ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.68
Committed: Thu Oct 23 18:19:14 2014 UTC (9 years, 6 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R2P2
Changes since 2.67: +3 -3 lines
Log Message:
Fixed floating-point error under Windows caused by cos^2 + sin^2 > 1

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.67 2014/10/17 20:47:59 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifndef OLDAMB
25
26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27
28 typedef struct {
29 COLOR v; /* hemisphere sample value */
30 float d; /* reciprocal distance (1/rt) */
31 FVECT p; /* intersection point */
32 } AMBSAMP; /* sample value */
33
34 typedef struct {
35 RAY *rp; /* originating ray sample */
36 int ns; /* number of samples per axis */
37 int sampOK; /* acquired full sample set? */
38 COLOR acoef; /* division contribution coefficient */
39 double acol[3]; /* accumulated color */
40 FVECT ux, uy; /* tangent axis unit vectors */
41 AMBSAMP sa[1]; /* sample array (extends struct) */
42 } AMBHEMI; /* ambient sample hemisphere */
43
44 #define AI(h,i,j) ((i)*(h)->ns + (j))
45 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
46
47 typedef struct {
48 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
49 double I1, I2;
50 } FFTRI; /* vectors and coefficients for Hessian calculation */
51
52
53 static int
54 ambsample( /* initial ambient division sample */
55 AMBHEMI *hp,
56 int i,
57 int j,
58 int n
59 )
60 {
61 AMBSAMP *ap = &ambsam(hp,i,j);
62 RAY ar;
63 int hlist[3], ii;
64 double spt[2], zd;
65 /* generate hemispherical sample */
66 /* ambient coefficient for weight */
67 if (ambacc > FTINY)
68 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
69 else
70 copycolor(ar.rcoef, hp->acoef);
71 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
72 return(0);
73 if (ambacc > FTINY) {
74 multcolor(ar.rcoef, hp->acoef);
75 scalecolor(ar.rcoef, 1./AVGREFL);
76 }
77 hlist[0] = hp->rp->rno;
78 hlist[1] = j;
79 hlist[2] = i;
80 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
81 /* avoid coincident samples */
82 if (!n && (0 < i) & (i < hp->ns-1) &&
83 (0 < j) & (j < hp->ns-1)) {
84 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
85 spt[0] = 0.1 + 0.8*frandom();
86 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
87 spt[1] = 0.1 + 0.8*frandom();
88 }
89 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
90 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
91 for (ii = 3; ii--; )
92 ar.rdir[ii] = spt[0]*hp->ux[ii] +
93 spt[1]*hp->uy[ii] +
94 zd*hp->rp->ron[ii];
95 checknorm(ar.rdir);
96 dimlist[ndims++] = AI(hp,i,j) + 90171;
97 rayvalue(&ar); /* evaluate ray */
98 ndims--;
99 if (ar.rt <= FTINY)
100 return(0); /* should never happen */
101 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
102 if (ar.rt*ap->d < 1.0) /* new/closer distance? */
103 ap->d = 1.0/ar.rt;
104 if (!n) { /* record first vertex & value */
105 if (ar.rt > 10.0*thescene.cusize)
106 ar.rt = 10.0*thescene.cusize;
107 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
108 copycolor(ap->v, ar.rcol);
109 } else { /* else update recorded value */
110 hp->acol[RED] -= colval(ap->v,RED);
111 hp->acol[GRN] -= colval(ap->v,GRN);
112 hp->acol[BLU] -= colval(ap->v,BLU);
113 zd = 1.0/(double)(n+1);
114 scalecolor(ar.rcol, zd);
115 zd *= (double)n;
116 scalecolor(ap->v, zd);
117 addcolor(ap->v, ar.rcol);
118 }
119 addcolor(hp->acol, ap->v); /* add to our sum */
120 return(1);
121 }
122
123
124 /* Estimate errors based on ambient division differences */
125 static float *
126 getambdiffs(AMBHEMI *hp)
127 {
128 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
129 float *ep;
130 AMBSAMP *ap;
131 double b, d2;
132 int i, j;
133
134 if (earr == NULL) /* out of memory? */
135 return(NULL);
136 /* compute squared neighbor diffs */
137 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
138 for (j = 0; j < hp->ns; j++, ap++, ep++) {
139 b = bright(ap[0].v);
140 if (i) { /* from above */
141 d2 = b - bright(ap[-hp->ns].v);
142 d2 *= d2;
143 ep[0] += d2;
144 ep[-hp->ns] += d2;
145 }
146 if (!j) continue;
147 /* from behind */
148 d2 = b - bright(ap[-1].v);
149 d2 *= d2;
150 ep[0] += d2;
151 ep[-1] += d2;
152 if (!i) continue;
153 /* diagonal */
154 d2 = b - bright(ap[-hp->ns-1].v);
155 d2 *= d2;
156 ep[0] += d2;
157 ep[-hp->ns-1] += d2;
158 }
159 /* correct for number of neighbors */
160 earr[0] *= 8./3.;
161 earr[hp->ns-1] *= 8./3.;
162 earr[(hp->ns-1)*hp->ns] *= 8./3.;
163 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
164 for (i = 1; i < hp->ns-1; i++) {
165 earr[i*hp->ns] *= 8./5.;
166 earr[i*hp->ns + hp->ns-1] *= 8./5.;
167 }
168 for (j = 1; j < hp->ns-1; j++) {
169 earr[j] *= 8./5.;
170 earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
171 }
172 return(earr);
173 }
174
175
176 /* Perform super-sampling on hemisphere (introduces bias) */
177 static void
178 ambsupersamp(AMBHEMI *hp, int cnt)
179 {
180 float *earr = getambdiffs(hp);
181 double e2rem = 0;
182 AMBSAMP *ap;
183 float *ep;
184 int i, j, n, nss;
185
186 if (earr == NULL) /* just skip calc. if no memory */
187 return;
188 /* accumulate estimated variances */
189 for (ep = earr + hp->ns*hp->ns; ep > earr; )
190 e2rem += *--ep;
191 ep = earr; /* perform super-sampling */
192 for (ap = hp->sa, i = 0; i < hp->ns; i++)
193 for (j = 0; j < hp->ns; j++, ap++) {
194 if (e2rem <= FTINY)
195 goto done; /* nothing left to do */
196 nss = *ep/e2rem*cnt + frandom();
197 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
198 --cnt;
199 e2rem -= *ep++; /* update remainder */
200 }
201 done:
202 free(earr);
203 }
204
205
206 static AMBHEMI *
207 samp_hemi( /* sample indirect hemisphere */
208 COLOR rcol,
209 RAY *r,
210 double wt
211 )
212 {
213 AMBHEMI *hp;
214 double d;
215 int n, i, j;
216 /* set number of divisions */
217 if (ambacc <= FTINY &&
218 wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight)))
219 wt = d; /* avoid ray termination */
220 n = sqrt(ambdiv * wt) + 0.5;
221 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
222 if (n < i)
223 n = i;
224 /* allocate sampling array */
225 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
226 if (hp == NULL)
227 error(SYSTEM, "out of memory in samp_hemi");
228 hp->rp = r;
229 hp->ns = n;
230 hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0;
231 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
232 hp->sampOK = 0;
233 /* assign coefficient */
234 copycolor(hp->acoef, rcol);
235 d = 1.0/(n*n);
236 scalecolor(hp->acoef, d);
237 /* make tangent plane axes */
238 hp->uy[0] = 0.5 - frandom();
239 hp->uy[1] = 0.5 - frandom();
240 hp->uy[2] = 0.5 - frandom();
241 for (i = 3; i--; )
242 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
243 break;
244 if (i < 0)
245 error(CONSISTENCY, "bad ray direction in samp_hemi");
246 hp->uy[i] = 1.0;
247 VCROSS(hp->ux, hp->uy, r->ron);
248 normalize(hp->ux);
249 VCROSS(hp->uy, r->ron, hp->ux);
250 /* sample divisions */
251 for (i = hp->ns; i--; )
252 for (j = hp->ns; j--; )
253 hp->sampOK += ambsample(hp, i, j, 0);
254 copycolor(rcol, hp->acol);
255 if (!hp->sampOK) { /* utter failure? */
256 free(hp);
257 return(NULL);
258 }
259 if (hp->sampOK < hp->ns*hp->ns) {
260 hp->sampOK *= -1; /* soft failure */
261 return(hp);
262 }
263 n = ambssamp*wt + 0.5;
264 if (n > 8) { /* perform super-sampling? */
265 ambsupersamp(hp, n);
266 copycolor(rcol, hp->acol);
267 }
268 return(hp); /* all is well */
269 }
270
271
272 /* Return brightness of farthest ambient sample */
273 static double
274 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
275 {
276 if (hp->sa[n1].d <= hp->sa[n2].d) {
277 if (hp->sa[n1].d <= hp->sa[n3].d)
278 return(colval(hp->sa[n1].v,CIEY));
279 return(colval(hp->sa[n3].v,CIEY));
280 }
281 if (hp->sa[n2].d <= hp->sa[n3].d)
282 return(colval(hp->sa[n2].v,CIEY));
283 return(colval(hp->sa[n3].v,CIEY));
284 }
285
286
287 /* Compute vectors and coefficients for Hessian/gradient calcs */
288 static void
289 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
290 {
291 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
292 int ii;
293
294 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
295 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
296 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
297 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
298 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
299 dot_e = DOT(ftp->e_i,ftp->e_i);
300 dot_er = DOT(ftp->e_i, ftp->r_i);
301 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
302 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
303 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
304 sqrt( rdot_cp );
305 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
306 dot_e*ftp->I1 )*0.5*rdot_cp;
307 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
308 for (ii = 3; ii--; )
309 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
310 }
311
312
313 /* Compose 3x3 matrix from two vectors */
314 static void
315 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
316 {
317 mat[0][0] = 2.0*va[0]*vb[0];
318 mat[1][1] = 2.0*va[1]*vb[1];
319 mat[2][2] = 2.0*va[2]*vb[2];
320 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
321 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
322 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
323 }
324
325
326 /* Compute partial 3x3 Hessian matrix for edge */
327 static void
328 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
329 {
330 FVECT ncp;
331 FVECT m1[3], m2[3], m3[3], m4[3];
332 double d1, d2, d3, d4;
333 double I3, J3, K3;
334 int i, j;
335 /* compute intermediate coefficients */
336 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
337 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
338 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
339 d4 = DOT(ftp->e_i, ftp->r_i);
340 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
341 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
342 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
343 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
344 /* intermediate matrices */
345 VCROSS(ncp, nrm, ftp->e_i);
346 compose_matrix(m1, ncp, ftp->rI2_eJ2);
347 compose_matrix(m2, ftp->r_i, ftp->r_i);
348 compose_matrix(m3, ftp->e_i, ftp->e_i);
349 compose_matrix(m4, ftp->r_i, ftp->e_i);
350 d1 = DOT(nrm, ftp->rcp);
351 d2 = -d1*ftp->I2;
352 d1 *= 2.0;
353 for (i = 3; i--; ) /* final matrix sum */
354 for (j = 3; j--; ) {
355 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
356 2.0*J3*m4[i][j] );
357 hess[i][j] += d2*(i==j);
358 hess[i][j] *= -1.0/PI;
359 }
360 }
361
362
363 /* Reverse hessian calculation result for edge in other direction */
364 static void
365 rev_hessian(FVECT hess[3])
366 {
367 int i;
368
369 for (i = 3; i--; ) {
370 hess[i][0] = -hess[i][0];
371 hess[i][1] = -hess[i][1];
372 hess[i][2] = -hess[i][2];
373 }
374 }
375
376
377 /* Add to radiometric Hessian from the given triangle */
378 static void
379 add2hessian(FVECT hess[3], FVECT ehess1[3],
380 FVECT ehess2[3], FVECT ehess3[3], double v)
381 {
382 int i, j;
383
384 for (i = 3; i--; )
385 for (j = 3; j--; )
386 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
387 }
388
389
390 /* Compute partial displacement form factor gradient for edge */
391 static void
392 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
393 {
394 FVECT ncp;
395 double f1;
396 int i;
397
398 f1 = 2.0*DOT(nrm, ftp->rcp);
399 VCROSS(ncp, nrm, ftp->e_i);
400 for (i = 3; i--; )
401 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
402 }
403
404
405 /* Reverse gradient calculation result for edge in other direction */
406 static void
407 rev_gradient(FVECT grad)
408 {
409 grad[0] = -grad[0];
410 grad[1] = -grad[1];
411 grad[2] = -grad[2];
412 }
413
414
415 /* Add to displacement gradient from the given triangle */
416 static void
417 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
418 {
419 int i;
420
421 for (i = 3; i--; )
422 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
423 }
424
425
426 /* Compute anisotropic radii and eigenvector directions */
427 static void
428 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
429 {
430 double hess2[2][2];
431 FVECT a, b;
432 double evalue[2], slope1, xmag1;
433 int i;
434 /* project Hessian to sample plane */
435 for (i = 3; i--; ) {
436 a[i] = DOT(hessian[i], uv[0]);
437 b[i] = DOT(hessian[i], uv[1]);
438 }
439 hess2[0][0] = DOT(uv[0], a);
440 hess2[0][1] = DOT(uv[0], b);
441 hess2[1][0] = DOT(uv[1], a);
442 hess2[1][1] = DOT(uv[1], b);
443 /* compute eigenvalue(s) */
444 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
445 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
446 if (i == 1) /* double-root (circle) */
447 evalue[1] = evalue[0];
448 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
449 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
450 ra[0] = ra[1] = maxarad;
451 return;
452 }
453 if (evalue[0] > evalue[1]) {
454 ra[0] = sqrt(sqrt(4.0/evalue[0]));
455 ra[1] = sqrt(sqrt(4.0/evalue[1]));
456 slope1 = evalue[1];
457 } else {
458 ra[0] = sqrt(sqrt(4.0/evalue[1]));
459 ra[1] = sqrt(sqrt(4.0/evalue[0]));
460 slope1 = evalue[0];
461 }
462 /* compute unit eigenvectors */
463 if (fabs(hess2[0][1]) <= FTINY)
464 return; /* uv OK as is */
465 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
466 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
467 for (i = 3; i--; ) {
468 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
469 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
470 }
471 VCOPY(uv[0], a);
472 VCOPY(uv[1], b);
473 }
474
475
476 static void
477 ambHessian( /* anisotropic radii & pos. gradient */
478 AMBHEMI *hp,
479 FVECT uv[2], /* returned */
480 float ra[2], /* returned (optional) */
481 float pg[2] /* returned (optional) */
482 )
483 {
484 static char memerrmsg[] = "out of memory in ambHessian()";
485 FVECT (*hessrow)[3] = NULL;
486 FVECT *gradrow = NULL;
487 FVECT hessian[3];
488 FVECT gradient;
489 FFTRI fftr;
490 int i, j;
491 /* be sure to assign unit vectors */
492 VCOPY(uv[0], hp->ux);
493 VCOPY(uv[1], hp->uy);
494 /* clock-wise vertex traversal from sample POV */
495 if (ra != NULL) { /* initialize Hessian row buffer */
496 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
497 if (hessrow == NULL)
498 error(SYSTEM, memerrmsg);
499 memset(hessian, 0, sizeof(hessian));
500 } else if (pg == NULL) /* bogus call? */
501 return;
502 if (pg != NULL) { /* initialize form factor row buffer */
503 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
504 if (gradrow == NULL)
505 error(SYSTEM, memerrmsg);
506 memset(gradient, 0, sizeof(gradient));
507 }
508 /* compute first row of edges */
509 for (j = 0; j < hp->ns-1; j++) {
510 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
511 if (hessrow != NULL)
512 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
513 if (gradrow != NULL)
514 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
515 }
516 /* sum each row of triangles */
517 for (i = 0; i < hp->ns-1; i++) {
518 FVECT hesscol[3]; /* compute first vertical edge */
519 FVECT gradcol;
520 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
521 if (hessrow != NULL)
522 comp_hessian(hesscol, &fftr, hp->rp->ron);
523 if (gradrow != NULL)
524 comp_gradient(gradcol, &fftr, hp->rp->ron);
525 for (j = 0; j < hp->ns-1; j++) {
526 FVECT hessdia[3]; /* compute triangle contributions */
527 FVECT graddia;
528 double backg;
529 backg = back_ambval(hp, AI(hp,i,j),
530 AI(hp,i,j+1), AI(hp,i+1,j));
531 /* diagonal (inner) edge */
532 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
533 if (hessrow != NULL) {
534 comp_hessian(hessdia, &fftr, hp->rp->ron);
535 rev_hessian(hesscol);
536 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
537 }
538 if (gradrow != NULL) {
539 comp_gradient(graddia, &fftr, hp->rp->ron);
540 rev_gradient(gradcol);
541 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
542 }
543 /* initialize edge in next row */
544 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
545 if (hessrow != NULL)
546 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
547 if (gradrow != NULL)
548 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
549 /* new column edge & paired triangle */
550 backg = back_ambval(hp, AI(hp,i+1,j+1),
551 AI(hp,i+1,j), AI(hp,i,j+1));
552 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
553 if (hessrow != NULL) {
554 comp_hessian(hesscol, &fftr, hp->rp->ron);
555 rev_hessian(hessdia);
556 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
557 if (i < hp->ns-2)
558 rev_hessian(hessrow[j]);
559 }
560 if (gradrow != NULL) {
561 comp_gradient(gradcol, &fftr, hp->rp->ron);
562 rev_gradient(graddia);
563 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
564 if (i < hp->ns-2)
565 rev_gradient(gradrow[j]);
566 }
567 }
568 }
569 /* release row buffers */
570 if (hessrow != NULL) free(hessrow);
571 if (gradrow != NULL) free(gradrow);
572
573 if (ra != NULL) /* extract eigenvectors & radii */
574 eigenvectors(uv, ra, hessian);
575 if (pg != NULL) { /* tangential position gradient */
576 pg[0] = DOT(gradient, uv[0]);
577 pg[1] = DOT(gradient, uv[1]);
578 }
579 }
580
581
582 /* Compute direction gradient from a hemispherical sampling */
583 static void
584 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
585 {
586 AMBSAMP *ap;
587 double dgsum[2];
588 int n;
589 FVECT vd;
590 double gfact;
591
592 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
593 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
594 /* use vector for azimuth + 90deg */
595 VSUB(vd, ap->p, hp->rp->rop);
596 /* brightness over cosine factor */
597 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
598 /* sine = proj_radius/vd_length */
599 dgsum[0] -= DOT(uv[1], vd) * gfact;
600 dgsum[1] += DOT(uv[0], vd) * gfact;
601 }
602 dg[0] = dgsum[0] / (hp->ns*hp->ns);
603 dg[1] = dgsum[1] / (hp->ns*hp->ns);
604 }
605
606
607 /* Compute potential light leak direction flags for cache value */
608 static uint32
609 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
610 {
611 const double max_d = 1.0/(minarad*ambacc + 0.001);
612 const double ang_res = 0.5*PI/hp->ns;
613 const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
614 double avg_d = 0;
615 uint32 flgs = 0;
616 FVECT vec;
617 double u, v;
618 double ang, a1;
619 int i, j;
620 /* don't bother for a few samples */
621 if (hp->ns < 12)
622 return(0);
623 /* check distances overhead */
624 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
625 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
626 avg_d += ambsam(hp,i,j).d;
627 avg_d *= 4.0/(hp->ns*hp->ns);
628 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
629 return(0);
630 if (avg_d >= max_d) /* insurance */
631 return(0);
632 /* else circle around perimeter */
633 for (i = 0; i < hp->ns; i++)
634 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
635 AMBSAMP *ap = &ambsam(hp,i,j);
636 if ((ap->d <= FTINY) | (ap->d >= max_d))
637 continue; /* too far or too near */
638 VSUB(vec, ap->p, hp->rp->rop);
639 u = DOT(vec, uv[0]);
640 v = DOT(vec, uv[1]);
641 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
642 continue; /* occluder outside ellipse */
643 ang = atan2a(v, u); /* else set direction flags */
644 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
645 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
646 }
647 /* add low-angle incident (< 20deg) */
648 if (fabs(hp->rp->rod) <= 0.342) {
649 u = -DOT(hp->rp->rdir, uv[0]);
650 v = -DOT(hp->rp->rdir, uv[1]);
651 if ((r0*r0*u*u + r1*r1*v*v) > hp->rp->rot*hp->rp->rot) {
652 ang = atan2a(v, u);
653 ang += 2.*PI*(ang < 0);
654 ang *= 16/PI;
655 if ((ang < .5) | (ang >= 31.5))
656 flgs |= 0x80000001;
657 else
658 flgs |= 3L<<(int)(ang-.5);
659 }
660 }
661 return(flgs);
662 }
663
664
665 int
666 doambient( /* compute ambient component */
667 COLOR rcol, /* input/output color */
668 RAY *r,
669 double wt,
670 FVECT uv[2], /* returned (optional) */
671 float ra[2], /* returned (optional) */
672 float pg[2], /* returned (optional) */
673 float dg[2], /* returned (optional) */
674 uint32 *crlp /* returned (optional) */
675 )
676 {
677 AMBHEMI *hp = samp_hemi(rcol, r, wt);
678 FVECT my_uv[2];
679 double d, K;
680 AMBSAMP *ap;
681 int i;
682 /* clear return values */
683 if (uv != NULL)
684 memset(uv, 0, sizeof(FVECT)*2);
685 if (ra != NULL)
686 ra[0] = ra[1] = 0.0;
687 if (pg != NULL)
688 pg[0] = pg[1] = 0.0;
689 if (dg != NULL)
690 dg[0] = dg[1] = 0.0;
691 if (crlp != NULL)
692 *crlp = 0;
693 if (hp == NULL) /* sampling falure? */
694 return(0);
695
696 if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
697 (hp->sampOK < 0) | (hp->ns < 6)) {
698 free(hp); /* Hessian not requested/possible */
699 return(-1); /* value-only return value */
700 }
701 if ((d = bright(rcol)) > FTINY) { /* normalize Y values */
702 d = 0.99*(hp->ns*hp->ns)/d;
703 K = 0.01;
704 } else { /* or fall back on geometric Hessian */
705 K = 1.0;
706 pg = NULL;
707 dg = NULL;
708 crlp = NULL;
709 }
710 ap = hp->sa; /* relative Y channel from here on... */
711 for (i = hp->ns*hp->ns; i--; ap++)
712 colval(ap->v,CIEY) = bright(ap->v)*d + K;
713
714 if (uv == NULL) /* make sure we have axis pointers */
715 uv = my_uv;
716 /* compute radii & pos. gradient */
717 ambHessian(hp, uv, ra, pg);
718
719 if (dg != NULL) /* compute direction gradient */
720 ambdirgrad(hp, uv, dg);
721
722 if (ra != NULL) { /* scale/clamp radii */
723 if (pg != NULL) {
724 if (ra[0]*(d = fabs(pg[0])) > 1.0)
725 ra[0] = 1.0/d;
726 if (ra[1]*(d = fabs(pg[1])) > 1.0)
727 ra[1] = 1.0/d;
728 if (ra[0] > ra[1])
729 ra[0] = ra[1];
730 }
731 if (ra[0] < minarad) {
732 ra[0] = minarad;
733 if (ra[1] < minarad)
734 ra[1] = minarad;
735 }
736 ra[0] *= d = 1.0/sqrt(wt);
737 if ((ra[1] *= d) > 2.0*ra[0])
738 ra[1] = 2.0*ra[0];
739 if (ra[1] > maxarad) {
740 ra[1] = maxarad;
741 if (ra[0] > maxarad)
742 ra[0] = maxarad;
743 }
744 /* flag encroached directions */
745 if ((wt >= 0.89*AVGREFL) & (crlp != NULL))
746 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
747 if (pg != NULL) { /* cap gradient if necessary */
748 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
749 if (d > 1.0) {
750 d = 1.0/sqrt(d);
751 pg[0] *= d;
752 pg[1] *= d;
753 }
754 }
755 }
756 free(hp); /* clean up and return */
757 return(1);
758 }
759
760
761 #else /* ! NEWAMB */
762
763
764 void
765 inithemi( /* initialize sampling hemisphere */
766 AMBHEMI *hp,
767 COLOR ac,
768 RAY *r,
769 double wt
770 )
771 {
772 double d;
773 int i;
774 /* set number of divisions */
775 if (ambacc <= FTINY &&
776 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
777 wt = d; /* avoid ray termination */
778 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
779 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
780 if (hp->nt < i)
781 hp->nt = i;
782 hp->np = PI * hp->nt + 0.5;
783 /* set number of super-samples */
784 hp->ns = ambssamp * wt + 0.5;
785 /* assign coefficient */
786 copycolor(hp->acoef, ac);
787 d = 1.0/(hp->nt*hp->np);
788 scalecolor(hp->acoef, d);
789 /* make axes */
790 VCOPY(hp->uz, r->ron);
791 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
792 for (i = 0; i < 3; i++)
793 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
794 break;
795 if (i >= 3)
796 error(CONSISTENCY, "bad ray direction in inithemi");
797 hp->uy[i] = 1.0;
798 fcross(hp->ux, hp->uy, hp->uz);
799 normalize(hp->ux);
800 fcross(hp->uy, hp->uz, hp->ux);
801 }
802
803
804 int
805 divsample( /* sample a division */
806 AMBSAMP *dp,
807 AMBHEMI *h,
808 RAY *r
809 )
810 {
811 RAY ar;
812 int hlist[3];
813 double spt[2];
814 double xd, yd, zd;
815 double b2;
816 double phi;
817 int i;
818 /* ambient coefficient for weight */
819 if (ambacc > FTINY)
820 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
821 else
822 copycolor(ar.rcoef, h->acoef);
823 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
824 return(-1);
825 if (ambacc > FTINY) {
826 multcolor(ar.rcoef, h->acoef);
827 scalecolor(ar.rcoef, 1./AVGREFL);
828 }
829 hlist[0] = r->rno;
830 hlist[1] = dp->t;
831 hlist[2] = dp->p;
832 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
833 zd = sqrt((dp->t + spt[0])/h->nt);
834 phi = 2.0*PI * (dp->p + spt[1])/h->np;
835 xd = tcos(phi) * zd;
836 yd = tsin(phi) * zd;
837 zd = sqrt(1.0 - zd*zd);
838 for (i = 0; i < 3; i++)
839 ar.rdir[i] = xd*h->ux[i] +
840 yd*h->uy[i] +
841 zd*h->uz[i];
842 checknorm(ar.rdir);
843 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
844 rayvalue(&ar);
845 ndims--;
846 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
847 addcolor(dp->v, ar.rcol);
848 /* use rt to improve gradient calc */
849 if (ar.rt > FTINY && ar.rt < FHUGE)
850 dp->r += 1.0/ar.rt;
851 /* (re)initialize error */
852 if (dp->n++) {
853 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
854 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
855 dp->k = b2/(dp->n*dp->n);
856 } else
857 dp->k = 0.0;
858 return(0);
859 }
860
861
862 static int
863 ambcmp( /* decreasing order */
864 const void *p1,
865 const void *p2
866 )
867 {
868 const AMBSAMP *d1 = (const AMBSAMP *)p1;
869 const AMBSAMP *d2 = (const AMBSAMP *)p2;
870
871 if (d1->k < d2->k)
872 return(1);
873 if (d1->k > d2->k)
874 return(-1);
875 return(0);
876 }
877
878
879 static int
880 ambnorm( /* standard order */
881 const void *p1,
882 const void *p2
883 )
884 {
885 const AMBSAMP *d1 = (const AMBSAMP *)p1;
886 const AMBSAMP *d2 = (const AMBSAMP *)p2;
887 int c;
888
889 if ( (c = d1->t - d2->t) )
890 return(c);
891 return(d1->p - d2->p);
892 }
893
894
895 double
896 doambient( /* compute ambient component */
897 COLOR rcol,
898 RAY *r,
899 double wt,
900 FVECT pg,
901 FVECT dg
902 )
903 {
904 double b, d=0;
905 AMBHEMI hemi;
906 AMBSAMP *div;
907 AMBSAMP dnew;
908 double acol[3];
909 AMBSAMP *dp;
910 double arad;
911 int divcnt;
912 int i, j;
913 /* initialize hemisphere */
914 inithemi(&hemi, rcol, r, wt);
915 divcnt = hemi.nt * hemi.np;
916 /* initialize */
917 if (pg != NULL)
918 pg[0] = pg[1] = pg[2] = 0.0;
919 if (dg != NULL)
920 dg[0] = dg[1] = dg[2] = 0.0;
921 setcolor(rcol, 0.0, 0.0, 0.0);
922 if (divcnt == 0)
923 return(0.0);
924 /* allocate super-samples */
925 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
926 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
927 if (div == NULL)
928 error(SYSTEM, "out of memory in doambient");
929 } else
930 div = NULL;
931 /* sample the divisions */
932 arad = 0.0;
933 acol[0] = acol[1] = acol[2] = 0.0;
934 if ((dp = div) == NULL)
935 dp = &dnew;
936 divcnt = 0;
937 for (i = 0; i < hemi.nt; i++)
938 for (j = 0; j < hemi.np; j++) {
939 dp->t = i; dp->p = j;
940 setcolor(dp->v, 0.0, 0.0, 0.0);
941 dp->r = 0.0;
942 dp->n = 0;
943 if (divsample(dp, &hemi, r) < 0) {
944 if (div != NULL)
945 dp++;
946 continue;
947 }
948 arad += dp->r;
949 divcnt++;
950 if (div != NULL)
951 dp++;
952 else
953 addcolor(acol, dp->v);
954 }
955 if (!divcnt) {
956 if (div != NULL)
957 free((void *)div);
958 return(0.0); /* no samples taken */
959 }
960 if (divcnt < hemi.nt*hemi.np) {
961 pg = dg = NULL; /* incomplete sampling */
962 hemi.ns = 0;
963 } else if (arad > FTINY && divcnt/arad < minarad) {
964 hemi.ns = 0; /* close enough */
965 } else if (hemi.ns > 0) { /* else perform super-sampling? */
966 comperrs(div, &hemi); /* compute errors */
967 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
968 /* super-sample */
969 for (i = hemi.ns; i > 0; i--) {
970 dnew = *div;
971 if (divsample(&dnew, &hemi, r) < 0) {
972 dp++;
973 continue;
974 }
975 dp = div; /* reinsert */
976 j = divcnt < i ? divcnt : i;
977 while (--j > 0 && dnew.k < dp[1].k) {
978 *dp = *(dp+1);
979 dp++;
980 }
981 *dp = dnew;
982 }
983 if (pg != NULL || dg != NULL) /* restore order */
984 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
985 }
986 /* compute returned values */
987 if (div != NULL) {
988 arad = 0.0; /* note: divcnt may be < nt*np */
989 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
990 arad += dp->r;
991 if (dp->n > 1) {
992 b = 1.0/dp->n;
993 scalecolor(dp->v, b);
994 dp->r *= b;
995 dp->n = 1;
996 }
997 addcolor(acol, dp->v);
998 }
999 b = bright(acol);
1000 if (b > FTINY) {
1001 b = 1.0/b; /* compute & normalize gradient(s) */
1002 if (pg != NULL) {
1003 posgradient(pg, div, &hemi);
1004 for (i = 0; i < 3; i++)
1005 pg[i] *= b;
1006 }
1007 if (dg != NULL) {
1008 dirgradient(dg, div, &hemi);
1009 for (i = 0; i < 3; i++)
1010 dg[i] *= b;
1011 }
1012 }
1013 free((void *)div);
1014 }
1015 copycolor(rcol, acol);
1016 if (arad <= FTINY)
1017 arad = maxarad;
1018 else
1019 arad = (divcnt+hemi.ns)/arad;
1020 if (pg != NULL) { /* reduce radius if gradient large */
1021 d = DOT(pg,pg);
1022 if (d*arad*arad > 1.0)
1023 arad = 1.0/sqrt(d);
1024 }
1025 if (arad < minarad) {
1026 arad = minarad;
1027 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1028 d = 1.0/arad/sqrt(d);
1029 for (i = 0; i < 3; i++)
1030 pg[i] *= d;
1031 }
1032 }
1033 if ((arad /= sqrt(wt)) > maxarad)
1034 arad = maxarad;
1035 return(arad);
1036 }
1037
1038
1039 void
1040 comperrs( /* compute initial error estimates */
1041 AMBSAMP *da, /* assumes standard ordering */
1042 AMBHEMI *hp
1043 )
1044 {
1045 double b, b2;
1046 int i, j;
1047 AMBSAMP *dp;
1048 /* sum differences from neighbors */
1049 dp = da;
1050 for (i = 0; i < hp->nt; i++)
1051 for (j = 0; j < hp->np; j++) {
1052 #ifdef DEBUG
1053 if (dp->t != i || dp->p != j)
1054 error(CONSISTENCY,
1055 "division order in comperrs");
1056 #endif
1057 b = bright(dp[0].v);
1058 if (i > 0) { /* from above */
1059 b2 = bright(dp[-hp->np].v) - b;
1060 b2 *= b2 * 0.25;
1061 dp[0].k += b2;
1062 dp[-hp->np].k += b2;
1063 }
1064 if (j > 0) { /* from behind */
1065 b2 = bright(dp[-1].v) - b;
1066 b2 *= b2 * 0.25;
1067 dp[0].k += b2;
1068 dp[-1].k += b2;
1069 } else { /* around */
1070 b2 = bright(dp[hp->np-1].v) - b;
1071 b2 *= b2 * 0.25;
1072 dp[0].k += b2;
1073 dp[hp->np-1].k += b2;
1074 }
1075 dp++;
1076 }
1077 /* divide by number of neighbors */
1078 dp = da;
1079 for (j = 0; j < hp->np; j++) /* top row */
1080 (dp++)->k *= 1.0/3.0;
1081 if (hp->nt < 2)
1082 return;
1083 for (i = 1; i < hp->nt-1; i++) /* central region */
1084 for (j = 0; j < hp->np; j++)
1085 (dp++)->k *= 0.25;
1086 for (j = 0; j < hp->np; j++) /* bottom row */
1087 (dp++)->k *= 1.0/3.0;
1088 }
1089
1090
1091 void
1092 posgradient( /* compute position gradient */
1093 FVECT gv,
1094 AMBSAMP *da, /* assumes standard ordering */
1095 AMBHEMI *hp
1096 )
1097 {
1098 int i, j;
1099 double nextsine, lastsine, b, d;
1100 double mag0, mag1;
1101 double phi, cosp, sinp, xd, yd;
1102 AMBSAMP *dp;
1103
1104 xd = yd = 0.0;
1105 for (j = 0; j < hp->np; j++) {
1106 dp = da + j;
1107 mag0 = mag1 = 0.0;
1108 lastsine = 0.0;
1109 for (i = 0; i < hp->nt; i++) {
1110 #ifdef DEBUG
1111 if (dp->t != i || dp->p != j)
1112 error(CONSISTENCY,
1113 "division order in posgradient");
1114 #endif
1115 b = bright(dp->v);
1116 if (i > 0) {
1117 d = dp[-hp->np].r;
1118 if (dp[0].r > d) d = dp[0].r;
1119 /* sin(t)*cos(t)^2 */
1120 d *= lastsine * (1.0 - (double)i/hp->nt);
1121 mag0 += d*(b - bright(dp[-hp->np].v));
1122 }
1123 nextsine = sqrt((double)(i+1)/hp->nt);
1124 if (j > 0) {
1125 d = dp[-1].r;
1126 if (dp[0].r > d) d = dp[0].r;
1127 mag1 += d * (nextsine - lastsine) *
1128 (b - bright(dp[-1].v));
1129 } else {
1130 d = dp[hp->np-1].r;
1131 if (dp[0].r > d) d = dp[0].r;
1132 mag1 += d * (nextsine - lastsine) *
1133 (b - bright(dp[hp->np-1].v));
1134 }
1135 dp += hp->np;
1136 lastsine = nextsine;
1137 }
1138 mag0 *= 2.0*PI / hp->np;
1139 phi = 2.0*PI * (double)j/hp->np;
1140 cosp = tcos(phi); sinp = tsin(phi);
1141 xd += mag0*cosp - mag1*sinp;
1142 yd += mag0*sinp + mag1*cosp;
1143 }
1144 for (i = 0; i < 3; i++)
1145 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1146 }
1147
1148
1149 void
1150 dirgradient( /* compute direction gradient */
1151 FVECT gv,
1152 AMBSAMP *da, /* assumes standard ordering */
1153 AMBHEMI *hp
1154 )
1155 {
1156 int i, j;
1157 double mag;
1158 double phi, xd, yd;
1159 AMBSAMP *dp;
1160
1161 xd = yd = 0.0;
1162 for (j = 0; j < hp->np; j++) {
1163 dp = da + j;
1164 mag = 0.0;
1165 for (i = 0; i < hp->nt; i++) {
1166 #ifdef DEBUG
1167 if (dp->t != i || dp->p != j)
1168 error(CONSISTENCY,
1169 "division order in dirgradient");
1170 #endif
1171 /* tan(t) */
1172 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1173 dp += hp->np;
1174 }
1175 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1176 xd += mag * tcos(phi);
1177 yd += mag * tsin(phi);
1178 }
1179 for (i = 0; i < 3; i++)
1180 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1181 }
1182
1183 #endif /* ! NEWAMB */