) */
664 float dg[2], /* returned (optional) */
665 uint32 *crlp /* returned (optional) */
666 )
667 {
668 AMBHEMI *hp = samp_hemi(rcol, r, wt);
669 FVECT my_uv[2];
670 double d, K;
671 AMBSAMP *ap;
672 int i;
673 /* clear return values */
674 if (uv != NULL)
675 memset(uv, 0, sizeof(FVECT)*2);
676 if (ra != NULL)
677 ra[0] = ra[1] = 0.0;
678 if (pg != NULL)
679 pg[0] = pg[1] = 0.0;
680 if (dg != NULL)
681 dg[0] = dg[1] = 0.0;
682 if (crlp != NULL)
683 *crlp = 0;
684 if (hp == NULL) /* sampling falure? */
685 return(0);
686
687 if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
688 (hp->sampOK < 0) | (hp->ns < 6)) {
689 free(hp); /* Hessian not requested/possible */
690 return(-1); /* value-only return value */
691 }
692 if ((d = bright(rcol)) > FTINY) { /* normalize Y values */
693 d = 0.99*(hp->ns*hp->ns)/d;
694 K = 0.01;
695 } else { /* or fall back on geometric Hessian */
696 K = 1.0;
697 pg = NULL;
698 dg = NULL;
699 crlp = NULL;
700 }
701 ap = hp->sa; /* relative Y channel from here on... */
702 for (i = hp->ns*hp->ns; i--; ap++)
703 colval(ap->v,CIEY) = bright(ap->v)*d + K;
704
705 if (uv == NULL) /* make sure we have axis pointers */
706 uv = my_uv;
707 /* compute radii & pos. gradient */
708 ambHessian(hp, uv, ra, pg);
709
710 if (dg != NULL) /* compute direction gradient */
711 ambdirgrad(hp, uv, dg);
712
713 if (ra != NULL) { /* scale/clamp radii */
714 if (pg != NULL) {
715 if (ra[0]*(d = fabs(pg[0])) > 1.0)
716 ra[0] = 1.0/d;
717 if (ra[1]*(d = fabs(pg[1])) > 1.0)
718 ra[1] = 1.0/d;
719 if (ra[0] > ra[1])
720 ra[0] = ra[1];
721 }
722 if (ra[0] < minarad) {
723 ra[0] = minarad;
724 if (ra[1] < minarad)
725 ra[1] = minarad;
726 }
727 ra[0] *= d = 1.0/sqrt(wt);
728 if ((ra[1] *= d) > 2.0*ra[0])
729 ra[1] = 2.0*ra[0];
730 if (ra[1] > maxarad) {
731 ra[1] = maxarad;
732 if (ra[0] > maxarad)
733 ra[0] = maxarad;
734 }
735 /* flag encroached directions */
736 if (crlp != NULL)
737 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
738 if (pg != NULL) { /* cap gradient if necessary */
739 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
740 if (d > 1.0) {
741 d = 1.0/sqrt(d);
742 pg[0] *= d;
743 pg[1] *= d;
744 }
745 }
746 }
747 free(hp); /* clean up and return */
748 return(1);
749 }
750
751
752 #else /* ! NEWAMB */
753
754
755 void
756 inithemi( /* initialize sampling hemisphere */
757 AMBHEMI *hp,
758 COLOR ac,
759 RAY *r,
760 double wt
761 )
762 {
763 double d;
764 int i;
765 /* set number of divisions */
766 if (ambacc <= FTINY &&
767 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
768 wt = d; /* avoid ray termination */
769 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
770 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
771 if (hp->nt < i)
772 hp->nt = i;
773 hp->np = PI * hp->nt + 0.5;
774 /* set number of super-samples */
775 hp->ns = ambssamp * wt + 0.5;
776 /* assign coefficient */
777 copycolor(hp->acoef, ac);
778 d = 1.0/(hp->nt*hp->np);
779 scalecolor(hp->acoef, d);
780 /* make axes */
781 VCOPY(hp->uz, r->ron);
782 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
783 for (i = 0; i < 3; i++)
784 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
785 break;
786 if (i >= 3)
787 error(CONSISTENCY, "bad ray direction in inithemi");
788 hp->uy[i] = 1.0;
789 fcross(hp->ux, hp->uy, hp->uz);
790 normalize(hp->ux);
791 fcross(hp->uy, hp->uz, hp->ux);
792 }
793
794
795 int
796 divsample( /* sample a division */
797 AMBSAMP *dp,
798 AMBHEMI *h,
799 RAY *r
800 )
801 {
802 RAY ar;
803 int hlist[3];
804 double spt[2];
805 double xd, yd, zd;
806 double b2;
807 double phi;
808 int i;
809 /* ambient coefficient for weight */
810 if (ambacc > FTINY)
811 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
812 else
813 copycolor(ar.rcoef, h->acoef);
814 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
815 return(-1);
816 if (ambacc > FTINY) {
817 multcolor(ar.rcoef, h->acoef);
818 scalecolor(ar.rcoef, 1./AVGREFL);
819 }
820 hlist[0] = r->rno;
821 hlist[1] = dp->t;
822 hlist[2] = dp->p;
823 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
824 zd = sqrt((dp->t + spt[0])/h->nt);
825 phi = 2.0*PI * (dp->p + spt[1])/h->np;
826 xd = tcos(phi) * zd;
827 yd = tsin(phi) * zd;
828 zd = sqrt(1.0 - zd*zd);
829 for (i = 0; i < 3; i++)
830 ar.rdir[i] = xd*h->ux[i] +
831 yd*h->uy[i] +
832 zd*h->uz[i];
833 checknorm(ar.rdir);
834 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
835 rayvalue(&ar);
836 ndims--;
837 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
838 addcolor(dp->v, ar.rcol);
839 /* use rt to improve gradient calc */
840 if (ar.rt > FTINY && ar.rt < FHUGE)
841 dp->r += 1.0/ar.rt;
842 /* (re)initialize error */
843 if (dp->n++) {
844 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
845 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
846 dp->k = b2/(dp->n*dp->n);
847 } else
848 dp->k = 0.0;
849 return(0);
850 }
851
852
853 static int
854 ambcmp( /* decreasing order */
855 const void *p1,
856 const void *p2
857 )
858 {
859 const AMBSAMP *d1 = (const AMBSAMP *)p1;
860 const AMBSAMP *d2 = (const AMBSAMP *)p2;
861
862 if (d1->k < d2->k)
863 return(1);
864 if (d1->k > d2->k)
865 return(-1);
866 return(0);
867 }
868
869
870 static int
871 ambnorm( /* standard order */
872 const void *p1,
873 const void *p2
874 )
875 {
876 const AMBSAMP *d1 = (const AMBSAMP *)p1;
877 const AMBSAMP *d2 = (const AMBSAMP *)p2;
878 int c;
879
880 if ( (c = d1->t - d2->t) )
881 return(c);
882 return(d1->p - d2->p);
883 }
884
885
886 double
887 doambient( /* compute ambient component */
888 COLOR rcol,
889 RAY *r,
890 double wt,
891 FVECT pg,
892 FVECT dg
893 )
894 {
895 double b, d=0;
896 AMBHEMI hemi;
897 AMBSAMP *div;
898 AMBSAMP dnew;
899 double acol[3];
900 AMBSAMP *dp;
901 double arad;
902 int divcnt;
903 int i, j;
904 /* initialize hemisphere */
905 inithemi(&hemi, rcol, r, wt);
906 divcnt = hemi.nt * hemi.np;
907 /* initialize */
908 if (pg != NULL)
909 pg[0] = pg[1] = pg[2] = 0.0;
910 if (dg != NULL)
911 dg[0] = dg[1] = dg[2] = 0.0;
912 setcolor(rcol, 0.0, 0.0, 0.0);
913 if (divcnt == 0)
914 return(0.0);
915 /* allocate super-samples */
916 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
917 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
918 if (div == NULL)
919 error(SYSTEM, "out of memory in doambient");
920 } else
921 div = NULL;
922 /* sample the divisions */
923 arad = 0.0;
924 acol[0] = acol[1] = acol[2] = 0.0;
925 if ((dp = div) == NULL)
926 dp = &dnew;
927 divcnt = 0;
928 for (i = 0; i < hemi.nt; i++)
929 for (j = 0; j < hemi.np; j++) {
930 dp->t = i; dp->p = j;
931 setcolor(dp->v, 0.0, 0.0, 0.0);
932 dp->r = 0.0;
933 dp->n = 0;
934 if (divsample(dp, &hemi, r) < 0) {
935 if (div != NULL)
936 dp++;
937 continue;
938 }
939 arad += dp->r;
940 divcnt++;
941 if (div != NULL)
942 dp++;
943 else
944 addcolor(acol, dp->v);
945 }
946 if (!divcnt) {
947 if (div != NULL)
948 free((void *)div);
949 return(0.0); /* no samples taken */
950 }
951 if (divcnt < hemi.nt*hemi.np) {
952 pg = dg = NULL; /* incomplete sampling */
953 hemi.ns = 0;
954 } else if (arad > FTINY && divcnt/arad < minarad) {
955 hemi.ns = 0; /* close enough */
956 } else if (hemi.ns > 0) { /* else perform super-sampling? */
957 comperrs(div, &hemi); /* compute errors */
958 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
959 /* super-sample */
960 for (i = hemi.ns; i > 0; i--) {
961 dnew = *div;
962 if (divsample(&dnew, &hemi, r) < 0) {
963 dp++;
964 continue;
965 }
966 dp = div; /* reinsert */
967 j = divcnt < i ? divcnt : i;
968 while (--j > 0 && dnew.k < dp[1].k) {
969 *dp = *(dp+1);
970 dp++;
971 }
972 *dp = dnew;
973 }
974 if (pg != NULL || dg != NULL) /* restore order */
975 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
976 }
977 /* compute returned values */
978 if (div != NULL) {
979 arad = 0.0; /* note: divcnt may be < nt*np */
980 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
981 arad += dp->r;
982 if (dp->n > 1) {
983 b = 1.0/dp->n;
984 scalecolor(dp->v, b);
985 dp->r *= b;
986 dp->n = 1;
987 }
988 addcolor(acol, dp->v);
989 }
990 b = bright(acol);
991 if (b > FTINY) {
992 b = 1.0/b; /* compute & normalize gradient(s) */
993 if (pg != NULL) {
994 posgradient(pg, div, &hemi);
995 for (i = 0; i < 3; i++)
996 pg[i] *= b;
997 }
998 if (dg != NULL) {
999 dirgradient(dg, div, &hemi);
1000 for (i = 0; i < 3; i++)
1001 dg[i] *= b;
1002 }
1003 }
1004 free((void *)div);
1005 }
1006 copycolor(rcol, acol);
1007 if (arad <= FTINY)
1008 arad = maxarad;
1009 else
1010 arad = (divcnt+hemi.ns)/arad;
1011 if (pg != NULL) { /* reduce radius if gradient large */
1012 d = DOT(pg,pg);
1013 if (d*arad*arad > 1.0)
1014 arad = 1.0/sqrt(d);
1015 }
1016 if (arad < minarad) {
1017 arad = minarad;
1018 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1019 d = 1.0/arad/sqrt(d);
1020 for (i = 0; i < 3; i++)
1021 pg[i] *= d;
1022 }
1023 }
1024 if ((arad /= sqrt(wt)) > maxarad)
1025 arad = maxarad;
1026 return(arad);
1027 }
1028
1029
1030 void
1031 comperrs( /* compute initial error estimates */
1032 AMBSAMP *da, /* assumes standard ordering */
1033 AMBHEMI *hp
1034 )
1035 {
1036 double b, b2;
1037 int i, j;
1038 AMBSAMP *dp;
1039 /* sum differences from neighbors */
1040 dp = da;
1041 for (i = 0; i < hp->nt; i++)
1042 for (j = 0; j < hp->np; j++) {
1043 #ifdef DEBUG
1044 if (dp->t != i || dp->p != j)
1045 error(CONSISTENCY,
1046 "division order in comperrs");
1047 #endif
1048 b = bright(dp[0].v);
1049 if (i > 0) { /* from above */
1050 b2 = bright(dp[-hp->np].v) - b;
1051 b2 *= b2 * 0.25;
1052 dp[0].k += b2;
1053 dp[-hp->np].k += b2;
1054 }
1055 if (j > 0) { /* from behind */
1056 b2 = bright(dp[-1].v) - b;
1057 b2 *= b2 * 0.25;
1058 dp[0].k += b2;
1059 dp[-1].k += b2;
1060 } else { /* around */
1061 b2 = bright(dp[hp->np-1].v) - b;
1062 b2 *= b2 * 0.25;
1063 dp[0].k += b2;
1064 dp[hp->np-1].k += b2;
1065 }
1066 dp++;
1067 }
1068 /* divide by number of neighbors */
1069 dp = da;
1070 for (j = 0; j < hp->np; j++) /* top row */
1071 (dp++)->k *= 1.0/3.0;
1072 if (hp->nt < 2)
1073 return;
1074 for (i = 1; i < hp->nt-1; i++) /* central region */
1075 for (j = 0; j < hp->np; j++)
1076 (dp++)->k *= 0.25;
1077 for (j = 0; j < hp->np; j++) /* bottom row */
1078 (dp++)->k *= 1.0/3.0;
1079 }
1080
1081
1082 void
1083 posgradient( /* compute position gradient */
1084 FVECT gv,
1085 AMBSAMP *da, /* assumes standard ordering */
1086 AMBHEMI *hp
1087 )
1088 {
1089 int i, j;
1090 double nextsine, lastsine, b, d;
1091 double mag0, mag1;
1092 double phi, cosp, sinp, xd, yd;
1093 AMBSAMP *dp;
1094
1095 xd = yd = 0.0;
1096 for (j = 0; j < hp->np; j++) {
1097 dp = da + j;
1098 mag0 = mag1 = 0.0;
1099 lastsine = 0.0;
1100 for (i = 0; i < hp->nt; i++) {
1101 #ifdef DEBUG
1102 if (dp->t != i || dp->p != j)
1103 error(CONSISTENCY,
1104 "division order in posgradient");
1105 #endif
1106 b = bright(dp->v);
1107 if (i > 0) {
1108 d = dp[-hp->np].r;
1109 if (dp[0].r > d) d = dp[0].r;
1110 /* sin(t)*cos(t)^2 */
1111 d *= lastsine * (1.0 - (double)i/hp->nt);
1112 mag0 += d*(b - bright(dp[-hp->np].v));
1113 }
1114 nextsine = sqrt((double)(i+1)/hp->nt);
1115 if (j > 0) {
1116 d = dp[-1].r;
1117 if (dp[0].r > d) d = dp[0].r;
1118 mag1 += d * (nextsine - lastsine) *
1119 (b - bright(dp[-1].v));
1120 } else {
1121 d = dp[hp->np-1].r;
1122 if (dp[0].r > d) d = dp[0].r;
1123 mag1 += d * (nextsine - lastsine) *
1124 (b - bright(dp[hp->np-1].v));
1125 }
1126 dp += hp->np;
1127 lastsine = nextsine;
1128 }
1129 mag0 *= 2.0*PI / hp->np;
1130 phi = 2.0*PI * (double)j/hp->np;
1131 cosp = tcos(phi); sinp = tsin(phi);
1132 xd += mag0*cosp - mag1*sinp;
1133 yd += mag0*sinp + mag1*cosp;
1134 }
1135 for (i = 0; i < 3; i++)
1136 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1137 }
1138
1139
1140 void
1141 dirgradient( /* compute direction gradient */
1142 FVECT gv,
1143 AMBSAMP *da, /* assumes standard ordering */
1144 AMBHEMI *hp
1145 )
1146 {
1147 int i, j;
1148 double mag;
1149 double phi, xd, yd;
1150 AMBSAMP *dp;
1151
1152 xd = yd = 0.0;
1153 for (j = 0; j < hp->np; j++) {
1154 dp = da + j;
1155 mag = 0.0;
1156 for (i = 0; i < hp->nt; i++) {
1157 #ifdef DEBUG
1158 if (dp->t != i || dp->p != j)
1159 error(CONSISTENCY,
1160 "division order in dirgradient");
1161 #endif
1162 /* tan(t) */
1163 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1164 dp += hp->np;
1165 }
1166 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1167 xd += mag * tcos(phi);
1168 yd += mag * tsin(phi);
1169 }
1170 for (i = 0; i < 3; i++)
1171 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1172 }
1173
1174 #endif /* ! NEWAMB */