ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.57
Committed: Fri May 9 22:53:11 2014 UTC (9 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.56: +2 -2 lines
Log Message:
Minor correction to limit on corraling operation (NEWAMB)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.56 2014/05/09 20:05:00 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifdef NEWAMB
25
26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27
28 typedef struct {
29 COLOR v; /* hemisphere sample value */
30 float d; /* reciprocal distance (1/rt) */
31 FVECT p; /* intersection point */
32 } AMBSAMP; /* sample value */
33
34 typedef struct {
35 RAY *rp; /* originating ray sample */
36 FVECT ux, uy; /* tangent axis unit vectors */
37 int ns; /* number of samples per axis */
38 COLOR acoef; /* division contribution coefficient */
39 AMBSAMP sa[1]; /* sample array (extends struct) */
40 } AMBHEMI; /* ambient sample hemisphere */
41
42 #define AI(h,i,j) ((i)*(h)->ns + (j))
43 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
44
45 typedef struct {
46 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
47 double I1, I2;
48 } FFTRI; /* vectors and coefficients for Hessian calculation */
49
50
51 static AMBHEMI *
52 inithemi( /* initialize sampling hemisphere */
53 COLOR ac,
54 RAY *r,
55 double wt
56 )
57 {
58 AMBHEMI *hp;
59 double d;
60 int n, i;
61 /* set number of divisions */
62 if (ambacc <= FTINY &&
63 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
64 wt = d; /* avoid ray termination */
65 n = sqrt(ambdiv * wt) + 0.5;
66 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
67 if (n < i)
68 n = i;
69 /* allocate sampling array */
70 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
71 if (hp == NULL)
72 return(NULL);
73 hp->rp = r;
74 hp->ns = n;
75 /* assign coefficient */
76 copycolor(hp->acoef, ac);
77 d = 1.0/(n*n);
78 scalecolor(hp->acoef, d);
79 /* make tangent plane axes */
80 hp->uy[0] = 0.5 - frandom();
81 hp->uy[1] = 0.5 - frandom();
82 hp->uy[2] = 0.5 - frandom();
83 for (i = 3; i--; )
84 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
85 break;
86 if (i < 0)
87 error(CONSISTENCY, "bad ray direction in inithemi");
88 hp->uy[i] = 1.0;
89 VCROSS(hp->ux, hp->uy, r->ron);
90 normalize(hp->ux);
91 VCROSS(hp->uy, r->ron, hp->ux);
92 /* we're ready to sample */
93 return(hp);
94 }
95
96
97 /* Sample ambient division and apply weighting coefficient */
98 static int
99 getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
100 {
101 int hlist[3], ii;
102 double spt[2], zd;
103 /* ambient coefficient for weight */
104 if (ambacc > FTINY)
105 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
106 else
107 copycolor(arp->rcoef, hp->acoef);
108 if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
109 return(0);
110 if (ambacc > FTINY) {
111 multcolor(arp->rcoef, hp->acoef);
112 scalecolor(arp->rcoef, 1./AVGREFL);
113 }
114 hlist[0] = hp->rp->rno;
115 hlist[1] = j;
116 hlist[2] = i;
117 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
118 if (!n) { /* avoid border samples for n==0 */
119 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
120 spt[0] = 0.1 + 0.8*frandom();
121 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
122 spt[1] = 0.1 + 0.8*frandom();
123 }
124 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
125 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
126 for (ii = 3; ii--; )
127 arp->rdir[ii] = spt[0]*hp->ux[ii] +
128 spt[1]*hp->uy[ii] +
129 zd*hp->rp->ron[ii];
130 checknorm(arp->rdir);
131 dimlist[ndims++] = AI(hp,i,j) + 90171;
132 rayvalue(arp); /* evaluate ray */
133 ndims--; /* apply coefficient */
134 multcolor(arp->rcol, arp->rcoef);
135 return(1);
136 }
137
138
139 static AMBSAMP *
140 ambsample( /* initial ambient division sample */
141 AMBHEMI *hp,
142 int i,
143 int j
144 )
145 {
146 AMBSAMP *ap = &ambsam(hp,i,j);
147 RAY ar;
148 /* generate hemispherical sample */
149 if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) {
150 memset(ap, 0, sizeof(AMBSAMP));
151 return(NULL);
152 }
153 ap->d = 1.0/ar.rt; /* limit vertex distance */
154 if (ar.rt > 10.0*thescene.cusize)
155 ar.rt = 10.0*thescene.cusize;
156 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
157 copycolor(ap->v, ar.rcol);
158 return(ap);
159 }
160
161
162 /* Estimate errors based on ambient division differences */
163 static float *
164 getambdiffs(AMBHEMI *hp)
165 {
166 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
167 float *ep;
168 AMBSAMP *ap;
169 double b, d2;
170 int i, j;
171
172 if (earr == NULL) /* out of memory? */
173 return(NULL);
174 /* compute squared neighbor diffs */
175 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
176 for (j = 0; j < hp->ns; j++, ap++, ep++) {
177 b = bright(ap[0].v);
178 if (i) { /* from above */
179 d2 = b - bright(ap[-hp->ns].v);
180 d2 *= d2;
181 ep[0] += d2;
182 ep[-hp->ns] += d2;
183 }
184 if (!j) continue;
185 /* from behind */
186 d2 = b - bright(ap[-1].v);
187 d2 *= d2;
188 ep[0] += d2;
189 ep[-1] += d2;
190 if (!i) continue;
191 /* diagonal */
192 d2 = b - bright(ap[-hp->ns-1].v);
193 d2 *= d2;
194 ep[0] += d2;
195 ep[-hp->ns-1] += d2;
196 }
197 /* correct for number of neighbors */
198 earr[0] *= 8./3.;
199 earr[hp->ns-1] *= 8./3.;
200 earr[(hp->ns-1)*hp->ns] *= 8./3.;
201 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
202 for (i = 1; i < hp->ns-1; i++) {
203 earr[i*hp->ns] *= 8./5.;
204 earr[i*hp->ns + hp->ns-1] *= 8./5.;
205 }
206 for (j = 1; j < hp->ns-1; j++) {
207 earr[j] *= 8./5.;
208 earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
209 }
210 return(earr);
211 }
212
213
214 /* Perform super-sampling on hemisphere (introduces bias) */
215 static void
216 ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
217 {
218 float *earr = getambdiffs(hp);
219 double e2rem = 0;
220 AMBSAMP *ap;
221 RAY ar;
222 double asum[3];
223 float *ep;
224 int i, j, n, nss;
225
226 if (earr == NULL) /* just skip calc. if no memory */
227 return;
228 /* accumulate estimated variances */
229 for (ep = earr + hp->ns*hp->ns; ep > earr; )
230 e2rem += *--ep;
231 ep = earr; /* perform super-sampling */
232 for (ap = hp->sa, i = 0; i < hp->ns; i++)
233 for (j = 0; j < hp->ns; j++, ap++) {
234 if (e2rem <= FTINY)
235 goto done; /* nothing left to do */
236 nss = *ep/e2rem*cnt + frandom();
237 asum[0] = asum[1] = asum[2] = 0.0;
238 for (n = 1; n <= nss; n++) {
239 if (!getambsamp(&ar, hp, i, j, n)) {
240 nss = n-1;
241 break;
242 }
243 addcolor(asum, ar.rcol);
244 }
245 if (nss) { /* update returned ambient value */
246 const double ssf = 1./(nss + 1.);
247 for (n = 3; n--; )
248 acol[n] += ssf*asum[n] +
249 (ssf - 1.)*colval(ap->v,n);
250 }
251 e2rem -= *ep++; /* update remainders */
252 cnt -= nss;
253 }
254 done:
255 free(earr);
256 }
257
258
259 /* Return brightness of farthest ambient sample */
260 static double
261 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
262 {
263 if (hp->sa[n1].d <= hp->sa[n2].d) {
264 if (hp->sa[n1].d <= hp->sa[n3].d)
265 return(colval(hp->sa[n1].v,CIEY));
266 return(colval(hp->sa[n3].v,CIEY));
267 }
268 if (hp->sa[n2].d <= hp->sa[n3].d)
269 return(colval(hp->sa[n2].v,CIEY));
270 return(colval(hp->sa[n3].v,CIEY));
271 }
272
273
274 /* Compute vectors and coefficients for Hessian/gradient calcs */
275 static void
276 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
277 {
278 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
279 int ii;
280
281 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
282 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
283 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
284 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
285 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
286 dot_e = DOT(ftp->e_i,ftp->e_i);
287 dot_er = DOT(ftp->e_i, ftp->r_i);
288 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
289 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
290 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
291 sqrt( rdot_cp );
292 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
293 dot_e*ftp->I1 )*0.5*rdot_cp;
294 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
295 for (ii = 3; ii--; )
296 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
297 }
298
299
300 /* Compose 3x3 matrix from two vectors */
301 static void
302 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
303 {
304 mat[0][0] = 2.0*va[0]*vb[0];
305 mat[1][1] = 2.0*va[1]*vb[1];
306 mat[2][2] = 2.0*va[2]*vb[2];
307 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
308 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
309 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
310 }
311
312
313 /* Compute partial 3x3 Hessian matrix for edge */
314 static void
315 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
316 {
317 FVECT ncp;
318 FVECT m1[3], m2[3], m3[3], m4[3];
319 double d1, d2, d3, d4;
320 double I3, J3, K3;
321 int i, j;
322 /* compute intermediate coefficients */
323 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
324 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
325 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
326 d4 = DOT(ftp->e_i, ftp->r_i);
327 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
328 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
329 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
330 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
331 /* intermediate matrices */
332 VCROSS(ncp, nrm, ftp->e_i);
333 compose_matrix(m1, ncp, ftp->rI2_eJ2);
334 compose_matrix(m2, ftp->r_i, ftp->r_i);
335 compose_matrix(m3, ftp->e_i, ftp->e_i);
336 compose_matrix(m4, ftp->r_i, ftp->e_i);
337 d1 = DOT(nrm, ftp->rcp);
338 d2 = -d1*ftp->I2;
339 d1 *= 2.0;
340 for (i = 3; i--; ) /* final matrix sum */
341 for (j = 3; j--; ) {
342 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
343 2.0*J3*m4[i][j] );
344 hess[i][j] += d2*(i==j);
345 hess[i][j] *= -1.0/PI;
346 }
347 }
348
349
350 /* Reverse hessian calculation result for edge in other direction */
351 static void
352 rev_hessian(FVECT hess[3])
353 {
354 int i;
355
356 for (i = 3; i--; ) {
357 hess[i][0] = -hess[i][0];
358 hess[i][1] = -hess[i][1];
359 hess[i][2] = -hess[i][2];
360 }
361 }
362
363
364 /* Add to radiometric Hessian from the given triangle */
365 static void
366 add2hessian(FVECT hess[3], FVECT ehess1[3],
367 FVECT ehess2[3], FVECT ehess3[3], double v)
368 {
369 int i, j;
370
371 for (i = 3; i--; )
372 for (j = 3; j--; )
373 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
374 }
375
376
377 /* Compute partial displacement form factor gradient for edge */
378 static void
379 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
380 {
381 FVECT ncp;
382 double f1;
383 int i;
384
385 f1 = 2.0*DOT(nrm, ftp->rcp);
386 VCROSS(ncp, nrm, ftp->e_i);
387 for (i = 3; i--; )
388 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
389 }
390
391
392 /* Reverse gradient calculation result for edge in other direction */
393 static void
394 rev_gradient(FVECT grad)
395 {
396 grad[0] = -grad[0];
397 grad[1] = -grad[1];
398 grad[2] = -grad[2];
399 }
400
401
402 /* Add to displacement gradient from the given triangle */
403 static void
404 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
405 {
406 int i;
407
408 for (i = 3; i--; )
409 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
410 }
411
412
413 /* Compute anisotropic radii and eigenvector directions */
414 static void
415 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
416 {
417 double hess2[2][2];
418 FVECT a, b;
419 double evalue[2], slope1, xmag1;
420 int i;
421 /* project Hessian to sample plane */
422 for (i = 3; i--; ) {
423 a[i] = DOT(hessian[i], uv[0]);
424 b[i] = DOT(hessian[i], uv[1]);
425 }
426 hess2[0][0] = DOT(uv[0], a);
427 hess2[0][1] = DOT(uv[0], b);
428 hess2[1][0] = DOT(uv[1], a);
429 hess2[1][1] = DOT(uv[1], b);
430 /* compute eigenvalue(s) */
431 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
432 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
433 if (i == 1) /* double-root (circle) */
434 evalue[1] = evalue[0];
435 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
436 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
437 ra[0] = ra[1] = maxarad;
438 return;
439 }
440 if (evalue[0] > evalue[1]) {
441 ra[0] = sqrt(sqrt(4.0/evalue[0]));
442 ra[1] = sqrt(sqrt(4.0/evalue[1]));
443 slope1 = evalue[1];
444 } else {
445 ra[0] = sqrt(sqrt(4.0/evalue[1]));
446 ra[1] = sqrt(sqrt(4.0/evalue[0]));
447 slope1 = evalue[0];
448 }
449 /* compute unit eigenvectors */
450 if (fabs(hess2[0][1]) <= FTINY)
451 return; /* uv OK as is */
452 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
453 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
454 for (i = 3; i--; ) {
455 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
456 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
457 }
458 VCOPY(uv[0], a);
459 VCOPY(uv[1], b);
460 }
461
462
463 static void
464 ambHessian( /* anisotropic radii & pos. gradient */
465 AMBHEMI *hp,
466 FVECT uv[2], /* returned */
467 float ra[2], /* returned (optional) */
468 float pg[2] /* returned (optional) */
469 )
470 {
471 static char memerrmsg[] = "out of memory in ambHessian()";
472 FVECT (*hessrow)[3] = NULL;
473 FVECT *gradrow = NULL;
474 FVECT hessian[3];
475 FVECT gradient;
476 FFTRI fftr;
477 int i, j;
478 /* be sure to assign unit vectors */
479 VCOPY(uv[0], hp->ux);
480 VCOPY(uv[1], hp->uy);
481 /* clock-wise vertex traversal from sample POV */
482 if (ra != NULL) { /* initialize Hessian row buffer */
483 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
484 if (hessrow == NULL)
485 error(SYSTEM, memerrmsg);
486 memset(hessian, 0, sizeof(hessian));
487 } else if (pg == NULL) /* bogus call? */
488 return;
489 if (pg != NULL) { /* initialize form factor row buffer */
490 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
491 if (gradrow == NULL)
492 error(SYSTEM, memerrmsg);
493 memset(gradient, 0, sizeof(gradient));
494 }
495 /* compute first row of edges */
496 for (j = 0; j < hp->ns-1; j++) {
497 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
498 if (hessrow != NULL)
499 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
500 if (gradrow != NULL)
501 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
502 }
503 /* sum each row of triangles */
504 for (i = 0; i < hp->ns-1; i++) {
505 FVECT hesscol[3]; /* compute first vertical edge */
506 FVECT gradcol;
507 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
508 if (hessrow != NULL)
509 comp_hessian(hesscol, &fftr, hp->rp->ron);
510 if (gradrow != NULL)
511 comp_gradient(gradcol, &fftr, hp->rp->ron);
512 for (j = 0; j < hp->ns-1; j++) {
513 FVECT hessdia[3]; /* compute triangle contributions */
514 FVECT graddia;
515 double backg;
516 backg = back_ambval(hp, AI(hp,i,j),
517 AI(hp,i,j+1), AI(hp,i+1,j));
518 /* diagonal (inner) edge */
519 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
520 if (hessrow != NULL) {
521 comp_hessian(hessdia, &fftr, hp->rp->ron);
522 rev_hessian(hesscol);
523 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
524 }
525 if (gradrow != NULL) {
526 comp_gradient(graddia, &fftr, hp->rp->ron);
527 rev_gradient(gradcol);
528 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
529 }
530 /* initialize edge in next row */
531 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
532 if (hessrow != NULL)
533 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
534 if (gradrow != NULL)
535 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
536 /* new column edge & paired triangle */
537 backg = back_ambval(hp, AI(hp,i+1,j+1),
538 AI(hp,i+1,j), AI(hp,i,j+1));
539 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
540 if (hessrow != NULL) {
541 comp_hessian(hesscol, &fftr, hp->rp->ron);
542 rev_hessian(hessdia);
543 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
544 if (i < hp->ns-2)
545 rev_hessian(hessrow[j]);
546 }
547 if (gradrow != NULL) {
548 comp_gradient(gradcol, &fftr, hp->rp->ron);
549 rev_gradient(graddia);
550 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
551 if (i < hp->ns-2)
552 rev_gradient(gradrow[j]);
553 }
554 }
555 }
556 /* release row buffers */
557 if (hessrow != NULL) free(hessrow);
558 if (gradrow != NULL) free(gradrow);
559
560 if (ra != NULL) /* extract eigenvectors & radii */
561 eigenvectors(uv, ra, hessian);
562 if (pg != NULL) { /* tangential position gradient */
563 pg[0] = DOT(gradient, uv[0]);
564 pg[1] = DOT(gradient, uv[1]);
565 }
566 }
567
568
569 /* Compute direction gradient from a hemispherical sampling */
570 static void
571 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
572 {
573 AMBSAMP *ap;
574 double dgsum[2];
575 int n;
576 FVECT vd;
577 double gfact;
578
579 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
580 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
581 /* use vector for azimuth + 90deg */
582 VSUB(vd, ap->p, hp->rp->rop);
583 /* brightness over cosine factor */
584 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
585 /* sine = proj_radius/vd_length */
586 dgsum[0] -= DOT(uv[1], vd) * gfact;
587 dgsum[1] += DOT(uv[0], vd) * gfact;
588 }
589 dg[0] = dgsum[0] / (hp->ns*hp->ns);
590 dg[1] = dgsum[1] / (hp->ns*hp->ns);
591 }
592
593
594 /* Compute potential light leak direction flags for cache value */
595 static uint32
596 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
597 {
598 const double max_d = 1.0/(minarad*ambacc + 0.001);
599 const double ang_res = 0.5*PI/(hp->ns-1);
600 const double ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY));
601 double avg_d = 0;
602 uint32 flgs = 0;
603 int i, j;
604 /* don't bother for a few samples */
605 if (hp->ns < 12)
606 return(0);
607 /* check distances overhead */
608 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
609 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
610 avg_d += ambsam(hp,i,j).d;
611 avg_d *= 4.0/(hp->ns*hp->ns);
612 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
613 return(0);
614 if (avg_d >= max_d) /* insurance */
615 return(0);
616 /* else circle around perimeter */
617 for (i = 0; i < hp->ns; i++)
618 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
619 AMBSAMP *ap = &ambsam(hp,i,j);
620 FVECT vec;
621 double u, v;
622 double ang, a1;
623 int abp;
624 if ((ap->d <= FTINY) | (ap->d >= max_d))
625 continue; /* too far or too near */
626 VSUB(vec, ap->p, hp->rp->rop);
627 u = DOT(vec, uv[0]) * ap->d;
628 v = DOT(vec, uv[1]) * ap->d;
629 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0)
630 continue; /* occluder outside ellipse */
631 ang = atan2a(v, u); /* else set direction flags */
632 for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step)
633 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
634 }
635 return(flgs);
636 }
637
638
639 int
640 doambient( /* compute ambient component */
641 COLOR rcol, /* input/output color */
642 RAY *r,
643 double wt,
644 FVECT uv[2], /* returned (optional) */
645 float ra[2], /* returned (optional) */
646 float pg[2], /* returned (optional) */
647 float dg[2], /* returned (optional) */
648 uint32 *crlp /* returned (optional) */
649 )
650 {
651 AMBHEMI *hp = inithemi(rcol, r, wt);
652 int cnt;
653 FVECT my_uv[2];
654 double d, K, acol[3];
655 AMBSAMP *ap;
656 int i, j;
657 /* check/initialize */
658 if (hp == NULL)
659 return(0);
660 if (uv != NULL)
661 memset(uv, 0, sizeof(FVECT)*2);
662 if (ra != NULL)
663 ra[0] = ra[1] = 0.0;
664 if (pg != NULL)
665 pg[0] = pg[1] = 0.0;
666 if (dg != NULL)
667 dg[0] = dg[1] = 0.0;
668 if (crlp != NULL)
669 *crlp = 0;
670 /* sample the hemisphere */
671 acol[0] = acol[1] = acol[2] = 0.0;
672 cnt = 0;
673 for (i = hp->ns; i--; )
674 for (j = hp->ns; j--; )
675 if ((ap = ambsample(hp, i, j)) != NULL) {
676 addcolor(acol, ap->v);
677 ++cnt;
678 }
679 if (!cnt) {
680 setcolor(rcol, 0.0, 0.0, 0.0);
681 free(hp);
682 return(0); /* no valid samples */
683 }
684 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
685 copycolor(rcol, acol);
686 free(hp);
687 return(-1); /* return value w/o Hessian */
688 }
689 cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
690 if (cnt > 8)
691 ambsupersamp(acol, hp, cnt);
692 copycolor(rcol, acol); /* final indirect irradiance/PI */
693 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
694 free(hp);
695 return(-1); /* no radius or gradient calc. */
696 }
697 if ((d = bright(acol)) > FTINY) { /* normalize Y values */
698 d = 0.99*(hp->ns*hp->ns)/d;
699 K = 0.01;
700 } else { /* or fall back on geometric Hessian */
701 K = 1.0;
702 pg = NULL;
703 dg = NULL;
704 crlp = NULL;
705 }
706 ap = hp->sa; /* relative Y channel from here on... */
707 for (i = hp->ns*hp->ns; i--; ap++)
708 colval(ap->v,CIEY) = bright(ap->v)*d + K;
709
710 if (uv == NULL) /* make sure we have axis pointers */
711 uv = my_uv;
712 /* compute radii & pos. gradient */
713 ambHessian(hp, uv, ra, pg);
714
715 if (dg != NULL) /* compute direction gradient */
716 ambdirgrad(hp, uv, dg);
717
718 if (ra != NULL) { /* scale/clamp radii */
719 if (pg != NULL) {
720 if (ra[0]*(d = fabs(pg[0])) > 1.0)
721 ra[0] = 1.0/d;
722 if (ra[1]*(d = fabs(pg[1])) > 1.0)
723 ra[1] = 1.0/d;
724 if (ra[0] > ra[1])
725 ra[0] = ra[1];
726 }
727 if (ra[0] < minarad) {
728 ra[0] = minarad;
729 if (ra[1] < minarad)
730 ra[1] = minarad;
731 }
732 ra[0] *= d = 1.0/sqrt(sqrt(wt));
733 if ((ra[1] *= d) > 2.0*ra[0])
734 ra[1] = 2.0*ra[0];
735 if (ra[1] > maxarad) {
736 ra[1] = maxarad;
737 if (ra[0] > maxarad)
738 ra[0] = maxarad;
739 }
740 /* flag encroached directions */
741 if ((wt >= 0.89*AVGREFL) & (crlp != NULL))
742 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
743 if (pg != NULL) { /* cap gradient if necessary */
744 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
745 if (d > 1.0) {
746 d = 1.0/sqrt(d);
747 pg[0] *= d;
748 pg[1] *= d;
749 }
750 }
751 }
752 free(hp); /* clean up and return */
753 return(1);
754 }
755
756
757 #else /* ! NEWAMB */
758
759
760 void
761 inithemi( /* initialize sampling hemisphere */
762 AMBHEMI *hp,
763 COLOR ac,
764 RAY *r,
765 double wt
766 )
767 {
768 double d;
769 int i;
770 /* set number of divisions */
771 if (ambacc <= FTINY &&
772 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
773 wt = d; /* avoid ray termination */
774 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
775 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
776 if (hp->nt < i)
777 hp->nt = i;
778 hp->np = PI * hp->nt + 0.5;
779 /* set number of super-samples */
780 hp->ns = ambssamp * wt + 0.5;
781 /* assign coefficient */
782 copycolor(hp->acoef, ac);
783 d = 1.0/(hp->nt*hp->np);
784 scalecolor(hp->acoef, d);
785 /* make axes */
786 VCOPY(hp->uz, r->ron);
787 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
788 for (i = 0; i < 3; i++)
789 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
790 break;
791 if (i >= 3)
792 error(CONSISTENCY, "bad ray direction in inithemi");
793 hp->uy[i] = 1.0;
794 fcross(hp->ux, hp->uy, hp->uz);
795 normalize(hp->ux);
796 fcross(hp->uy, hp->uz, hp->ux);
797 }
798
799
800 int
801 divsample( /* sample a division */
802 AMBSAMP *dp,
803 AMBHEMI *h,
804 RAY *r
805 )
806 {
807 RAY ar;
808 int hlist[3];
809 double spt[2];
810 double xd, yd, zd;
811 double b2;
812 double phi;
813 int i;
814 /* ambient coefficient for weight */
815 if (ambacc > FTINY)
816 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
817 else
818 copycolor(ar.rcoef, h->acoef);
819 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
820 return(-1);
821 if (ambacc > FTINY) {
822 multcolor(ar.rcoef, h->acoef);
823 scalecolor(ar.rcoef, 1./AVGREFL);
824 }
825 hlist[0] = r->rno;
826 hlist[1] = dp->t;
827 hlist[2] = dp->p;
828 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
829 zd = sqrt((dp->t + spt[0])/h->nt);
830 phi = 2.0*PI * (dp->p + spt[1])/h->np;
831 xd = tcos(phi) * zd;
832 yd = tsin(phi) * zd;
833 zd = sqrt(1.0 - zd*zd);
834 for (i = 0; i < 3; i++)
835 ar.rdir[i] = xd*h->ux[i] +
836 yd*h->uy[i] +
837 zd*h->uz[i];
838 checknorm(ar.rdir);
839 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
840 rayvalue(&ar);
841 ndims--;
842 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
843 addcolor(dp->v, ar.rcol);
844 /* use rt to improve gradient calc */
845 if (ar.rt > FTINY && ar.rt < FHUGE)
846 dp->r += 1.0/ar.rt;
847 /* (re)initialize error */
848 if (dp->n++) {
849 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
850 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
851 dp->k = b2/(dp->n*dp->n);
852 } else
853 dp->k = 0.0;
854 return(0);
855 }
856
857
858 static int
859 ambcmp( /* decreasing order */
860 const void *p1,
861 const void *p2
862 )
863 {
864 const AMBSAMP *d1 = (const AMBSAMP *)p1;
865 const AMBSAMP *d2 = (const AMBSAMP *)p2;
866
867 if (d1->k < d2->k)
868 return(1);
869 if (d1->k > d2->k)
870 return(-1);
871 return(0);
872 }
873
874
875 static int
876 ambnorm( /* standard order */
877 const void *p1,
878 const void *p2
879 )
880 {
881 const AMBSAMP *d1 = (const AMBSAMP *)p1;
882 const AMBSAMP *d2 = (const AMBSAMP *)p2;
883 int c;
884
885 if ( (c = d1->t - d2->t) )
886 return(c);
887 return(d1->p - d2->p);
888 }
889
890
891 double
892 doambient( /* compute ambient component */
893 COLOR rcol,
894 RAY *r,
895 double wt,
896 FVECT pg,
897 FVECT dg
898 )
899 {
900 double b, d=0;
901 AMBHEMI hemi;
902 AMBSAMP *div;
903 AMBSAMP dnew;
904 double acol[3];
905 AMBSAMP *dp;
906 double arad;
907 int divcnt;
908 int i, j;
909 /* initialize hemisphere */
910 inithemi(&hemi, rcol, r, wt);
911 divcnt = hemi.nt * hemi.np;
912 /* initialize */
913 if (pg != NULL)
914 pg[0] = pg[1] = pg[2] = 0.0;
915 if (dg != NULL)
916 dg[0] = dg[1] = dg[2] = 0.0;
917 setcolor(rcol, 0.0, 0.0, 0.0);
918 if (divcnt == 0)
919 return(0.0);
920 /* allocate super-samples */
921 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
922 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
923 if (div == NULL)
924 error(SYSTEM, "out of memory in doambient");
925 } else
926 div = NULL;
927 /* sample the divisions */
928 arad = 0.0;
929 acol[0] = acol[1] = acol[2] = 0.0;
930 if ((dp = div) == NULL)
931 dp = &dnew;
932 divcnt = 0;
933 for (i = 0; i < hemi.nt; i++)
934 for (j = 0; j < hemi.np; j++) {
935 dp->t = i; dp->p = j;
936 setcolor(dp->v, 0.0, 0.0, 0.0);
937 dp->r = 0.0;
938 dp->n = 0;
939 if (divsample(dp, &hemi, r) < 0) {
940 if (div != NULL)
941 dp++;
942 continue;
943 }
944 arad += dp->r;
945 divcnt++;
946 if (div != NULL)
947 dp++;
948 else
949 addcolor(acol, dp->v);
950 }
951 if (!divcnt) {
952 if (div != NULL)
953 free((void *)div);
954 return(0.0); /* no samples taken */
955 }
956 if (divcnt < hemi.nt*hemi.np) {
957 pg = dg = NULL; /* incomplete sampling */
958 hemi.ns = 0;
959 } else if (arad > FTINY && divcnt/arad < minarad) {
960 hemi.ns = 0; /* close enough */
961 } else if (hemi.ns > 0) { /* else perform super-sampling? */
962 comperrs(div, &hemi); /* compute errors */
963 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
964 /* super-sample */
965 for (i = hemi.ns; i > 0; i--) {
966 dnew = *div;
967 if (divsample(&dnew, &hemi, r) < 0) {
968 dp++;
969 continue;
970 }
971 dp = div; /* reinsert */
972 j = divcnt < i ? divcnt : i;
973 while (--j > 0 && dnew.k < dp[1].k) {
974 *dp = *(dp+1);
975 dp++;
976 }
977 *dp = dnew;
978 }
979 if (pg != NULL || dg != NULL) /* restore order */
980 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
981 }
982 /* compute returned values */
983 if (div != NULL) {
984 arad = 0.0; /* note: divcnt may be < nt*np */
985 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
986 arad += dp->r;
987 if (dp->n > 1) {
988 b = 1.0/dp->n;
989 scalecolor(dp->v, b);
990 dp->r *= b;
991 dp->n = 1;
992 }
993 addcolor(acol, dp->v);
994 }
995 b = bright(acol);
996 if (b > FTINY) {
997 b = 1.0/b; /* compute & normalize gradient(s) */
998 if (pg != NULL) {
999 posgradient(pg, div, &hemi);
1000 for (i = 0; i < 3; i++)
1001 pg[i] *= b;
1002 }
1003 if (dg != NULL) {
1004 dirgradient(dg, div, &hemi);
1005 for (i = 0; i < 3; i++)
1006 dg[i] *= b;
1007 }
1008 }
1009 free((void *)div);
1010 }
1011 copycolor(rcol, acol);
1012 if (arad <= FTINY)
1013 arad = maxarad;
1014 else
1015 arad = (divcnt+hemi.ns)/arad;
1016 if (pg != NULL) { /* reduce radius if gradient large */
1017 d = DOT(pg,pg);
1018 if (d*arad*arad > 1.0)
1019 arad = 1.0/sqrt(d);
1020 }
1021 if (arad < minarad) {
1022 arad = minarad;
1023 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1024 d = 1.0/arad/sqrt(d);
1025 for (i = 0; i < 3; i++)
1026 pg[i] *= d;
1027 }
1028 }
1029 if ((arad /= sqrt(wt)) > maxarad)
1030 arad = maxarad;
1031 return(arad);
1032 }
1033
1034
1035 void
1036 comperrs( /* compute initial error estimates */
1037 AMBSAMP *da, /* assumes standard ordering */
1038 AMBHEMI *hp
1039 )
1040 {
1041 double b, b2;
1042 int i, j;
1043 AMBSAMP *dp;
1044 /* sum differences from neighbors */
1045 dp = da;
1046 for (i = 0; i < hp->nt; i++)
1047 for (j = 0; j < hp->np; j++) {
1048 #ifdef DEBUG
1049 if (dp->t != i || dp->p != j)
1050 error(CONSISTENCY,
1051 "division order in comperrs");
1052 #endif
1053 b = bright(dp[0].v);
1054 if (i > 0) { /* from above */
1055 b2 = bright(dp[-hp->np].v) - b;
1056 b2 *= b2 * 0.25;
1057 dp[0].k += b2;
1058 dp[-hp->np].k += b2;
1059 }
1060 if (j > 0) { /* from behind */
1061 b2 = bright(dp[-1].v) - b;
1062 b2 *= b2 * 0.25;
1063 dp[0].k += b2;
1064 dp[-1].k += b2;
1065 } else { /* around */
1066 b2 = bright(dp[hp->np-1].v) - b;
1067 b2 *= b2 * 0.25;
1068 dp[0].k += b2;
1069 dp[hp->np-1].k += b2;
1070 }
1071 dp++;
1072 }
1073 /* divide by number of neighbors */
1074 dp = da;
1075 for (j = 0; j < hp->np; j++) /* top row */
1076 (dp++)->k *= 1.0/3.0;
1077 if (hp->nt < 2)
1078 return;
1079 for (i = 1; i < hp->nt-1; i++) /* central region */
1080 for (j = 0; j < hp->np; j++)
1081 (dp++)->k *= 0.25;
1082 for (j = 0; j < hp->np; j++) /* bottom row */
1083 (dp++)->k *= 1.0/3.0;
1084 }
1085
1086
1087 void
1088 posgradient( /* compute position gradient */
1089 FVECT gv,
1090 AMBSAMP *da, /* assumes standard ordering */
1091 AMBHEMI *hp
1092 )
1093 {
1094 int i, j;
1095 double nextsine, lastsine, b, d;
1096 double mag0, mag1;
1097 double phi, cosp, sinp, xd, yd;
1098 AMBSAMP *dp;
1099
1100 xd = yd = 0.0;
1101 for (j = 0; j < hp->np; j++) {
1102 dp = da + j;
1103 mag0 = mag1 = 0.0;
1104 lastsine = 0.0;
1105 for (i = 0; i < hp->nt; i++) {
1106 #ifdef DEBUG
1107 if (dp->t != i || dp->p != j)
1108 error(CONSISTENCY,
1109 "division order in posgradient");
1110 #endif
1111 b = bright(dp->v);
1112 if (i > 0) {
1113 d = dp[-hp->np].r;
1114 if (dp[0].r > d) d = dp[0].r;
1115 /* sin(t)*cos(t)^2 */
1116 d *= lastsine * (1.0 - (double)i/hp->nt);
1117 mag0 += d*(b - bright(dp[-hp->np].v));
1118 }
1119 nextsine = sqrt((double)(i+1)/hp->nt);
1120 if (j > 0) {
1121 d = dp[-1].r;
1122 if (dp[0].r > d) d = dp[0].r;
1123 mag1 += d * (nextsine - lastsine) *
1124 (b - bright(dp[-1].v));
1125 } else {
1126 d = dp[hp->np-1].r;
1127 if (dp[0].r > d) d = dp[0].r;
1128 mag1 += d * (nextsine - lastsine) *
1129 (b - bright(dp[hp->np-1].v));
1130 }
1131 dp += hp->np;
1132 lastsine = nextsine;
1133 }
1134 mag0 *= 2.0*PI / hp->np;
1135 phi = 2.0*PI * (double)j/hp->np;
1136 cosp = tcos(phi); sinp = tsin(phi);
1137 xd += mag0*cosp - mag1*sinp;
1138 yd += mag0*sinp + mag1*cosp;
1139 }
1140 for (i = 0; i < 3; i++)
1141 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1142 }
1143
1144
1145 void
1146 dirgradient( /* compute direction gradient */
1147 FVECT gv,
1148 AMBSAMP *da, /* assumes standard ordering */
1149 AMBHEMI *hp
1150 )
1151 {
1152 int i, j;
1153 double mag;
1154 double phi, xd, yd;
1155 AMBSAMP *dp;
1156
1157 xd = yd = 0.0;
1158 for (j = 0; j < hp->np; j++) {
1159 dp = da + j;
1160 mag = 0.0;
1161 for (i = 0; i < hp->nt; i++) {
1162 #ifdef DEBUG
1163 if (dp->t != i || dp->p != j)
1164 error(CONSISTENCY,
1165 "division order in dirgradient");
1166 #endif
1167 /* tan(t) */
1168 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1169 dp += hp->np;
1170 }
1171 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1172 xd += mag * tcos(phi);
1173 yd += mag * tsin(phi);
1174 }
1175 for (i = 0; i < 3; i++)
1176 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1177 }
1178
1179 #endif /* ! NEWAMB */