ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.55
Committed: Fri May 9 16:05:09 2014 UTC (9 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.54: +29 -21 lines
Log Message:
Better fix for previous bug and include diagonals in error est. (NEWAMB)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.54 2014/05/09 04:55:19 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifdef NEWAMB
25
26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27
28 /* vertex direction bit positions */
29 #define VDB_xy 0
30 #define VDB_y 01
31 #define VDB_x 02
32 #define VDB_Xy 03
33 #define VDB_xY 04
34 #define VDB_X 05
35 #define VDB_Y 06
36 #define VDB_XY 07
37 /* get opposite vertex direction bit */
38 #define VDB_OPP(f) (~(f) & 07)
39 /* adjacent triangle vertex flags */
40 static const int adjacent_trifl[8] = {
41 0, /* forbidden diagonal */
42 1<<VDB_x|1<<VDB_y|1<<VDB_Xy,
43 1<<VDB_y|1<<VDB_x|1<<VDB_xY,
44 1<<VDB_y|1<<VDB_Xy|1<<VDB_X,
45 1<<VDB_x|1<<VDB_xY|1<<VDB_Y,
46 1<<VDB_Xy|1<<VDB_X|1<<VDB_Y,
47 1<<VDB_xY|1<<VDB_Y|1<<VDB_X,
48 0, /* forbidden diagonal */
49 };
50
51 typedef struct {
52 COLOR v; /* hemisphere sample value */
53 float d; /* reciprocal distance (1/rt) */
54 FVECT p; /* intersection point */
55 } AMBSAMP; /* sample value */
56
57 typedef struct {
58 RAY *rp; /* originating ray sample */
59 FVECT ux, uy; /* tangent axis unit vectors */
60 int ns; /* number of samples per axis */
61 COLOR acoef; /* division contribution coefficient */
62 AMBSAMP sa[1]; /* sample array (extends struct) */
63 } AMBHEMI; /* ambient sample hemisphere */
64
65 #define ambndx(h,i,j) ((i)*(h)->ns + (j))
66 #define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)]
67
68 typedef struct {
69 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
70 double I1, I2;
71 int valid;
72 } FFTRI; /* vectors and coefficients for Hessian calculation */
73
74
75 /* Get index for adjacent vertex */
76 static int
77 adjacent_verti(AMBHEMI *hp, int i, int j, int dbit)
78 {
79 int i0 = i*hp->ns + j;
80
81 switch (dbit) {
82 case VDB_y: return(i0 - hp->ns);
83 case VDB_x: return(i0 - 1);
84 case VDB_Xy: return(i0 - hp->ns + 1);
85 case VDB_xY: return(i0 + hp->ns - 1);
86 case VDB_X: return(i0 + 1);
87 case VDB_Y: return(i0 + hp->ns);
88 /* the following should never occur */
89 case VDB_xy: return(i0 - hp->ns - 1);
90 case VDB_XY: return(i0 + hp->ns + 1);
91 }
92 return(-1);
93 }
94
95
96 /* Get vertex direction bit for the opposite edge to complete triangle */
97 static int
98 vdb_edge(int db1, int db2)
99 {
100 switch (db1) {
101 case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y);
102 case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X);
103 case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY);
104 case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy);
105 case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X);
106 case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y);
107 }
108 error(CONSISTENCY, "forbidden diagonal in vdb_edge()");
109 return(-1);
110 }
111
112
113 static AMBHEMI *
114 inithemi( /* initialize sampling hemisphere */
115 COLOR ac,
116 RAY *r,
117 double wt
118 )
119 {
120 AMBHEMI *hp;
121 double d;
122 int n, i;
123 /* set number of divisions */
124 if (ambacc <= FTINY &&
125 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
126 wt = d; /* avoid ray termination */
127 n = sqrt(ambdiv * wt) + 0.5;
128 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
129 if (n < i)
130 n = i;
131 /* allocate sampling array */
132 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
133 if (hp == NULL)
134 return(NULL);
135 hp->rp = r;
136 hp->ns = n;
137 /* assign coefficient */
138 copycolor(hp->acoef, ac);
139 d = 1.0/(n*n);
140 scalecolor(hp->acoef, d);
141 /* make tangent plane axes */
142 hp->uy[0] = 0.5 - frandom();
143 hp->uy[1] = 0.5 - frandom();
144 hp->uy[2] = 0.5 - frandom();
145 for (i = 3; i--; )
146 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
147 break;
148 if (i < 0)
149 error(CONSISTENCY, "bad ray direction in inithemi");
150 hp->uy[i] = 1.0;
151 VCROSS(hp->ux, hp->uy, r->ron);
152 normalize(hp->ux);
153 VCROSS(hp->uy, r->ron, hp->ux);
154 /* we're ready to sample */
155 return(hp);
156 }
157
158
159 /* Sample ambient division and apply weighting coefficient */
160 static int
161 getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
162 {
163 int hlist[3], ii;
164 double spt[2], zd;
165 /* ambient coefficient for weight */
166 if (ambacc > FTINY)
167 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
168 else
169 copycolor(arp->rcoef, hp->acoef);
170 if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
171 return(0);
172 if (ambacc > FTINY) {
173 multcolor(arp->rcoef, hp->acoef);
174 scalecolor(arp->rcoef, 1./AVGREFL);
175 }
176 hlist[0] = hp->rp->rno;
177 hlist[1] = j;
178 hlist[2] = i;
179 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
180 if (!n) { /* avoid border samples for n==0 */
181 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
182 spt[0] = 0.1 + 0.8*frandom();
183 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
184 spt[1] = 0.1 + 0.8*frandom();
185 }
186 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
187 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
188 for (ii = 3; ii--; )
189 arp->rdir[ii] = spt[0]*hp->ux[ii] +
190 spt[1]*hp->uy[ii] +
191 zd*hp->rp->ron[ii];
192 checknorm(arp->rdir);
193 dimlist[ndims++] = ambndx(hp,i,j) + 90171;
194 rayvalue(arp); /* evaluate ray */
195 ndims--; /* apply coefficient */
196 multcolor(arp->rcol, arp->rcoef);
197 return(1);
198 }
199
200
201 static AMBSAMP *
202 ambsample( /* initial ambient division sample */
203 AMBHEMI *hp,
204 int i,
205 int j
206 )
207 {
208 AMBSAMP *ap = &ambsam(hp,i,j);
209 RAY ar;
210 /* generate hemispherical sample */
211 if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) {
212 memset(ap, 0, sizeof(AMBSAMP));
213 return(NULL);
214 }
215 ap->d = 1.0/ar.rt; /* limit vertex distance */
216 if (ar.rt > 10.0*thescene.cusize)
217 ar.rt = 10.0*thescene.cusize;
218 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
219 copycolor(ap->v, ar.rcol);
220 return(ap);
221 }
222
223
224 /* Estimate errors based on ambient division differences */
225 static float *
226 getambdiffs(AMBHEMI *hp)
227 {
228 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
229 float *ep;
230 AMBSAMP *ap;
231 double b, d2;
232 int i, j;
233
234 if (earr == NULL) /* out of memory? */
235 return(NULL);
236 /* compute squared neighbor diffs */
237 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
238 for (j = 0; j < hp->ns; j++, ap++, ep++) {
239 b = bright(ap[0].v);
240 if (i) { /* from above */
241 d2 = b - bright(ap[-hp->ns].v);
242 d2 *= d2;
243 ep[0] += d2;
244 ep[-hp->ns] += d2;
245 }
246 if (!j) continue;
247 /* from behind */
248 d2 = b - bright(ap[-1].v);
249 d2 *= d2;
250 ep[0] += d2;
251 ep[-1] += d2;
252 if (!i) continue;
253 /* diagonal */
254 d2 = b - bright(ap[-hp->ns-1].v);
255 d2 *= d2;
256 ep[0] += d2;
257 ep[-hp->ns-1] += d2;
258 }
259 /* correct for number of neighbors */
260 earr[0] *= 8./3.;
261 earr[hp->ns-1] *= 8./3.;
262 earr[(hp->ns-1)*hp->ns] *= 8./3.;
263 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
264 for (i = 1; i < hp->ns-1; i++) {
265 earr[i*hp->ns] *= 8./5.;
266 earr[i*hp->ns + hp->ns-1] *= 8./5.;
267 }
268 for (j = 1; j < hp->ns-1; j++) {
269 earr[j] *= 8./5.;
270 earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
271 }
272 return(earr);
273 }
274
275
276 /* Perform super-sampling on hemisphere (introduces bias) */
277 static void
278 ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
279 {
280 float *earr = getambdiffs(hp);
281 double e2rem = 0;
282 AMBSAMP *ap;
283 RAY ar;
284 double asum[3];
285 float *ep;
286 int i, j, n, nss;
287
288 if (earr == NULL) /* just skip calc. if no memory */
289 return;
290 /* accumulate estimated variances */
291 for (ep = earr + hp->ns*hp->ns; ep > earr; )
292 e2rem += *--ep;
293 ep = earr; /* perform super-sampling */
294 for (ap = hp->sa, i = 0; i < hp->ns; i++)
295 for (j = 0; j < hp->ns; j++, ap++) {
296 if (e2rem <= FTINY)
297 goto done; /* nothing left to do */
298 nss = *ep/e2rem*cnt + frandom();
299 asum[0] = asum[1] = asum[2] = 0.0;
300 for (n = 1; n <= nss; n++) {
301 if (!getambsamp(&ar, hp, i, j, n)) {
302 nss = n-1;
303 break;
304 }
305 addcolor(asum, ar.rcol);
306 }
307 if (nss) { /* update returned ambient value */
308 const double ssf = 1./(nss + 1.);
309 for (n = 3; n--; )
310 acol[n] += ssf*asum[n] +
311 (ssf - 1.)*colval(ap->v,n);
312 }
313 e2rem -= *ep++; /* update remainders */
314 cnt -= nss;
315 }
316 done:
317 free(earr);
318 }
319
320
321 /* Compute vertex flags, indicating farthest in each direction */
322 static uby8 *
323 vertex_flags(AMBHEMI *hp)
324 {
325 uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8));
326 uby8 *vf;
327 AMBSAMP *ap;
328 int i, j;
329
330 if (vflags == NULL)
331 error(SYSTEM, "out of memory in vertex_flags()");
332 vf = vflags;
333 ap = hp->sa; /* compute farthest along first row */
334 for (j = 0; j < hp->ns-1; j++, vf++, ap++)
335 if (ap[0].d <= ap[1].d)
336 vf[0] |= 1<<VDB_X;
337 else
338 vf[1] |= 1<<VDB_x;
339 ++vf; ++ap;
340 /* flag subsequent rows */
341 for (i = 1; i < hp->ns; i++) {
342 for (j = 0; j < hp->ns-1; j++, vf++, ap++) {
343 if (ap[0].d <= ap[-hp->ns].d) /* row before */
344 vf[0] |= 1<<VDB_y;
345 else
346 vf[-hp->ns] |= 1<<VDB_Y;
347 if (ap[0].d <= ap[1-hp->ns].d) /* diagonal we care about */
348 vf[0] |= 1<<VDB_Xy;
349 else
350 vf[1-hp->ns] |= 1<<VDB_xY;
351 if (ap[0].d <= ap[1].d) /* column after */
352 vf[0] |= 1<<VDB_X;
353 else
354 vf[1] |= 1<<VDB_x;
355 }
356 if (ap[0].d <= ap[-hp->ns].d) /* final column edge */
357 vf[0] |= 1<<VDB_y;
358 else
359 vf[-hp->ns] |= 1<<VDB_Y;
360 ++vf; ++ap;
361 }
362 return(vflags);
363 }
364
365
366 /* Return brightness of farthest ambient sample */
367 static double
368 back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags)
369 {
370 const int v0 = ambndx(hp,i,j);
371 const int tflags = (1<<dbit1 | 1<<dbit2);
372 int v1, v2;
373
374 if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */
375 return(colval(hp->sa[v0].v,CIEY));
376 v1 = adjacent_verti(hp, i, j, dbit1);
377 if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */
378 return(colval(hp->sa[v1].v,CIEY));
379 v2 = adjacent_verti(hp, i, j, dbit2);
380 if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */
381 return(colval(hp->sa[v2].v,CIEY));
382 /* else check if v1>v2 */
383 if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2))
384 return(colval(hp->sa[v1].v,CIEY));
385 return(colval(hp->sa[v2].v,CIEY));
386 }
387
388
389 /* Compute vectors and coefficients for Hessian/gradient calcs */
390 static void
391 comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags)
392 {
393 const int i0 = ambndx(hp,i,j);
394 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
395 int i1, ii;
396
397 ftp->valid = 0; /* check if we can skip this edge */
398 ii = adjacent_trifl[dbit];
399 if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */
400 return;
401 i1 = adjacent_verti(hp, i, j, dbit);
402 ii = adjacent_trifl[VDB_OPP(dbit)];
403 if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */
404 return;
405 /* else go ahead with calculation */
406 VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop);
407 VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop);
408 VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p);
409 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
410 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
411 dot_e = DOT(ftp->e_i,ftp->e_i);
412 dot_er = DOT(ftp->e_i, ftp->r_i);
413 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
414 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
415 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
416 sqrt( rdot_cp );
417 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
418 dot_e*ftp->I1 )*0.5*rdot_cp;
419 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
420 for (ii = 3; ii--; )
421 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
422 ftp->valid++;
423 }
424
425
426 /* Compose 3x3 matrix from two vectors */
427 static void
428 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
429 {
430 mat[0][0] = 2.0*va[0]*vb[0];
431 mat[1][1] = 2.0*va[1]*vb[1];
432 mat[2][2] = 2.0*va[2]*vb[2];
433 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
434 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
435 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
436 }
437
438
439 /* Compute partial 3x3 Hessian matrix for edge */
440 static void
441 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
442 {
443 FVECT ncp;
444 FVECT m1[3], m2[3], m3[3], m4[3];
445 double d1, d2, d3, d4;
446 double I3, J3, K3;
447 int i, j;
448
449 if (!ftp->valid) { /* preemptive test */
450 memset(hess, 0, sizeof(FVECT)*3);
451 return;
452 }
453 /* compute intermediate coefficients */
454 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
455 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
456 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
457 d4 = DOT(ftp->e_i, ftp->r_i);
458 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
459 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
460 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
461 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
462 /* intermediate matrices */
463 VCROSS(ncp, nrm, ftp->e_i);
464 compose_matrix(m1, ncp, ftp->rI2_eJ2);
465 compose_matrix(m2, ftp->r_i, ftp->r_i);
466 compose_matrix(m3, ftp->e_i, ftp->e_i);
467 compose_matrix(m4, ftp->r_i, ftp->e_i);
468 d1 = DOT(nrm, ftp->rcp);
469 d2 = -d1*ftp->I2;
470 d1 *= 2.0;
471 for (i = 3; i--; ) /* final matrix sum */
472 for (j = 3; j--; ) {
473 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
474 2.0*J3*m4[i][j] );
475 hess[i][j] += d2*(i==j);
476 hess[i][j] *= -1.0/PI;
477 }
478 }
479
480
481 /* Reverse hessian calculation result for edge in other direction */
482 static void
483 rev_hessian(FVECT hess[3])
484 {
485 int i;
486
487 for (i = 3; i--; ) {
488 hess[i][0] = -hess[i][0];
489 hess[i][1] = -hess[i][1];
490 hess[i][2] = -hess[i][2];
491 }
492 }
493
494
495 /* Add to radiometric Hessian from the given triangle */
496 static void
497 add2hessian(FVECT hess[3], FVECT ehess1[3],
498 FVECT ehess2[3], FVECT ehess3[3], double v)
499 {
500 int i, j;
501
502 for (i = 3; i--; )
503 for (j = 3; j--; )
504 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
505 }
506
507
508 /* Compute partial displacement form factor gradient for edge */
509 static void
510 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
511 {
512 FVECT ncp;
513 double f1;
514 int i;
515
516 if (!ftp->valid) { /* preemptive test */
517 memset(grad, 0, sizeof(FVECT));
518 return;
519 }
520 f1 = 2.0*DOT(nrm, ftp->rcp);
521 VCROSS(ncp, nrm, ftp->e_i);
522 for (i = 3; i--; )
523 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
524 }
525
526
527 /* Reverse gradient calculation result for edge in other direction */
528 static void
529 rev_gradient(FVECT grad)
530 {
531 grad[0] = -grad[0];
532 grad[1] = -grad[1];
533 grad[2] = -grad[2];
534 }
535
536
537 /* Add to displacement gradient from the given triangle */
538 static void
539 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
540 {
541 int i;
542
543 for (i = 3; i--; )
544 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
545 }
546
547
548 /* Compute anisotropic radii and eigenvector directions */
549 static void
550 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
551 {
552 double hess2[2][2];
553 FVECT a, b;
554 double evalue[2], slope1, xmag1;
555 int i;
556 /* project Hessian to sample plane */
557 for (i = 3; i--; ) {
558 a[i] = DOT(hessian[i], uv[0]);
559 b[i] = DOT(hessian[i], uv[1]);
560 }
561 hess2[0][0] = DOT(uv[0], a);
562 hess2[0][1] = DOT(uv[0], b);
563 hess2[1][0] = DOT(uv[1], a);
564 hess2[1][1] = DOT(uv[1], b);
565 /* compute eigenvalue(s) */
566 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
567 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
568 if (i == 1) /* double-root (circle) */
569 evalue[1] = evalue[0];
570 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
571 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
572 ra[0] = ra[1] = maxarad;
573 return;
574 }
575 if (evalue[0] > evalue[1]) {
576 ra[0] = sqrt(sqrt(4.0/evalue[0]));
577 ra[1] = sqrt(sqrt(4.0/evalue[1]));
578 slope1 = evalue[1];
579 } else {
580 ra[0] = sqrt(sqrt(4.0/evalue[1]));
581 ra[1] = sqrt(sqrt(4.0/evalue[0]));
582 slope1 = evalue[0];
583 }
584 /* compute unit eigenvectors */
585 if (fabs(hess2[0][1]) <= FTINY)
586 return; /* uv OK as is */
587 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
588 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
589 for (i = 3; i--; ) {
590 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
591 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
592 }
593 VCOPY(uv[0], a);
594 VCOPY(uv[1], b);
595 }
596
597
598 static void
599 ambHessian( /* anisotropic radii & pos. gradient */
600 AMBHEMI *hp,
601 FVECT uv[2], /* returned */
602 float ra[2], /* returned (optional) */
603 float pg[2] /* returned (optional) */
604 )
605 {
606 static char memerrmsg[] = "out of memory in ambHessian()";
607 FVECT (*hessrow)[3] = NULL;
608 FVECT *gradrow = NULL;
609 uby8 *vflags;
610 FVECT hessian[3];
611 FVECT gradient;
612 FFTRI fftr;
613 int i, j;
614 /* be sure to assign unit vectors */
615 VCOPY(uv[0], hp->ux);
616 VCOPY(uv[1], hp->uy);
617 /* clock-wise vertex traversal from sample POV */
618 if (ra != NULL) { /* initialize Hessian row buffer */
619 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
620 if (hessrow == NULL)
621 error(SYSTEM, memerrmsg);
622 memset(hessian, 0, sizeof(hessian));
623 } else if (pg == NULL) /* bogus call? */
624 return;
625 if (pg != NULL) { /* initialize form factor row buffer */
626 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
627 if (gradrow == NULL)
628 error(SYSTEM, memerrmsg);
629 memset(gradient, 0, sizeof(gradient));
630 }
631 /* get vertex position flags */
632 vflags = vertex_flags(hp);
633 /* compute first row of edges */
634 for (j = 0; j < hp->ns-1; j++) {
635 comp_fftri(&fftr, hp, 0, j, VDB_X, vflags);
636 if (hessrow != NULL)
637 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
638 if (gradrow != NULL)
639 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
640 }
641 /* sum each row of triangles */
642 for (i = 0; i < hp->ns-1; i++) {
643 FVECT hesscol[3]; /* compute first vertical edge */
644 FVECT gradcol;
645 comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags);
646 if (hessrow != NULL)
647 comp_hessian(hesscol, &fftr, hp->rp->ron);
648 if (gradrow != NULL)
649 comp_gradient(gradcol, &fftr, hp->rp->ron);
650 for (j = 0; j < hp->ns-1; j++) {
651 FVECT hessdia[3]; /* compute triangle contributions */
652 FVECT graddia;
653 double backg;
654 backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags);
655 /* diagonal (inner) edge */
656 comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags);
657 if (hessrow != NULL) {
658 comp_hessian(hessdia, &fftr, hp->rp->ron);
659 rev_hessian(hesscol);
660 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
661 }
662 if (gradrow != NULL) {
663 comp_gradient(graddia, &fftr, hp->rp->ron);
664 rev_gradient(gradcol);
665 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
666 }
667 /* initialize edge in next row */
668 comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags);
669 if (hessrow != NULL)
670 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
671 if (gradrow != NULL)
672 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
673 /* new column edge & paired triangle */
674 backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags);
675 comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags);
676 if (hessrow != NULL) {
677 comp_hessian(hesscol, &fftr, hp->rp->ron);
678 rev_hessian(hessdia);
679 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
680 if (i < hp->ns-2)
681 rev_hessian(hessrow[j]);
682 }
683 if (gradrow != NULL) {
684 comp_gradient(gradcol, &fftr, hp->rp->ron);
685 rev_gradient(graddia);
686 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
687 if (i < hp->ns-2)
688 rev_gradient(gradrow[j]);
689 }
690 }
691 }
692 /* release row buffers */
693 if (hessrow != NULL) free(hessrow);
694 if (gradrow != NULL) free(gradrow);
695 free(vflags);
696
697 if (ra != NULL) /* extract eigenvectors & radii */
698 eigenvectors(uv, ra, hessian);
699 if (pg != NULL) { /* tangential position gradient */
700 pg[0] = DOT(gradient, uv[0]);
701 pg[1] = DOT(gradient, uv[1]);
702 }
703 }
704
705
706 /* Compute direction gradient from a hemispherical sampling */
707 static void
708 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
709 {
710 AMBSAMP *ap;
711 double dgsum[2];
712 int n;
713 FVECT vd;
714 double gfact;
715
716 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
717 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
718 /* use vector for azimuth + 90deg */
719 VSUB(vd, ap->p, hp->rp->rop);
720 /* brightness over cosine factor */
721 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
722 /* sine = proj_radius/vd_length */
723 dgsum[0] -= DOT(uv[1], vd) * gfact;
724 dgsum[1] += DOT(uv[0], vd) * gfact;
725 }
726 dg[0] = dgsum[0] / (hp->ns*hp->ns);
727 dg[1] = dgsum[1] / (hp->ns*hp->ns);
728 }
729
730
731 /* Compute potential light leak direction flags for cache value */
732 static uint32
733 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
734 {
735 const double max_d = 1.0/(minarad*ambacc + 0.001);
736 const double ang_res = 0.5*PI/(hp->ns-1);
737 const double ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY));
738 double avg_d = 0;
739 uint32 flgs = 0;
740 int i, j;
741 /* don't bother for a few samples */
742 if (hp->ns < 12)
743 return(0);
744 /* check distances overhead */
745 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
746 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
747 avg_d += ambsam(hp,i,j).d;
748 avg_d *= 4.0/(hp->ns*hp->ns);
749 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
750 return(0);
751 if (avg_d >= max_d) /* insurance */
752 return(0);
753 /* else circle around perimeter */
754 for (i = 0; i < hp->ns; i++)
755 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
756 AMBSAMP *ap = &ambsam(hp,i,j);
757 FVECT vec;
758 double u, v;
759 double ang, a1;
760 int abp;
761 if ((ap->d <= FTINY) | (ap->d >= max_d))
762 continue; /* too far or too near */
763 VSUB(vec, ap->p, hp->rp->rop);
764 u = DOT(vec, uv[0]) * ap->d;
765 v = DOT(vec, uv[1]) * ap->d;
766 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0)
767 continue; /* occluder outside ellipse */
768 ang = atan2a(v, u); /* else set direction flags */
769 for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step)
770 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
771 }
772 return(flgs);
773 }
774
775
776 int
777 doambient( /* compute ambient component */
778 COLOR rcol, /* input/output color */
779 RAY *r,
780 double wt,
781 FVECT uv[2], /* returned (optional) */
782 float ra[2], /* returned (optional) */
783 float pg[2], /* returned (optional) */
784 float dg[2], /* returned (optional) */
785 uint32 *crlp /* returned (optional) */
786 )
787 {
788 AMBHEMI *hp = inithemi(rcol, r, wt);
789 int cnt;
790 FVECT my_uv[2];
791 double d, K, acol[3];
792 AMBSAMP *ap;
793 int i, j;
794 /* check/initialize */
795 if (hp == NULL)
796 return(0);
797 if (uv != NULL)
798 memset(uv, 0, sizeof(FVECT)*2);
799 if (ra != NULL)
800 ra[0] = ra[1] = 0.0;
801 if (pg != NULL)
802 pg[0] = pg[1] = 0.0;
803 if (dg != NULL)
804 dg[0] = dg[1] = 0.0;
805 if (crlp != NULL)
806 *crlp = 0;
807 /* sample the hemisphere */
808 acol[0] = acol[1] = acol[2] = 0.0;
809 cnt = 0;
810 for (i = hp->ns; i--; )
811 for (j = hp->ns; j--; )
812 if ((ap = ambsample(hp, i, j)) != NULL) {
813 addcolor(acol, ap->v);
814 ++cnt;
815 }
816 if (!cnt) {
817 setcolor(rcol, 0.0, 0.0, 0.0);
818 free(hp);
819 return(0); /* no valid samples */
820 }
821 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
822 copycolor(rcol, acol);
823 free(hp);
824 return(-1); /* return value w/o Hessian */
825 }
826 cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
827 if (cnt > 8)
828 ambsupersamp(acol, hp, cnt);
829 copycolor(rcol, acol); /* final indirect irradiance/PI */
830 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
831 free(hp);
832 return(-1); /* no radius or gradient calc. */
833 }
834 if ((d = bright(acol)) > FTINY) { /* normalize Y values */
835 d = 0.99*(hp->ns*hp->ns)/d;
836 K = 0.01;
837 } else { /* or fall back on geometric Hessian */
838 K = 1.0;
839 pg = NULL;
840 dg = NULL;
841 crlp = NULL;
842 }
843 ap = hp->sa; /* relative Y channel from here on... */
844 for (i = hp->ns*hp->ns; i--; ap++)
845 colval(ap->v,CIEY) = bright(ap->v)*d + K;
846
847 if (uv == NULL) /* make sure we have axis pointers */
848 uv = my_uv;
849 /* compute radii & pos. gradient */
850 ambHessian(hp, uv, ra, pg);
851
852 if (dg != NULL) /* compute direction gradient */
853 ambdirgrad(hp, uv, dg);
854
855 if (ra != NULL) { /* scale/clamp radii */
856 if (pg != NULL) {
857 if (ra[0]*(d = fabs(pg[0])) > 1.0)
858 ra[0] = 1.0/d;
859 if (ra[1]*(d = fabs(pg[1])) > 1.0)
860 ra[1] = 1.0/d;
861 if (ra[0] > ra[1])
862 ra[0] = ra[1];
863 }
864 if (ra[0] < minarad) {
865 ra[0] = minarad;
866 if (ra[1] < minarad)
867 ra[1] = minarad;
868 }
869 ra[0] *= d = 1.0/sqrt(sqrt(wt));
870 if ((ra[1] *= d) > 2.0*ra[0])
871 ra[1] = 2.0*ra[0];
872 if (ra[1] > maxarad) {
873 ra[1] = maxarad;
874 if (ra[0] > maxarad)
875 ra[0] = maxarad;
876 }
877 /* flag encroached directions */
878 if ((wt >= 0.5-FTINY) & (crlp != NULL))
879 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
880 if (pg != NULL) { /* cap gradient if necessary */
881 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
882 if (d > 1.0) {
883 d = 1.0/sqrt(d);
884 pg[0] *= d;
885 pg[1] *= d;
886 }
887 }
888 }
889 free(hp); /* clean up and return */
890 return(1);
891 }
892
893
894 #else /* ! NEWAMB */
895
896
897 void
898 inithemi( /* initialize sampling hemisphere */
899 AMBHEMI *hp,
900 COLOR ac,
901 RAY *r,
902 double wt
903 )
904 {
905 double d;
906 int i;
907 /* set number of divisions */
908 if (ambacc <= FTINY &&
909 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
910 wt = d; /* avoid ray termination */
911 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
912 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
913 if (hp->nt < i)
914 hp->nt = i;
915 hp->np = PI * hp->nt + 0.5;
916 /* set number of super-samples */
917 hp->ns = ambssamp * wt + 0.5;
918 /* assign coefficient */
919 copycolor(hp->acoef, ac);
920 d = 1.0/(hp->nt*hp->np);
921 scalecolor(hp->acoef, d);
922 /* make axes */
923 VCOPY(hp->uz, r->ron);
924 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
925 for (i = 0; i < 3; i++)
926 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
927 break;
928 if (i >= 3)
929 error(CONSISTENCY, "bad ray direction in inithemi");
930 hp->uy[i] = 1.0;
931 fcross(hp->ux, hp->uy, hp->uz);
932 normalize(hp->ux);
933 fcross(hp->uy, hp->uz, hp->ux);
934 }
935
936
937 int
938 divsample( /* sample a division */
939 AMBSAMP *dp,
940 AMBHEMI *h,
941 RAY *r
942 )
943 {
944 RAY ar;
945 int hlist[3];
946 double spt[2];
947 double xd, yd, zd;
948 double b2;
949 double phi;
950 int i;
951 /* ambient coefficient for weight */
952 if (ambacc > FTINY)
953 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
954 else
955 copycolor(ar.rcoef, h->acoef);
956 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
957 return(-1);
958 if (ambacc > FTINY) {
959 multcolor(ar.rcoef, h->acoef);
960 scalecolor(ar.rcoef, 1./AVGREFL);
961 }
962 hlist[0] = r->rno;
963 hlist[1] = dp->t;
964 hlist[2] = dp->p;
965 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
966 zd = sqrt((dp->t + spt[0])/h->nt);
967 phi = 2.0*PI * (dp->p + spt[1])/h->np;
968 xd = tcos(phi) * zd;
969 yd = tsin(phi) * zd;
970 zd = sqrt(1.0 - zd*zd);
971 for (i = 0; i < 3; i++)
972 ar.rdir[i] = xd*h->ux[i] +
973 yd*h->uy[i] +
974 zd*h->uz[i];
975 checknorm(ar.rdir);
976 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
977 rayvalue(&ar);
978 ndims--;
979 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
980 addcolor(dp->v, ar.rcol);
981 /* use rt to improve gradient calc */
982 if (ar.rt > FTINY && ar.rt < FHUGE)
983 dp->r += 1.0/ar.rt;
984 /* (re)initialize error */
985 if (dp->n++) {
986 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
987 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
988 dp->k = b2/(dp->n*dp->n);
989 } else
990 dp->k = 0.0;
991 return(0);
992 }
993
994
995 static int
996 ambcmp( /* decreasing order */
997 const void *p1,
998 const void *p2
999 )
1000 {
1001 const AMBSAMP *d1 = (const AMBSAMP *)p1;
1002 const AMBSAMP *d2 = (const AMBSAMP *)p2;
1003
1004 if (d1->k < d2->k)
1005 return(1);
1006 if (d1->k > d2->k)
1007 return(-1);
1008 return(0);
1009 }
1010
1011
1012 static int
1013 ambnorm( /* standard order */
1014 const void *p1,
1015 const void *p2
1016 )
1017 {
1018 const AMBSAMP *d1 = (const AMBSAMP *)p1;
1019 const AMBSAMP *d2 = (const AMBSAMP *)p2;
1020 int c;
1021
1022 if ( (c = d1->t - d2->t) )
1023 return(c);
1024 return(d1->p - d2->p);
1025 }
1026
1027
1028 double
1029 doambient( /* compute ambient component */
1030 COLOR rcol,
1031 RAY *r,
1032 double wt,
1033 FVECT pg,
1034 FVECT dg
1035 )
1036 {
1037 double b, d=0;
1038 AMBHEMI hemi;
1039 AMBSAMP *div;
1040 AMBSAMP dnew;
1041 double acol[3];
1042 AMBSAMP *dp;
1043 double arad;
1044 int divcnt;
1045 int i, j;
1046 /* initialize hemisphere */
1047 inithemi(&hemi, rcol, r, wt);
1048 divcnt = hemi.nt * hemi.np;
1049 /* initialize */
1050 if (pg != NULL)
1051 pg[0] = pg[1] = pg[2] = 0.0;
1052 if (dg != NULL)
1053 dg[0] = dg[1] = dg[2] = 0.0;
1054 setcolor(rcol, 0.0, 0.0, 0.0);
1055 if (divcnt == 0)
1056 return(0.0);
1057 /* allocate super-samples */
1058 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
1059 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
1060 if (div == NULL)
1061 error(SYSTEM, "out of memory in doambient");
1062 } else
1063 div = NULL;
1064 /* sample the divisions */
1065 arad = 0.0;
1066 acol[0] = acol[1] = acol[2] = 0.0;
1067 if ((dp = div) == NULL)
1068 dp = &dnew;
1069 divcnt = 0;
1070 for (i = 0; i < hemi.nt; i++)
1071 for (j = 0; j < hemi.np; j++) {
1072 dp->t = i; dp->p = j;
1073 setcolor(dp->v, 0.0, 0.0, 0.0);
1074 dp->r = 0.0;
1075 dp->n = 0;
1076 if (divsample(dp, &hemi, r) < 0) {
1077 if (div != NULL)
1078 dp++;
1079 continue;
1080 }
1081 arad += dp->r;
1082 divcnt++;
1083 if (div != NULL)
1084 dp++;
1085 else
1086 addcolor(acol, dp->v);
1087 }
1088 if (!divcnt) {
1089 if (div != NULL)
1090 free((void *)div);
1091 return(0.0); /* no samples taken */
1092 }
1093 if (divcnt < hemi.nt*hemi.np) {
1094 pg = dg = NULL; /* incomplete sampling */
1095 hemi.ns = 0;
1096 } else if (arad > FTINY && divcnt/arad < minarad) {
1097 hemi.ns = 0; /* close enough */
1098 } else if (hemi.ns > 0) { /* else perform super-sampling? */
1099 comperrs(div, &hemi); /* compute errors */
1100 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
1101 /* super-sample */
1102 for (i = hemi.ns; i > 0; i--) {
1103 dnew = *div;
1104 if (divsample(&dnew, &hemi, r) < 0) {
1105 dp++;
1106 continue;
1107 }
1108 dp = div; /* reinsert */
1109 j = divcnt < i ? divcnt : i;
1110 while (--j > 0 && dnew.k < dp[1].k) {
1111 *dp = *(dp+1);
1112 dp++;
1113 }
1114 *dp = dnew;
1115 }
1116 if (pg != NULL || dg != NULL) /* restore order */
1117 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
1118 }
1119 /* compute returned values */
1120 if (div != NULL) {
1121 arad = 0.0; /* note: divcnt may be < nt*np */
1122 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
1123 arad += dp->r;
1124 if (dp->n > 1) {
1125 b = 1.0/dp->n;
1126 scalecolor(dp->v, b);
1127 dp->r *= b;
1128 dp->n = 1;
1129 }
1130 addcolor(acol, dp->v);
1131 }
1132 b = bright(acol);
1133 if (b > FTINY) {
1134 b = 1.0/b; /* compute & normalize gradient(s) */
1135 if (pg != NULL) {
1136 posgradient(pg, div, &hemi);
1137 for (i = 0; i < 3; i++)
1138 pg[i] *= b;
1139 }
1140 if (dg != NULL) {
1141 dirgradient(dg, div, &hemi);
1142 for (i = 0; i < 3; i++)
1143 dg[i] *= b;
1144 }
1145 }
1146 free((void *)div);
1147 }
1148 copycolor(rcol, acol);
1149 if (arad <= FTINY)
1150 arad = maxarad;
1151 else
1152 arad = (divcnt+hemi.ns)/arad;
1153 if (pg != NULL) { /* reduce radius if gradient large */
1154 d = DOT(pg,pg);
1155 if (d*arad*arad > 1.0)
1156 arad = 1.0/sqrt(d);
1157 }
1158 if (arad < minarad) {
1159 arad = minarad;
1160 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1161 d = 1.0/arad/sqrt(d);
1162 for (i = 0; i < 3; i++)
1163 pg[i] *= d;
1164 }
1165 }
1166 if ((arad /= sqrt(wt)) > maxarad)
1167 arad = maxarad;
1168 return(arad);
1169 }
1170
1171
1172 void
1173 comperrs( /* compute initial error estimates */
1174 AMBSAMP *da, /* assumes standard ordering */
1175 AMBHEMI *hp
1176 )
1177 {
1178 double b, b2;
1179 int i, j;
1180 AMBSAMP *dp;
1181 /* sum differences from neighbors */
1182 dp = da;
1183 for (i = 0; i < hp->nt; i++)
1184 for (j = 0; j < hp->np; j++) {
1185 #ifdef DEBUG
1186 if (dp->t != i || dp->p != j)
1187 error(CONSISTENCY,
1188 "division order in comperrs");
1189 #endif
1190 b = bright(dp[0].v);
1191 if (i > 0) { /* from above */
1192 b2 = bright(dp[-hp->np].v) - b;
1193 b2 *= b2 * 0.25;
1194 dp[0].k += b2;
1195 dp[-hp->np].k += b2;
1196 }
1197 if (j > 0) { /* from behind */
1198 b2 = bright(dp[-1].v) - b;
1199 b2 *= b2 * 0.25;
1200 dp[0].k += b2;
1201 dp[-1].k += b2;
1202 } else { /* around */
1203 b2 = bright(dp[hp->np-1].v) - b;
1204 b2 *= b2 * 0.25;
1205 dp[0].k += b2;
1206 dp[hp->np-1].k += b2;
1207 }
1208 dp++;
1209 }
1210 /* divide by number of neighbors */
1211 dp = da;
1212 for (j = 0; j < hp->np; j++) /* top row */
1213 (dp++)->k *= 1.0/3.0;
1214 if (hp->nt < 2)
1215 return;
1216 for (i = 1; i < hp->nt-1; i++) /* central region */
1217 for (j = 0; j < hp->np; j++)
1218 (dp++)->k *= 0.25;
1219 for (j = 0; j < hp->np; j++) /* bottom row */
1220 (dp++)->k *= 1.0/3.0;
1221 }
1222
1223
1224 void
1225 posgradient( /* compute position gradient */
1226 FVECT gv,
1227 AMBSAMP *da, /* assumes standard ordering */
1228 AMBHEMI *hp
1229 )
1230 {
1231 int i, j;
1232 double nextsine, lastsine, b, d;
1233 double mag0, mag1;
1234 double phi, cosp, sinp, xd, yd;
1235 AMBSAMP *dp;
1236
1237 xd = yd = 0.0;
1238 for (j = 0; j < hp->np; j++) {
1239 dp = da + j;
1240 mag0 = mag1 = 0.0;
1241 lastsine = 0.0;
1242 for (i = 0; i < hp->nt; i++) {
1243 #ifdef DEBUG
1244 if (dp->t != i || dp->p != j)
1245 error(CONSISTENCY,
1246 "division order in posgradient");
1247 #endif
1248 b = bright(dp->v);
1249 if (i > 0) {
1250 d = dp[-hp->np].r;
1251 if (dp[0].r > d) d = dp[0].r;
1252 /* sin(t)*cos(t)^2 */
1253 d *= lastsine * (1.0 - (double)i/hp->nt);
1254 mag0 += d*(b - bright(dp[-hp->np].v));
1255 }
1256 nextsine = sqrt((double)(i+1)/hp->nt);
1257 if (j > 0) {
1258 d = dp[-1].r;
1259 if (dp[0].r > d) d = dp[0].r;
1260 mag1 += d * (nextsine - lastsine) *
1261 (b - bright(dp[-1].v));
1262 } else {
1263 d = dp[hp->np-1].r;
1264 if (dp[0].r > d) d = dp[0].r;
1265 mag1 += d * (nextsine - lastsine) *
1266 (b - bright(dp[hp->np-1].v));
1267 }
1268 dp += hp->np;
1269 lastsine = nextsine;
1270 }
1271 mag0 *= 2.0*PI / hp->np;
1272 phi = 2.0*PI * (double)j/hp->np;
1273 cosp = tcos(phi); sinp = tsin(phi);
1274 xd += mag0*cosp - mag1*sinp;
1275 yd += mag0*sinp + mag1*cosp;
1276 }
1277 for (i = 0; i < 3; i++)
1278 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1279 }
1280
1281
1282 void
1283 dirgradient( /* compute direction gradient */
1284 FVECT gv,
1285 AMBSAMP *da, /* assumes standard ordering */
1286 AMBHEMI *hp
1287 )
1288 {
1289 int i, j;
1290 double mag;
1291 double phi, xd, yd;
1292 AMBSAMP *dp;
1293
1294 xd = yd = 0.0;
1295 for (j = 0; j < hp->np; j++) {
1296 dp = da + j;
1297 mag = 0.0;
1298 for (i = 0; i < hp->nt; i++) {
1299 #ifdef DEBUG
1300 if (dp->t != i || dp->p != j)
1301 error(CONSISTENCY,
1302 "division order in dirgradient");
1303 #endif
1304 /* tan(t) */
1305 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1306 dp += hp->np;
1307 }
1308 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1309 xd += mag * tcos(phi);
1310 yd += mag * tsin(phi);
1311 }
1312 for (i = 0; i < 3; i++)
1313 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1314 }
1315
1316 #endif /* ! NEWAMB */