ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.66
Committed: Thu Sep 4 09:09:08 2014 UTC (9 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R2P1
Changes since 2.65: +4 -4 lines
Log Message:
More conservative setting of corral flags

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.65 2014/08/21 10:33:49 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifndef OLDAMB
25
26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27
28 typedef struct {
29 COLOR v; /* hemisphere sample value */
30 float d; /* reciprocal distance (1/rt) */
31 FVECT p; /* intersection point */
32 } AMBSAMP; /* sample value */
33
34 typedef struct {
35 RAY *rp; /* originating ray sample */
36 int ns; /* number of samples per axis */
37 int sampOK; /* acquired full sample set? */
38 COLOR acoef; /* division contribution coefficient */
39 double acol[3]; /* accumulated color */
40 FVECT ux, uy; /* tangent axis unit vectors */
41 AMBSAMP sa[1]; /* sample array (extends struct) */
42 } AMBHEMI; /* ambient sample hemisphere */
43
44 #define AI(h,i,j) ((i)*(h)->ns + (j))
45 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
46
47 typedef struct {
48 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
49 double I1, I2;
50 } FFTRI; /* vectors and coefficients for Hessian calculation */
51
52
53 static int
54 ambsample( /* initial ambient division sample */
55 AMBHEMI *hp,
56 int i,
57 int j,
58 int n
59 )
60 {
61 AMBSAMP *ap = &ambsam(hp,i,j);
62 RAY ar;
63 int hlist[3], ii;
64 double spt[2], zd;
65 /* generate hemispherical sample */
66 /* ambient coefficient for weight */
67 if (ambacc > FTINY)
68 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
69 else
70 copycolor(ar.rcoef, hp->acoef);
71 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
72 return(0);
73 if (ambacc > FTINY) {
74 multcolor(ar.rcoef, hp->acoef);
75 scalecolor(ar.rcoef, 1./AVGREFL);
76 }
77 hlist[0] = hp->rp->rno;
78 hlist[1] = j;
79 hlist[2] = i;
80 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
81 /* avoid coincident samples */
82 if (!n && (0 < i) & (i < hp->ns-1) &&
83 (0 < j) & (j < hp->ns-1)) {
84 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
85 spt[0] = 0.1 + 0.8*frandom();
86 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
87 spt[1] = 0.1 + 0.8*frandom();
88 }
89 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
90 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
91 for (ii = 3; ii--; )
92 ar.rdir[ii] = spt[0]*hp->ux[ii] +
93 spt[1]*hp->uy[ii] +
94 zd*hp->rp->ron[ii];
95 checknorm(ar.rdir);
96 dimlist[ndims++] = AI(hp,i,j) + 90171;
97 rayvalue(&ar); /* evaluate ray */
98 ndims--;
99 if (ar.rt <= FTINY)
100 return(0); /* should never happen */
101 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
102 if (ar.rt*ap->d < 1.0) /* new/closer distance? */
103 ap->d = 1.0/ar.rt;
104 if (!n) { /* record first vertex & value */
105 if (ar.rt > 10.0*thescene.cusize)
106 ar.rt = 10.0*thescene.cusize;
107 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
108 copycolor(ap->v, ar.rcol);
109 } else { /* else update recorded value */
110 hp->acol[RED] -= colval(ap->v,RED);
111 hp->acol[GRN] -= colval(ap->v,GRN);
112 hp->acol[BLU] -= colval(ap->v,BLU);
113 zd = 1.0/(double)(n+1);
114 scalecolor(ar.rcol, zd);
115 zd *= (double)n;
116 scalecolor(ap->v, zd);
117 addcolor(ap->v, ar.rcol);
118 }
119 addcolor(hp->acol, ap->v); /* add to our sum */
120 return(1);
121 }
122
123
124 /* Estimate errors based on ambient division differences */
125 static float *
126 getambdiffs(AMBHEMI *hp)
127 {
128 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
129 float *ep;
130 AMBSAMP *ap;
131 double b, d2;
132 int i, j;
133
134 if (earr == NULL) /* out of memory? */
135 return(NULL);
136 /* compute squared neighbor diffs */
137 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
138 for (j = 0; j < hp->ns; j++, ap++, ep++) {
139 b = bright(ap[0].v);
140 if (i) { /* from above */
141 d2 = b - bright(ap[-hp->ns].v);
142 d2 *= d2;
143 ep[0] += d2;
144 ep[-hp->ns] += d2;
145 }
146 if (!j) continue;
147 /* from behind */
148 d2 = b - bright(ap[-1].v);
149 d2 *= d2;
150 ep[0] += d2;
151 ep[-1] += d2;
152 if (!i) continue;
153 /* diagonal */
154 d2 = b - bright(ap[-hp->ns-1].v);
155 d2 *= d2;
156 ep[0] += d2;
157 ep[-hp->ns-1] += d2;
158 }
159 /* correct for number of neighbors */
160 earr[0] *= 8./3.;
161 earr[hp->ns-1] *= 8./3.;
162 earr[(hp->ns-1)*hp->ns] *= 8./3.;
163 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
164 for (i = 1; i < hp->ns-1; i++) {
165 earr[i*hp->ns] *= 8./5.;
166 earr[i*hp->ns + hp->ns-1] *= 8./5.;
167 }
168 for (j = 1; j < hp->ns-1; j++) {
169 earr[j] *= 8./5.;
170 earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
171 }
172 return(earr);
173 }
174
175
176 /* Perform super-sampling on hemisphere (introduces bias) */
177 static void
178 ambsupersamp(AMBHEMI *hp, int cnt)
179 {
180 float *earr = getambdiffs(hp);
181 double e2rem = 0;
182 AMBSAMP *ap;
183 RAY ar;
184 float *ep;
185 int i, j, n, nss;
186
187 if (earr == NULL) /* just skip calc. if no memory */
188 return;
189 /* accumulate estimated variances */
190 for (ep = earr + hp->ns*hp->ns; ep > earr; )
191 e2rem += *--ep;
192 ep = earr; /* perform super-sampling */
193 for (ap = hp->sa, i = 0; i < hp->ns; i++)
194 for (j = 0; j < hp->ns; j++, ap++) {
195 if (e2rem <= FTINY)
196 goto done; /* nothing left to do */
197 nss = *ep/e2rem*cnt + frandom();
198 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
199 --cnt;
200 e2rem -= *ep++; /* update remainder */
201 }
202 done:
203 free(earr);
204 }
205
206
207 static AMBHEMI *
208 samp_hemi( /* sample indirect hemisphere */
209 COLOR rcol,
210 RAY *r,
211 double wt
212 )
213 {
214 AMBHEMI *hp;
215 double d;
216 int n, i, j;
217 /* set number of divisions */
218 if (ambacc <= FTINY &&
219 wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight)))
220 wt = d; /* avoid ray termination */
221 n = sqrt(ambdiv * wt) + 0.5;
222 i = 1 + 8*(ambacc > FTINY); /* minimum number of samples */
223 if (n < i)
224 n = i;
225 /* allocate sampling array */
226 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
227 if (hp == NULL)
228 error(SYSTEM, "out of memory in samp_hemi");
229 hp->rp = r;
230 hp->ns = n;
231 hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0;
232 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
233 hp->sampOK = 0;
234 /* assign coefficient */
235 copycolor(hp->acoef, rcol);
236 d = 1.0/(n*n);
237 scalecolor(hp->acoef, d);
238 /* make tangent plane axes */
239 hp->uy[0] = 0.5 - frandom();
240 hp->uy[1] = 0.5 - frandom();
241 hp->uy[2] = 0.5 - frandom();
242 for (i = 3; i--; )
243 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
244 break;
245 if (i < 0)
246 error(CONSISTENCY, "bad ray direction in samp_hemi");
247 hp->uy[i] = 1.0;
248 VCROSS(hp->ux, hp->uy, r->ron);
249 normalize(hp->ux);
250 VCROSS(hp->uy, r->ron, hp->ux);
251 /* sample divisions */
252 for (i = hp->ns; i--; )
253 for (j = hp->ns; j--; )
254 hp->sampOK += ambsample(hp, i, j, 0);
255 copycolor(rcol, hp->acol);
256 if (!hp->sampOK) { /* utter failure? */
257 free(hp);
258 return(NULL);
259 }
260 if (hp->sampOK < hp->ns*hp->ns) {
261 hp->sampOK *= -1; /* soft failure */
262 return(hp);
263 }
264 n = ambssamp*wt + 0.5;
265 if (n > 8) { /* perform super-sampling? */
266 ambsupersamp(hp, n);
267 copycolor(rcol, hp->acol);
268 }
269 return(hp); /* all is well */
270 }
271
272
273 /* Return brightness of farthest ambient sample */
274 static double
275 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
276 {
277 if (hp->sa[n1].d <= hp->sa[n2].d) {
278 if (hp->sa[n1].d <= hp->sa[n3].d)
279 return(colval(hp->sa[n1].v,CIEY));
280 return(colval(hp->sa[n3].v,CIEY));
281 }
282 if (hp->sa[n2].d <= hp->sa[n3].d)
283 return(colval(hp->sa[n2].v,CIEY));
284 return(colval(hp->sa[n3].v,CIEY));
285 }
286
287
288 /* Compute vectors and coefficients for Hessian/gradient calcs */
289 static void
290 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
291 {
292 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
293 int ii;
294
295 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
296 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
297 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
298 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
299 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
300 dot_e = DOT(ftp->e_i,ftp->e_i);
301 dot_er = DOT(ftp->e_i, ftp->r_i);
302 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
303 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
304 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
305 sqrt( rdot_cp );
306 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
307 dot_e*ftp->I1 )*0.5*rdot_cp;
308 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
309 for (ii = 3; ii--; )
310 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
311 }
312
313
314 /* Compose 3x3 matrix from two vectors */
315 static void
316 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
317 {
318 mat[0][0] = 2.0*va[0]*vb[0];
319 mat[1][1] = 2.0*va[1]*vb[1];
320 mat[2][2] = 2.0*va[2]*vb[2];
321 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
322 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
323 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
324 }
325
326
327 /* Compute partial 3x3 Hessian matrix for edge */
328 static void
329 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
330 {
331 FVECT ncp;
332 FVECT m1[3], m2[3], m3[3], m4[3];
333 double d1, d2, d3, d4;
334 double I3, J3, K3;
335 int i, j;
336 /* compute intermediate coefficients */
337 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
338 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
339 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
340 d4 = DOT(ftp->e_i, ftp->r_i);
341 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
342 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
343 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
344 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
345 /* intermediate matrices */
346 VCROSS(ncp, nrm, ftp->e_i);
347 compose_matrix(m1, ncp, ftp->rI2_eJ2);
348 compose_matrix(m2, ftp->r_i, ftp->r_i);
349 compose_matrix(m3, ftp->e_i, ftp->e_i);
350 compose_matrix(m4, ftp->r_i, ftp->e_i);
351 d1 = DOT(nrm, ftp->rcp);
352 d2 = -d1*ftp->I2;
353 d1 *= 2.0;
354 for (i = 3; i--; ) /* final matrix sum */
355 for (j = 3; j--; ) {
356 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
357 2.0*J3*m4[i][j] );
358 hess[i][j] += d2*(i==j);
359 hess[i][j] *= -1.0/PI;
360 }
361 }
362
363
364 /* Reverse hessian calculation result for edge in other direction */
365 static void
366 rev_hessian(FVECT hess[3])
367 {
368 int i;
369
370 for (i = 3; i--; ) {
371 hess[i][0] = -hess[i][0];
372 hess[i][1] = -hess[i][1];
373 hess[i][2] = -hess[i][2];
374 }
375 }
376
377
378 /* Add to radiometric Hessian from the given triangle */
379 static void
380 add2hessian(FVECT hess[3], FVECT ehess1[3],
381 FVECT ehess2[3], FVECT ehess3[3], double v)
382 {
383 int i, j;
384
385 for (i = 3; i--; )
386 for (j = 3; j--; )
387 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
388 }
389
390
391 /* Compute partial displacement form factor gradient for edge */
392 static void
393 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
394 {
395 FVECT ncp;
396 double f1;
397 int i;
398
399 f1 = 2.0*DOT(nrm, ftp->rcp);
400 VCROSS(ncp, nrm, ftp->e_i);
401 for (i = 3; i--; )
402 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
403 }
404
405
406 /* Reverse gradient calculation result for edge in other direction */
407 static void
408 rev_gradient(FVECT grad)
409 {
410 grad[0] = -grad[0];
411 grad[1] = -grad[1];
412 grad[2] = -grad[2];
413 }
414
415
416 /* Add to displacement gradient from the given triangle */
417 static void
418 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
419 {
420 int i;
421
422 for (i = 3; i--; )
423 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
424 }
425
426
427 /* Compute anisotropic radii and eigenvector directions */
428 static void
429 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
430 {
431 double hess2[2][2];
432 FVECT a, b;
433 double evalue[2], slope1, xmag1;
434 int i;
435 /* project Hessian to sample plane */
436 for (i = 3; i--; ) {
437 a[i] = DOT(hessian[i], uv[0]);
438 b[i] = DOT(hessian[i], uv[1]);
439 }
440 hess2[0][0] = DOT(uv[0], a);
441 hess2[0][1] = DOT(uv[0], b);
442 hess2[1][0] = DOT(uv[1], a);
443 hess2[1][1] = DOT(uv[1], b);
444 /* compute eigenvalue(s) */
445 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
446 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
447 if (i == 1) /* double-root (circle) */
448 evalue[1] = evalue[0];
449 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
450 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
451 ra[0] = ra[1] = maxarad;
452 return;
453 }
454 if (evalue[0] > evalue[1]) {
455 ra[0] = sqrt(sqrt(4.0/evalue[0]));
456 ra[1] = sqrt(sqrt(4.0/evalue[1]));
457 slope1 = evalue[1];
458 } else {
459 ra[0] = sqrt(sqrt(4.0/evalue[1]));
460 ra[1] = sqrt(sqrt(4.0/evalue[0]));
461 slope1 = evalue[0];
462 }
463 /* compute unit eigenvectors */
464 if (fabs(hess2[0][1]) <= FTINY)
465 return; /* uv OK as is */
466 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
467 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
468 for (i = 3; i--; ) {
469 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
470 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
471 }
472 VCOPY(uv[0], a);
473 VCOPY(uv[1], b);
474 }
475
476
477 static void
478 ambHessian( /* anisotropic radii & pos. gradient */
479 AMBHEMI *hp,
480 FVECT uv[2], /* returned */
481 float ra[2], /* returned (optional) */
482 float pg[2] /* returned (optional) */
483 )
484 {
485 static char memerrmsg[] = "out of memory in ambHessian()";
486 FVECT (*hessrow)[3] = NULL;
487 FVECT *gradrow = NULL;
488 FVECT hessian[3];
489 FVECT gradient;
490 FFTRI fftr;
491 int i, j;
492 /* be sure to assign unit vectors */
493 VCOPY(uv[0], hp->ux);
494 VCOPY(uv[1], hp->uy);
495 /* clock-wise vertex traversal from sample POV */
496 if (ra != NULL) { /* initialize Hessian row buffer */
497 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
498 if (hessrow == NULL)
499 error(SYSTEM, memerrmsg);
500 memset(hessian, 0, sizeof(hessian));
501 } else if (pg == NULL) /* bogus call? */
502 return;
503 if (pg != NULL) { /* initialize form factor row buffer */
504 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
505 if (gradrow == NULL)
506 error(SYSTEM, memerrmsg);
507 memset(gradient, 0, sizeof(gradient));
508 }
509 /* compute first row of edges */
510 for (j = 0; j < hp->ns-1; j++) {
511 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
512 if (hessrow != NULL)
513 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
514 if (gradrow != NULL)
515 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
516 }
517 /* sum each row of triangles */
518 for (i = 0; i < hp->ns-1; i++) {
519 FVECT hesscol[3]; /* compute first vertical edge */
520 FVECT gradcol;
521 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
522 if (hessrow != NULL)
523 comp_hessian(hesscol, &fftr, hp->rp->ron);
524 if (gradrow != NULL)
525 comp_gradient(gradcol, &fftr, hp->rp->ron);
526 for (j = 0; j < hp->ns-1; j++) {
527 FVECT hessdia[3]; /* compute triangle contributions */
528 FVECT graddia;
529 double backg;
530 backg = back_ambval(hp, AI(hp,i,j),
531 AI(hp,i,j+1), AI(hp,i+1,j));
532 /* diagonal (inner) edge */
533 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
534 if (hessrow != NULL) {
535 comp_hessian(hessdia, &fftr, hp->rp->ron);
536 rev_hessian(hesscol);
537 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
538 }
539 if (gradrow != NULL) {
540 comp_gradient(graddia, &fftr, hp->rp->ron);
541 rev_gradient(gradcol);
542 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
543 }
544 /* initialize edge in next row */
545 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
546 if (hessrow != NULL)
547 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
548 if (gradrow != NULL)
549 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
550 /* new column edge & paired triangle */
551 backg = back_ambval(hp, AI(hp,i+1,j+1),
552 AI(hp,i+1,j), AI(hp,i,j+1));
553 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
554 if (hessrow != NULL) {
555 comp_hessian(hesscol, &fftr, hp->rp->ron);
556 rev_hessian(hessdia);
557 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
558 if (i < hp->ns-2)
559 rev_hessian(hessrow[j]);
560 }
561 if (gradrow != NULL) {
562 comp_gradient(gradcol, &fftr, hp->rp->ron);
563 rev_gradient(graddia);
564 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
565 if (i < hp->ns-2)
566 rev_gradient(gradrow[j]);
567 }
568 }
569 }
570 /* release row buffers */
571 if (hessrow != NULL) free(hessrow);
572 if (gradrow != NULL) free(gradrow);
573
574 if (ra != NULL) /* extract eigenvectors & radii */
575 eigenvectors(uv, ra, hessian);
576 if (pg != NULL) { /* tangential position gradient */
577 pg[0] = DOT(gradient, uv[0]);
578 pg[1] = DOT(gradient, uv[1]);
579 }
580 }
581
582
583 /* Compute direction gradient from a hemispherical sampling */
584 static void
585 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
586 {
587 AMBSAMP *ap;
588 double dgsum[2];
589 int n;
590 FVECT vd;
591 double gfact;
592
593 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
594 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
595 /* use vector for azimuth + 90deg */
596 VSUB(vd, ap->p, hp->rp->rop);
597 /* brightness over cosine factor */
598 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
599 /* sine = proj_radius/vd_length */
600 dgsum[0] -= DOT(uv[1], vd) * gfact;
601 dgsum[1] += DOT(uv[0], vd) * gfact;
602 }
603 dg[0] = dgsum[0] / (hp->ns*hp->ns);
604 dg[1] = dgsum[1] / (hp->ns*hp->ns);
605 }
606
607
608 /* Compute potential light leak direction flags for cache value */
609 static uint32
610 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
611 {
612 const double max_d = 1.0/(minarad*ambacc + 0.001);
613 const double ang_res = 0.5*PI/hp->ns;
614 const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
615 double avg_d = 0;
616 uint32 flgs = 0;
617 FVECT vec;
618 double u, v;
619 double ang, a1;
620 int i, j;
621 /* don't bother for a few samples */
622 if (hp->ns < 12)
623 return(0);
624 /* check distances overhead */
625 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
626 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
627 avg_d += ambsam(hp,i,j).d;
628 avg_d *= 4.0/(hp->ns*hp->ns);
629 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
630 return(0);
631 if (avg_d >= max_d) /* insurance */
632 return(0);
633 /* else circle around perimeter */
634 for (i = 0; i < hp->ns; i++)
635 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
636 AMBSAMP *ap = &ambsam(hp,i,j);
637 if ((ap->d <= FTINY) | (ap->d >= max_d))
638 continue; /* too far or too near */
639 VSUB(vec, ap->p, hp->rp->rop);
640 u = DOT(vec, uv[0]);
641 v = DOT(vec, uv[1]);
642 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
643 continue; /* occluder outside ellipse */
644 ang = atan2a(v, u); /* else set direction flags */
645 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
646 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
647 }
648 /* add low-angle incident (< 20deg) */
649 if (fabs(hp->rp->rod) <= 0.342) {
650 u = -DOT(hp->rp->rdir, uv[0]);
651 v = -DOT(hp->rp->rdir, uv[1]);
652 if ((r0*r0*u*u + r1*r1*v*v) > hp->rp->rot*hp->rp->rot) {
653 ang = atan2a(v, u);
654 ang += 2.*PI*(ang < 0);
655 ang *= 16/PI;
656 if ((ang < .5) | (ang >= 31.5))
657 flgs |= 0x80000001;
658 else
659 flgs |= 3L<<(int)(ang-.5);
660 }
661 }
662 return(flgs);
663 }
664
665
666 int
667 doambient( /* compute ambient component */
668 COLOR rcol, /* input/output color */
669 RAY *r,
670 double wt,
671 FVECT uv[2], /* returned (optional) */
672 float ra[2], /* returned (optional) */
673 float pg[2], /* returned (optional) */
674 float dg[2], /* returned (optional) */
675 uint32 *crlp /* returned (optional) */
676 )
677 {
678 AMBHEMI *hp = samp_hemi(rcol, r, wt);
679 FVECT my_uv[2];
680 double d, K;
681 AMBSAMP *ap;
682 int i;
683 /* clear return values */
684 if (uv != NULL)
685 memset(uv, 0, sizeof(FVECT)*2);
686 if (ra != NULL)
687 ra[0] = ra[1] = 0.0;
688 if (pg != NULL)
689 pg[0] = pg[1] = 0.0;
690 if (dg != NULL)
691 dg[0] = dg[1] = 0.0;
692 if (crlp != NULL)
693 *crlp = 0;
694 if (hp == NULL) /* sampling falure? */
695 return(0);
696
697 if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
698 (hp->sampOK < 0) | (hp->ns < 9)) {
699 free(hp); /* Hessian not requested/possible */
700 return(-1); /* value-only return value */
701 }
702 if ((d = bright(rcol)) > FTINY) { /* normalize Y values */
703 d = 0.99*(hp->ns*hp->ns)/d;
704 K = 0.01;
705 } else { /* or fall back on geometric Hessian */
706 K = 1.0;
707 pg = NULL;
708 dg = NULL;
709 crlp = NULL;
710 }
711 ap = hp->sa; /* relative Y channel from here on... */
712 for (i = hp->ns*hp->ns; i--; ap++)
713 colval(ap->v,CIEY) = bright(ap->v)*d + K;
714
715 if (uv == NULL) /* make sure we have axis pointers */
716 uv = my_uv;
717 /* compute radii & pos. gradient */
718 ambHessian(hp, uv, ra, pg);
719
720 if (dg != NULL) /* compute direction gradient */
721 ambdirgrad(hp, uv, dg);
722
723 if (ra != NULL) { /* scale/clamp radii */
724 if (pg != NULL) {
725 if (ra[0]*(d = fabs(pg[0])) > 1.0)
726 ra[0] = 1.0/d;
727 if (ra[1]*(d = fabs(pg[1])) > 1.0)
728 ra[1] = 1.0/d;
729 if (ra[0] > ra[1])
730 ra[0] = ra[1];
731 }
732 if (ra[0] < minarad) {
733 ra[0] = minarad;
734 if (ra[1] < minarad)
735 ra[1] = minarad;
736 }
737 ra[0] *= d = 1.0/sqrt(wt);
738 if ((ra[1] *= d) > 2.0*ra[0])
739 ra[1] = 2.0*ra[0];
740 if (ra[1] > maxarad) {
741 ra[1] = maxarad;
742 if (ra[0] > maxarad)
743 ra[0] = maxarad;
744 }
745 /* flag encroached directions */
746 if ((wt >= 0.89*AVGREFL) & (crlp != NULL))
747 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
748 if (pg != NULL) { /* cap gradient if necessary */
749 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
750 if (d > 1.0) {
751 d = 1.0/sqrt(d);
752 pg[0] *= d;
753 pg[1] *= d;
754 }
755 }
756 }
757 free(hp); /* clean up and return */
758 return(1);
759 }
760
761
762 #else /* ! NEWAMB */
763
764
765 void
766 inithemi( /* initialize sampling hemisphere */
767 AMBHEMI *hp,
768 COLOR ac,
769 RAY *r,
770 double wt
771 )
772 {
773 double d;
774 int i;
775 /* set number of divisions */
776 if (ambacc <= FTINY &&
777 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
778 wt = d; /* avoid ray termination */
779 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
780 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
781 if (hp->nt < i)
782 hp->nt = i;
783 hp->np = PI * hp->nt + 0.5;
784 /* set number of super-samples */
785 hp->ns = ambssamp * wt + 0.5;
786 /* assign coefficient */
787 copycolor(hp->acoef, ac);
788 d = 1.0/(hp->nt*hp->np);
789 scalecolor(hp->acoef, d);
790 /* make axes */
791 VCOPY(hp->uz, r->ron);
792 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
793 for (i = 0; i < 3; i++)
794 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
795 break;
796 if (i >= 3)
797 error(CONSISTENCY, "bad ray direction in inithemi");
798 hp->uy[i] = 1.0;
799 fcross(hp->ux, hp->uy, hp->uz);
800 normalize(hp->ux);
801 fcross(hp->uy, hp->uz, hp->ux);
802 }
803
804
805 int
806 divsample( /* sample a division */
807 AMBSAMP *dp,
808 AMBHEMI *h,
809 RAY *r
810 )
811 {
812 RAY ar;
813 int hlist[3];
814 double spt[2];
815 double xd, yd, zd;
816 double b2;
817 double phi;
818 int i;
819 /* ambient coefficient for weight */
820 if (ambacc > FTINY)
821 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
822 else
823 copycolor(ar.rcoef, h->acoef);
824 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
825 return(-1);
826 if (ambacc > FTINY) {
827 multcolor(ar.rcoef, h->acoef);
828 scalecolor(ar.rcoef, 1./AVGREFL);
829 }
830 hlist[0] = r->rno;
831 hlist[1] = dp->t;
832 hlist[2] = dp->p;
833 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
834 zd = sqrt((dp->t + spt[0])/h->nt);
835 phi = 2.0*PI * (dp->p + spt[1])/h->np;
836 xd = tcos(phi) * zd;
837 yd = tsin(phi) * zd;
838 zd = sqrt(1.0 - zd*zd);
839 for (i = 0; i < 3; i++)
840 ar.rdir[i] = xd*h->ux[i] +
841 yd*h->uy[i] +
842 zd*h->uz[i];
843 checknorm(ar.rdir);
844 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
845 rayvalue(&ar);
846 ndims--;
847 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
848 addcolor(dp->v, ar.rcol);
849 /* use rt to improve gradient calc */
850 if (ar.rt > FTINY && ar.rt < FHUGE)
851 dp->r += 1.0/ar.rt;
852 /* (re)initialize error */
853 if (dp->n++) {
854 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
855 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
856 dp->k = b2/(dp->n*dp->n);
857 } else
858 dp->k = 0.0;
859 return(0);
860 }
861
862
863 static int
864 ambcmp( /* decreasing order */
865 const void *p1,
866 const void *p2
867 )
868 {
869 const AMBSAMP *d1 = (const AMBSAMP *)p1;
870 const AMBSAMP *d2 = (const AMBSAMP *)p2;
871
872 if (d1->k < d2->k)
873 return(1);
874 if (d1->k > d2->k)
875 return(-1);
876 return(0);
877 }
878
879
880 static int
881 ambnorm( /* standard order */
882 const void *p1,
883 const void *p2
884 )
885 {
886 const AMBSAMP *d1 = (const AMBSAMP *)p1;
887 const AMBSAMP *d2 = (const AMBSAMP *)p2;
888 int c;
889
890 if ( (c = d1->t - d2->t) )
891 return(c);
892 return(d1->p - d2->p);
893 }
894
895
896 double
897 doambient( /* compute ambient component */
898 COLOR rcol,
899 RAY *r,
900 double wt,
901 FVECT pg,
902 FVECT dg
903 )
904 {
905 double b, d=0;
906 AMBHEMI hemi;
907 AMBSAMP *div;
908 AMBSAMP dnew;
909 double acol[3];
910 AMBSAMP *dp;
911 double arad;
912 int divcnt;
913 int i, j;
914 /* initialize hemisphere */
915 inithemi(&hemi, rcol, r, wt);
916 divcnt = hemi.nt * hemi.np;
917 /* initialize */
918 if (pg != NULL)
919 pg[0] = pg[1] = pg[2] = 0.0;
920 if (dg != NULL)
921 dg[0] = dg[1] = dg[2] = 0.0;
922 setcolor(rcol, 0.0, 0.0, 0.0);
923 if (divcnt == 0)
924 return(0.0);
925 /* allocate super-samples */
926 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
927 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
928 if (div == NULL)
929 error(SYSTEM, "out of memory in doambient");
930 } else
931 div = NULL;
932 /* sample the divisions */
933 arad = 0.0;
934 acol[0] = acol[1] = acol[2] = 0.0;
935 if ((dp = div) == NULL)
936 dp = &dnew;
937 divcnt = 0;
938 for (i = 0; i < hemi.nt; i++)
939 for (j = 0; j < hemi.np; j++) {
940 dp->t = i; dp->p = j;
941 setcolor(dp->v, 0.0, 0.0, 0.0);
942 dp->r = 0.0;
943 dp->n = 0;
944 if (divsample(dp, &hemi, r) < 0) {
945 if (div != NULL)
946 dp++;
947 continue;
948 }
949 arad += dp->r;
950 divcnt++;
951 if (div != NULL)
952 dp++;
953 else
954 addcolor(acol, dp->v);
955 }
956 if (!divcnt) {
957 if (div != NULL)
958 free((void *)div);
959 return(0.0); /* no samples taken */
960 }
961 if (divcnt < hemi.nt*hemi.np) {
962 pg = dg = NULL; /* incomplete sampling */
963 hemi.ns = 0;
964 } else if (arad > FTINY && divcnt/arad < minarad) {
965 hemi.ns = 0; /* close enough */
966 } else if (hemi.ns > 0) { /* else perform super-sampling? */
967 comperrs(div, &hemi); /* compute errors */
968 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
969 /* super-sample */
970 for (i = hemi.ns; i > 0; i--) {
971 dnew = *div;
972 if (divsample(&dnew, &hemi, r) < 0) {
973 dp++;
974 continue;
975 }
976 dp = div; /* reinsert */
977 j = divcnt < i ? divcnt : i;
978 while (--j > 0 && dnew.k < dp[1].k) {
979 *dp = *(dp+1);
980 dp++;
981 }
982 *dp = dnew;
983 }
984 if (pg != NULL || dg != NULL) /* restore order */
985 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
986 }
987 /* compute returned values */
988 if (div != NULL) {
989 arad = 0.0; /* note: divcnt may be < nt*np */
990 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
991 arad += dp->r;
992 if (dp->n > 1) {
993 b = 1.0/dp->n;
994 scalecolor(dp->v, b);
995 dp->r *= b;
996 dp->n = 1;
997 }
998 addcolor(acol, dp->v);
999 }
1000 b = bright(acol);
1001 if (b > FTINY) {
1002 b = 1.0/b; /* compute & normalize gradient(s) */
1003 if (pg != NULL) {
1004 posgradient(pg, div, &hemi);
1005 for (i = 0; i < 3; i++)
1006 pg[i] *= b;
1007 }
1008 if (dg != NULL) {
1009 dirgradient(dg, div, &hemi);
1010 for (i = 0; i < 3; i++)
1011 dg[i] *= b;
1012 }
1013 }
1014 free((void *)div);
1015 }
1016 copycolor(rcol, acol);
1017 if (arad <= FTINY)
1018 arad = maxarad;
1019 else
1020 arad = (divcnt+hemi.ns)/arad;
1021 if (pg != NULL) { /* reduce radius if gradient large */
1022 d = DOT(pg,pg);
1023 if (d*arad*arad > 1.0)
1024 arad = 1.0/sqrt(d);
1025 }
1026 if (arad < minarad) {
1027 arad = minarad;
1028 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1029 d = 1.0/arad/sqrt(d);
1030 for (i = 0; i < 3; i++)
1031 pg[i] *= d;
1032 }
1033 }
1034 if ((arad /= sqrt(wt)) > maxarad)
1035 arad = maxarad;
1036 return(arad);
1037 }
1038
1039
1040 void
1041 comperrs( /* compute initial error estimates */
1042 AMBSAMP *da, /* assumes standard ordering */
1043 AMBHEMI *hp
1044 )
1045 {
1046 double b, b2;
1047 int i, j;
1048 AMBSAMP *dp;
1049 /* sum differences from neighbors */
1050 dp = da;
1051 for (i = 0; i < hp->nt; i++)
1052 for (j = 0; j < hp->np; j++) {
1053 #ifdef DEBUG
1054 if (dp->t != i || dp->p != j)
1055 error(CONSISTENCY,
1056 "division order in comperrs");
1057 #endif
1058 b = bright(dp[0].v);
1059 if (i > 0) { /* from above */
1060 b2 = bright(dp[-hp->np].v) - b;
1061 b2 *= b2 * 0.25;
1062 dp[0].k += b2;
1063 dp[-hp->np].k += b2;
1064 }
1065 if (j > 0) { /* from behind */
1066 b2 = bright(dp[-1].v) - b;
1067 b2 *= b2 * 0.25;
1068 dp[0].k += b2;
1069 dp[-1].k += b2;
1070 } else { /* around */
1071 b2 = bright(dp[hp->np-1].v) - b;
1072 b2 *= b2 * 0.25;
1073 dp[0].k += b2;
1074 dp[hp->np-1].k += b2;
1075 }
1076 dp++;
1077 }
1078 /* divide by number of neighbors */
1079 dp = da;
1080 for (j = 0; j < hp->np; j++) /* top row */
1081 (dp++)->k *= 1.0/3.0;
1082 if (hp->nt < 2)
1083 return;
1084 for (i = 1; i < hp->nt-1; i++) /* central region */
1085 for (j = 0; j < hp->np; j++)
1086 (dp++)->k *= 0.25;
1087 for (j = 0; j < hp->np; j++) /* bottom row */
1088 (dp++)->k *= 1.0/3.0;
1089 }
1090
1091
1092 void
1093 posgradient( /* compute position gradient */
1094 FVECT gv,
1095 AMBSAMP *da, /* assumes standard ordering */
1096 AMBHEMI *hp
1097 )
1098 {
1099 int i, j;
1100 double nextsine, lastsine, b, d;
1101 double mag0, mag1;
1102 double phi, cosp, sinp, xd, yd;
1103 AMBSAMP *dp;
1104
1105 xd = yd = 0.0;
1106 for (j = 0; j < hp->np; j++) {
1107 dp = da + j;
1108 mag0 = mag1 = 0.0;
1109 lastsine = 0.0;
1110 for (i = 0; i < hp->nt; i++) {
1111 #ifdef DEBUG
1112 if (dp->t != i || dp->p != j)
1113 error(CONSISTENCY,
1114 "division order in posgradient");
1115 #endif
1116 b = bright(dp->v);
1117 if (i > 0) {
1118 d = dp[-hp->np].r;
1119 if (dp[0].r > d) d = dp[0].r;
1120 /* sin(t)*cos(t)^2 */
1121 d *= lastsine * (1.0 - (double)i/hp->nt);
1122 mag0 += d*(b - bright(dp[-hp->np].v));
1123 }
1124 nextsine = sqrt((double)(i+1)/hp->nt);
1125 if (j > 0) {
1126 d = dp[-1].r;
1127 if (dp[0].r > d) d = dp[0].r;
1128 mag1 += d * (nextsine - lastsine) *
1129 (b - bright(dp[-1].v));
1130 } else {
1131 d = dp[hp->np-1].r;
1132 if (dp[0].r > d) d = dp[0].r;
1133 mag1 += d * (nextsine - lastsine) *
1134 (b - bright(dp[hp->np-1].v));
1135 }
1136 dp += hp->np;
1137 lastsine = nextsine;
1138 }
1139 mag0 *= 2.0*PI / hp->np;
1140 phi = 2.0*PI * (double)j/hp->np;
1141 cosp = tcos(phi); sinp = tsin(phi);
1142 xd += mag0*cosp - mag1*sinp;
1143 yd += mag0*sinp + mag1*cosp;
1144 }
1145 for (i = 0; i < 3; i++)
1146 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1147 }
1148
1149
1150 void
1151 dirgradient( /* compute direction gradient */
1152 FVECT gv,
1153 AMBSAMP *da, /* assumes standard ordering */
1154 AMBHEMI *hp
1155 )
1156 {
1157 int i, j;
1158 double mag;
1159 double phi, xd, yd;
1160 AMBSAMP *dp;
1161
1162 xd = yd = 0.0;
1163 for (j = 0; j < hp->np; j++) {
1164 dp = da + j;
1165 mag = 0.0;
1166 for (i = 0; i < hp->nt; i++) {
1167 #ifdef DEBUG
1168 if (dp->t != i || dp->p != j)
1169 error(CONSISTENCY,
1170 "division order in dirgradient");
1171 #endif
1172 /* tan(t) */
1173 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1174 dp += hp->np;
1175 }
1176 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1177 xd += mag * tcos(phi);
1178 yd += mag * tsin(phi);
1179 }
1180 for (i = 0; i < 3; i++)
1181 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1182 }
1183
1184 #endif /* ! NEWAMB */