ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.54
Committed: Fri May 9 04:55:19 2014 UTC (9 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.53: +9 -8 lines
Log Message:
Fixed bug in ambient super-sampling for scenes with uniform areas (NEWAMB)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.53 2014/05/08 04:02:40 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifdef NEWAMB
25
26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27
28 /* vertex direction bit positions */
29 #define VDB_xy 0
30 #define VDB_y 01
31 #define VDB_x 02
32 #define VDB_Xy 03
33 #define VDB_xY 04
34 #define VDB_X 05
35 #define VDB_Y 06
36 #define VDB_XY 07
37 /* get opposite vertex direction bit */
38 #define VDB_OPP(f) (~(f) & 07)
39 /* adjacent triangle vertex flags */
40 static const int adjacent_trifl[8] = {
41 0, /* forbidden diagonal */
42 1<<VDB_x|1<<VDB_y|1<<VDB_Xy,
43 1<<VDB_y|1<<VDB_x|1<<VDB_xY,
44 1<<VDB_y|1<<VDB_Xy|1<<VDB_X,
45 1<<VDB_x|1<<VDB_xY|1<<VDB_Y,
46 1<<VDB_Xy|1<<VDB_X|1<<VDB_Y,
47 1<<VDB_xY|1<<VDB_Y|1<<VDB_X,
48 0, /* forbidden diagonal */
49 };
50
51 typedef struct {
52 COLOR v; /* hemisphere sample value */
53 float d; /* reciprocal distance (1/rt) */
54 FVECT p; /* intersection point */
55 } AMBSAMP; /* sample value */
56
57 typedef struct {
58 RAY *rp; /* originating ray sample */
59 FVECT ux, uy; /* tangent axis unit vectors */
60 int ns; /* number of samples per axis */
61 COLOR acoef; /* division contribution coefficient */
62 AMBSAMP sa[1]; /* sample array (extends struct) */
63 } AMBHEMI; /* ambient sample hemisphere */
64
65 #define ambndx(h,i,j) ((i)*(h)->ns + (j))
66 #define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)]
67
68 typedef struct {
69 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
70 double I1, I2;
71 int valid;
72 } FFTRI; /* vectors and coefficients for Hessian calculation */
73
74
75 /* Get index for adjacent vertex */
76 static int
77 adjacent_verti(AMBHEMI *hp, int i, int j, int dbit)
78 {
79 int i0 = i*hp->ns + j;
80
81 switch (dbit) {
82 case VDB_y: return(i0 - hp->ns);
83 case VDB_x: return(i0 - 1);
84 case VDB_Xy: return(i0 - hp->ns + 1);
85 case VDB_xY: return(i0 + hp->ns - 1);
86 case VDB_X: return(i0 + 1);
87 case VDB_Y: return(i0 + hp->ns);
88 /* the following should never occur */
89 case VDB_xy: return(i0 - hp->ns - 1);
90 case VDB_XY: return(i0 + hp->ns + 1);
91 }
92 return(-1);
93 }
94
95
96 /* Get vertex direction bit for the opposite edge to complete triangle */
97 static int
98 vdb_edge(int db1, int db2)
99 {
100 switch (db1) {
101 case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y);
102 case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X);
103 case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY);
104 case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy);
105 case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X);
106 case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y);
107 }
108 error(CONSISTENCY, "forbidden diagonal in vdb_edge()");
109 return(-1);
110 }
111
112
113 static AMBHEMI *
114 inithemi( /* initialize sampling hemisphere */
115 COLOR ac,
116 RAY *r,
117 double wt
118 )
119 {
120 AMBHEMI *hp;
121 double d;
122 int n, i;
123 /* set number of divisions */
124 if (ambacc <= FTINY &&
125 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
126 wt = d; /* avoid ray termination */
127 n = sqrt(ambdiv * wt) + 0.5;
128 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
129 if (n < i)
130 n = i;
131 /* allocate sampling array */
132 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
133 if (hp == NULL)
134 return(NULL);
135 hp->rp = r;
136 hp->ns = n;
137 /* assign coefficient */
138 copycolor(hp->acoef, ac);
139 d = 1.0/(n*n);
140 scalecolor(hp->acoef, d);
141 /* make tangent plane axes */
142 hp->uy[0] = 0.5 - frandom();
143 hp->uy[1] = 0.5 - frandom();
144 hp->uy[2] = 0.5 - frandom();
145 for (i = 3; i--; )
146 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
147 break;
148 if (i < 0)
149 error(CONSISTENCY, "bad ray direction in inithemi");
150 hp->uy[i] = 1.0;
151 VCROSS(hp->ux, hp->uy, r->ron);
152 normalize(hp->ux);
153 VCROSS(hp->uy, r->ron, hp->ux);
154 /* we're ready to sample */
155 return(hp);
156 }
157
158
159 /* Sample ambient division and apply weighting coefficient */
160 static int
161 getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
162 {
163 int hlist[3], ii;
164 double spt[2], zd;
165 /* ambient coefficient for weight */
166 if (ambacc > FTINY)
167 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
168 else
169 copycolor(arp->rcoef, hp->acoef);
170 if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
171 return(0);
172 if (ambacc > FTINY) {
173 multcolor(arp->rcoef, hp->acoef);
174 scalecolor(arp->rcoef, 1./AVGREFL);
175 }
176 hlist[0] = hp->rp->rno;
177 hlist[1] = j;
178 hlist[2] = i;
179 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
180 if (!n) { /* avoid border samples for n==0 */
181 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
182 spt[0] = 0.1 + 0.8*frandom();
183 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
184 spt[1] = 0.1 + 0.8*frandom();
185 }
186 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
187 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
188 for (ii = 3; ii--; )
189 arp->rdir[ii] = spt[0]*hp->ux[ii] +
190 spt[1]*hp->uy[ii] +
191 zd*hp->rp->ron[ii];
192 checknorm(arp->rdir);
193 dimlist[ndims++] = ambndx(hp,i,j) + 90171;
194 rayvalue(arp); /* evaluate ray */
195 ndims--; /* apply coefficient */
196 multcolor(arp->rcol, arp->rcoef);
197 return(1);
198 }
199
200
201 static AMBSAMP *
202 ambsample( /* initial ambient division sample */
203 AMBHEMI *hp,
204 int i,
205 int j
206 )
207 {
208 AMBSAMP *ap = &ambsam(hp,i,j);
209 RAY ar;
210 /* generate hemispherical sample */
211 if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) {
212 memset(ap, 0, sizeof(AMBSAMP));
213 return(NULL);
214 }
215 ap->d = 1.0/ar.rt; /* limit vertex distance */
216 if (ar.rt > 10.0*thescene.cusize)
217 ar.rt = 10.0*thescene.cusize;
218 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
219 copycolor(ap->v, ar.rcol);
220 return(ap);
221 }
222
223
224 /* Estimate errors based on ambient division differences */
225 static float *
226 getambdiffs(AMBHEMI *hp)
227 {
228 float *earr = (float *)malloc(sizeof(float)*hp->ns*hp->ns);
229 float *ep;
230 AMBSAMP *ap;
231 double b, d2;
232 int i, j;
233
234 if (earr == NULL) /* out of memory? */
235 return(NULL);
236 /* compute squared neighbor diffs */
237 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
238 for (j = 0; j < hp->ns; j++, ap++, ep++) {
239 ep[0] = FTINY;
240 b = bright(ap[0].v);
241 if (i) { /* from above */
242 d2 = b - bright(ap[-hp->ns].v);
243 d2 *= d2;
244 ep[0] += d2;
245 ep[-hp->ns] += d2;
246 }
247 if (j) { /* from behind */
248 d2 = b - bright(ap[-1].v);
249 d2 *= d2;
250 ep[0] += d2;
251 ep[-1] += d2;
252 }
253 }
254 /* correct for number of neighbors */
255 earr[0] *= 2.f;
256 earr[hp->ns-1] *= 2.f;
257 earr[(hp->ns-1)*hp->ns] *= 2.f;
258 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f;
259 for (i = 1; i < hp->ns-1; i++) {
260 earr[i*hp->ns] *= 4./3.;
261 earr[i*hp->ns + hp->ns-1] *= 4./3.;
262 }
263 for (j = 1; j < hp->ns-1; j++) {
264 earr[j] *= 4./3.;
265 earr[(hp->ns-1)*hp->ns + j] *= 4./3.;
266 }
267 return(earr);
268 }
269
270
271 /* Perform super-sampling on hemisphere (introduces bias) */
272 static void
273 ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
274 {
275 float *earr = getambdiffs(hp);
276 double e2rem = 0;
277 AMBSAMP *ap;
278 RAY ar;
279 double asum[3];
280 float *ep;
281 int i, j, n;
282
283 if (earr == NULL) /* just skip calc. if no memory */
284 return;
285 /* accumulate estimated variances */
286 for (ep = earr + hp->ns*hp->ns; ep-- > earr; )
287 e2rem += *ep;
288 ep = earr; /* perform super-sampling */
289 for (ap = hp->sa, i = 0; i < hp->ns; i++)
290 for (j = 0; j < hp->ns; j++, ap++) {
291 int nss = *ep/e2rem*cnt + frandom();
292 asum[0] = asum[1] = asum[2] = 0.0;
293 for (n = 1; n <= nss; n++) {
294 if (!getambsamp(&ar, hp, i, j, n)) {
295 nss = n-1;
296 break;
297 }
298 addcolor(asum, ar.rcol);
299 }
300 if (nss) { /* update returned ambient value */
301 const double ssf = 1./(nss + 1.);
302 for (n = 3; n--; )
303 acol[n] += ssf*asum[n] +
304 (ssf - 1.)*colval(ap->v,n);
305 }
306 e2rem -= *ep++; /* update remainders */
307 cnt -= nss;
308 }
309 free(earr);
310 }
311
312
313 /* Compute vertex flags, indicating farthest in each direction */
314 static uby8 *
315 vertex_flags(AMBHEMI *hp)
316 {
317 uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8));
318 uby8 *vf;
319 AMBSAMP *ap;
320 int i, j;
321
322 if (vflags == NULL)
323 error(SYSTEM, "out of memory in vertex_flags()");
324 vf = vflags;
325 ap = hp->sa; /* compute farthest along first row */
326 for (j = 0; j < hp->ns-1; j++, vf++, ap++)
327 if (ap[0].d <= ap[1].d)
328 vf[0] |= 1<<VDB_X;
329 else
330 vf[1] |= 1<<VDB_x;
331 ++vf; ++ap;
332 /* flag subsequent rows */
333 for (i = 1; i < hp->ns; i++) {
334 for (j = 0; j < hp->ns-1; j++, vf++, ap++) {
335 if (ap[0].d <= ap[-hp->ns].d) /* row before */
336 vf[0] |= 1<<VDB_y;
337 else
338 vf[-hp->ns] |= 1<<VDB_Y;
339 if (ap[0].d <= ap[1-hp->ns].d) /* diagonal we care about */
340 vf[0] |= 1<<VDB_Xy;
341 else
342 vf[1-hp->ns] |= 1<<VDB_xY;
343 if (ap[0].d <= ap[1].d) /* column after */
344 vf[0] |= 1<<VDB_X;
345 else
346 vf[1] |= 1<<VDB_x;
347 }
348 if (ap[0].d <= ap[-hp->ns].d) /* final column edge */
349 vf[0] |= 1<<VDB_y;
350 else
351 vf[-hp->ns] |= 1<<VDB_Y;
352 ++vf; ++ap;
353 }
354 return(vflags);
355 }
356
357
358 /* Return brightness of farthest ambient sample */
359 static double
360 back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags)
361 {
362 const int v0 = ambndx(hp,i,j);
363 const int tflags = (1<<dbit1 | 1<<dbit2);
364 int v1, v2;
365
366 if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */
367 return(colval(hp->sa[v0].v,CIEY));
368 v1 = adjacent_verti(hp, i, j, dbit1);
369 if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */
370 return(colval(hp->sa[v1].v,CIEY));
371 v2 = adjacent_verti(hp, i, j, dbit2);
372 if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */
373 return(colval(hp->sa[v2].v,CIEY));
374 /* else check if v1>v2 */
375 if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2))
376 return(colval(hp->sa[v1].v,CIEY));
377 return(colval(hp->sa[v2].v,CIEY));
378 }
379
380
381 /* Compute vectors and coefficients for Hessian/gradient calcs */
382 static void
383 comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags)
384 {
385 const int i0 = ambndx(hp,i,j);
386 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
387 int i1, ii;
388
389 ftp->valid = 0; /* check if we can skip this edge */
390 ii = adjacent_trifl[dbit];
391 if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */
392 return;
393 i1 = adjacent_verti(hp, i, j, dbit);
394 ii = adjacent_trifl[VDB_OPP(dbit)];
395 if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */
396 return;
397 /* else go ahead with calculation */
398 VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop);
399 VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop);
400 VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p);
401 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
402 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
403 dot_e = DOT(ftp->e_i,ftp->e_i);
404 dot_er = DOT(ftp->e_i, ftp->r_i);
405 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
406 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
407 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
408 sqrt( rdot_cp );
409 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
410 dot_e*ftp->I1 )*0.5*rdot_cp;
411 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
412 for (ii = 3; ii--; )
413 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
414 ftp->valid++;
415 }
416
417
418 /* Compose 3x3 matrix from two vectors */
419 static void
420 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
421 {
422 mat[0][0] = 2.0*va[0]*vb[0];
423 mat[1][1] = 2.0*va[1]*vb[1];
424 mat[2][2] = 2.0*va[2]*vb[2];
425 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
426 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
427 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
428 }
429
430
431 /* Compute partial 3x3 Hessian matrix for edge */
432 static void
433 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
434 {
435 FVECT ncp;
436 FVECT m1[3], m2[3], m3[3], m4[3];
437 double d1, d2, d3, d4;
438 double I3, J3, K3;
439 int i, j;
440
441 if (!ftp->valid) { /* preemptive test */
442 memset(hess, 0, sizeof(FVECT)*3);
443 return;
444 }
445 /* compute intermediate coefficients */
446 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
447 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
448 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
449 d4 = DOT(ftp->e_i, ftp->r_i);
450 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
451 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
452 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
453 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
454 /* intermediate matrices */
455 VCROSS(ncp, nrm, ftp->e_i);
456 compose_matrix(m1, ncp, ftp->rI2_eJ2);
457 compose_matrix(m2, ftp->r_i, ftp->r_i);
458 compose_matrix(m3, ftp->e_i, ftp->e_i);
459 compose_matrix(m4, ftp->r_i, ftp->e_i);
460 d1 = DOT(nrm, ftp->rcp);
461 d2 = -d1*ftp->I2;
462 d1 *= 2.0;
463 for (i = 3; i--; ) /* final matrix sum */
464 for (j = 3; j--; ) {
465 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
466 2.0*J3*m4[i][j] );
467 hess[i][j] += d2*(i==j);
468 hess[i][j] *= -1.0/PI;
469 }
470 }
471
472
473 /* Reverse hessian calculation result for edge in other direction */
474 static void
475 rev_hessian(FVECT hess[3])
476 {
477 int i;
478
479 for (i = 3; i--; ) {
480 hess[i][0] = -hess[i][0];
481 hess[i][1] = -hess[i][1];
482 hess[i][2] = -hess[i][2];
483 }
484 }
485
486
487 /* Add to radiometric Hessian from the given triangle */
488 static void
489 add2hessian(FVECT hess[3], FVECT ehess1[3],
490 FVECT ehess2[3], FVECT ehess3[3], double v)
491 {
492 int i, j;
493
494 for (i = 3; i--; )
495 for (j = 3; j--; )
496 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
497 }
498
499
500 /* Compute partial displacement form factor gradient for edge */
501 static void
502 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
503 {
504 FVECT ncp;
505 double f1;
506 int i;
507
508 if (!ftp->valid) { /* preemptive test */
509 memset(grad, 0, sizeof(FVECT));
510 return;
511 }
512 f1 = 2.0*DOT(nrm, ftp->rcp);
513 VCROSS(ncp, nrm, ftp->e_i);
514 for (i = 3; i--; )
515 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
516 }
517
518
519 /* Reverse gradient calculation result for edge in other direction */
520 static void
521 rev_gradient(FVECT grad)
522 {
523 grad[0] = -grad[0];
524 grad[1] = -grad[1];
525 grad[2] = -grad[2];
526 }
527
528
529 /* Add to displacement gradient from the given triangle */
530 static void
531 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
532 {
533 int i;
534
535 for (i = 3; i--; )
536 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
537 }
538
539
540 /* Compute anisotropic radii and eigenvector directions */
541 static void
542 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
543 {
544 double hess2[2][2];
545 FVECT a, b;
546 double evalue[2], slope1, xmag1;
547 int i;
548 /* project Hessian to sample plane */
549 for (i = 3; i--; ) {
550 a[i] = DOT(hessian[i], uv[0]);
551 b[i] = DOT(hessian[i], uv[1]);
552 }
553 hess2[0][0] = DOT(uv[0], a);
554 hess2[0][1] = DOT(uv[0], b);
555 hess2[1][0] = DOT(uv[1], a);
556 hess2[1][1] = DOT(uv[1], b);
557 /* compute eigenvalue(s) */
558 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
559 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
560 if (i == 1) /* double-root (circle) */
561 evalue[1] = evalue[0];
562 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
563 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
564 ra[0] = ra[1] = maxarad;
565 return;
566 }
567 if (evalue[0] > evalue[1]) {
568 ra[0] = sqrt(sqrt(4.0/evalue[0]));
569 ra[1] = sqrt(sqrt(4.0/evalue[1]));
570 slope1 = evalue[1];
571 } else {
572 ra[0] = sqrt(sqrt(4.0/evalue[1]));
573 ra[1] = sqrt(sqrt(4.0/evalue[0]));
574 slope1 = evalue[0];
575 }
576 /* compute unit eigenvectors */
577 if (fabs(hess2[0][1]) <= FTINY)
578 return; /* uv OK as is */
579 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
580 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
581 for (i = 3; i--; ) {
582 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
583 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
584 }
585 VCOPY(uv[0], a);
586 VCOPY(uv[1], b);
587 }
588
589
590 static void
591 ambHessian( /* anisotropic radii & pos. gradient */
592 AMBHEMI *hp,
593 FVECT uv[2], /* returned */
594 float ra[2], /* returned (optional) */
595 float pg[2] /* returned (optional) */
596 )
597 {
598 static char memerrmsg[] = "out of memory in ambHessian()";
599 FVECT (*hessrow)[3] = NULL;
600 FVECT *gradrow = NULL;
601 uby8 *vflags;
602 FVECT hessian[3];
603 FVECT gradient;
604 FFTRI fftr;
605 int i, j;
606 /* be sure to assign unit vectors */
607 VCOPY(uv[0], hp->ux);
608 VCOPY(uv[1], hp->uy);
609 /* clock-wise vertex traversal from sample POV */
610 if (ra != NULL) { /* initialize Hessian row buffer */
611 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
612 if (hessrow == NULL)
613 error(SYSTEM, memerrmsg);
614 memset(hessian, 0, sizeof(hessian));
615 } else if (pg == NULL) /* bogus call? */
616 return;
617 if (pg != NULL) { /* initialize form factor row buffer */
618 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
619 if (gradrow == NULL)
620 error(SYSTEM, memerrmsg);
621 memset(gradient, 0, sizeof(gradient));
622 }
623 /* get vertex position flags */
624 vflags = vertex_flags(hp);
625 /* compute first row of edges */
626 for (j = 0; j < hp->ns-1; j++) {
627 comp_fftri(&fftr, hp, 0, j, VDB_X, vflags);
628 if (hessrow != NULL)
629 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
630 if (gradrow != NULL)
631 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
632 }
633 /* sum each row of triangles */
634 for (i = 0; i < hp->ns-1; i++) {
635 FVECT hesscol[3]; /* compute first vertical edge */
636 FVECT gradcol;
637 comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags);
638 if (hessrow != NULL)
639 comp_hessian(hesscol, &fftr, hp->rp->ron);
640 if (gradrow != NULL)
641 comp_gradient(gradcol, &fftr, hp->rp->ron);
642 for (j = 0; j < hp->ns-1; j++) {
643 FVECT hessdia[3]; /* compute triangle contributions */
644 FVECT graddia;
645 double backg;
646 backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags);
647 /* diagonal (inner) edge */
648 comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags);
649 if (hessrow != NULL) {
650 comp_hessian(hessdia, &fftr, hp->rp->ron);
651 rev_hessian(hesscol);
652 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
653 }
654 if (gradrow != NULL) {
655 comp_gradient(graddia, &fftr, hp->rp->ron);
656 rev_gradient(gradcol);
657 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
658 }
659 /* initialize edge in next row */
660 comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags);
661 if (hessrow != NULL)
662 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
663 if (gradrow != NULL)
664 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
665 /* new column edge & paired triangle */
666 backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags);
667 comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags);
668 if (hessrow != NULL) {
669 comp_hessian(hesscol, &fftr, hp->rp->ron);
670 rev_hessian(hessdia);
671 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
672 if (i < hp->ns-2)
673 rev_hessian(hessrow[j]);
674 }
675 if (gradrow != NULL) {
676 comp_gradient(gradcol, &fftr, hp->rp->ron);
677 rev_gradient(graddia);
678 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
679 if (i < hp->ns-2)
680 rev_gradient(gradrow[j]);
681 }
682 }
683 }
684 /* release row buffers */
685 if (hessrow != NULL) free(hessrow);
686 if (gradrow != NULL) free(gradrow);
687 free(vflags);
688
689 if (ra != NULL) /* extract eigenvectors & radii */
690 eigenvectors(uv, ra, hessian);
691 if (pg != NULL) { /* tangential position gradient */
692 pg[0] = DOT(gradient, uv[0]);
693 pg[1] = DOT(gradient, uv[1]);
694 }
695 }
696
697
698 /* Compute direction gradient from a hemispherical sampling */
699 static void
700 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
701 {
702 AMBSAMP *ap;
703 double dgsum[2];
704 int n;
705 FVECT vd;
706 double gfact;
707
708 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
709 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
710 /* use vector for azimuth + 90deg */
711 VSUB(vd, ap->p, hp->rp->rop);
712 /* brightness over cosine factor */
713 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
714 /* sine = proj_radius/vd_length */
715 dgsum[0] -= DOT(uv[1], vd) * gfact;
716 dgsum[1] += DOT(uv[0], vd) * gfact;
717 }
718 dg[0] = dgsum[0] / (hp->ns*hp->ns);
719 dg[1] = dgsum[1] / (hp->ns*hp->ns);
720 }
721
722
723 /* Compute potential light leak direction flags for cache value */
724 static uint32
725 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
726 {
727 const double max_d = 1.0/(minarad*ambacc + 0.001);
728 const double ang_res = 0.5*PI/(hp->ns-1);
729 const double ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY));
730 double avg_d = 0;
731 uint32 flgs = 0;
732 int i, j;
733 /* don't bother for a few samples */
734 if (hp->ns < 12)
735 return(0);
736 /* check distances overhead */
737 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
738 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
739 avg_d += ambsam(hp,i,j).d;
740 avg_d *= 4.0/(hp->ns*hp->ns);
741 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
742 return(0);
743 if (avg_d >= max_d) /* insurance */
744 return(0);
745 /* else circle around perimeter */
746 for (i = 0; i < hp->ns; i++)
747 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
748 AMBSAMP *ap = &ambsam(hp,i,j);
749 FVECT vec;
750 double u, v;
751 double ang, a1;
752 int abp;
753 if ((ap->d <= FTINY) | (ap->d >= max_d))
754 continue; /* too far or too near */
755 VSUB(vec, ap->p, hp->rp->rop);
756 u = DOT(vec, uv[0]) * ap->d;
757 v = DOT(vec, uv[1]) * ap->d;
758 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0)
759 continue; /* occluder outside ellipse */
760 ang = atan2a(v, u); /* else set direction flags */
761 for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step)
762 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
763 }
764 return(flgs);
765 }
766
767
768 int
769 doambient( /* compute ambient component */
770 COLOR rcol, /* input/output color */
771 RAY *r,
772 double wt,
773 FVECT uv[2], /* returned (optional) */
774 float ra[2], /* returned (optional) */
775 float pg[2], /* returned (optional) */
776 float dg[2], /* returned (optional) */
777 uint32 *crlp /* returned (optional) */
778 )
779 {
780 AMBHEMI *hp = inithemi(rcol, r, wt);
781 int cnt;
782 FVECT my_uv[2];
783 double d, K, acol[3];
784 AMBSAMP *ap;
785 int i, j;
786 /* check/initialize */
787 if (hp == NULL)
788 return(0);
789 if (uv != NULL)
790 memset(uv, 0, sizeof(FVECT)*2);
791 if (ra != NULL)
792 ra[0] = ra[1] = 0.0;
793 if (pg != NULL)
794 pg[0] = pg[1] = 0.0;
795 if (dg != NULL)
796 dg[0] = dg[1] = 0.0;
797 if (crlp != NULL)
798 *crlp = 0;
799 /* sample the hemisphere */
800 acol[0] = acol[1] = acol[2] = 0.0;
801 cnt = 0;
802 for (i = hp->ns; i--; )
803 for (j = hp->ns; j--; )
804 if ((ap = ambsample(hp, i, j)) != NULL) {
805 addcolor(acol, ap->v);
806 ++cnt;
807 }
808 if (!cnt) {
809 setcolor(rcol, 0.0, 0.0, 0.0);
810 free(hp);
811 return(0); /* no valid samples */
812 }
813 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
814 copycolor(rcol, acol);
815 free(hp);
816 return(-1); /* return value w/o Hessian */
817 }
818 cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
819 if (cnt > 8)
820 ambsupersamp(acol, hp, cnt);
821 copycolor(rcol, acol); /* final indirect irradiance/PI */
822 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
823 free(hp);
824 return(-1); /* no radius or gradient calc. */
825 }
826 if ((d = bright(acol)) > FTINY) { /* normalize Y values */
827 d = 0.99*(hp->ns*hp->ns)/d;
828 K = 0.01;
829 } else { /* or fall back on geometric Hessian */
830 K = 1.0;
831 pg = NULL;
832 dg = NULL;
833 crlp = NULL;
834 }
835 ap = hp->sa; /* relative Y channel from here on... */
836 for (i = hp->ns*hp->ns; i--; ap++)
837 colval(ap->v,CIEY) = bright(ap->v)*d + K;
838
839 if (uv == NULL) /* make sure we have axis pointers */
840 uv = my_uv;
841 /* compute radii & pos. gradient */
842 ambHessian(hp, uv, ra, pg);
843
844 if (dg != NULL) /* compute direction gradient */
845 ambdirgrad(hp, uv, dg);
846
847 if (ra != NULL) { /* scale/clamp radii */
848 if (pg != NULL) {
849 if (ra[0]*(d = fabs(pg[0])) > 1.0)
850 ra[0] = 1.0/d;
851 if (ra[1]*(d = fabs(pg[1])) > 1.0)
852 ra[1] = 1.0/d;
853 if (ra[0] > ra[1])
854 ra[0] = ra[1];
855 }
856 if (ra[0] < minarad) {
857 ra[0] = minarad;
858 if (ra[1] < minarad)
859 ra[1] = minarad;
860 }
861 ra[0] *= d = 1.0/sqrt(sqrt(wt));
862 if ((ra[1] *= d) > 2.0*ra[0])
863 ra[1] = 2.0*ra[0];
864 if (ra[1] > maxarad) {
865 ra[1] = maxarad;
866 if (ra[0] > maxarad)
867 ra[0] = maxarad;
868 }
869 /* flag encroached directions */
870 if ((wt >= 0.5-FTINY) & (crlp != NULL))
871 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
872 if (pg != NULL) { /* cap gradient if necessary */
873 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
874 if (d > 1.0) {
875 d = 1.0/sqrt(d);
876 pg[0] *= d;
877 pg[1] *= d;
878 }
879 }
880 }
881 free(hp); /* clean up and return */
882 return(1);
883 }
884
885
886 #else /* ! NEWAMB */
887
888
889 void
890 inithemi( /* initialize sampling hemisphere */
891 AMBHEMI *hp,
892 COLOR ac,
893 RAY *r,
894 double wt
895 )
896 {
897 double d;
898 int i;
899 /* set number of divisions */
900 if (ambacc <= FTINY &&
901 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
902 wt = d; /* avoid ray termination */
903 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
904 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
905 if (hp->nt < i)
906 hp->nt = i;
907 hp->np = PI * hp->nt + 0.5;
908 /* set number of super-samples */
909 hp->ns = ambssamp * wt + 0.5;
910 /* assign coefficient */
911 copycolor(hp->acoef, ac);
912 d = 1.0/(hp->nt*hp->np);
913 scalecolor(hp->acoef, d);
914 /* make axes */
915 VCOPY(hp->uz, r->ron);
916 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
917 for (i = 0; i < 3; i++)
918 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
919 break;
920 if (i >= 3)
921 error(CONSISTENCY, "bad ray direction in inithemi");
922 hp->uy[i] = 1.0;
923 fcross(hp->ux, hp->uy, hp->uz);
924 normalize(hp->ux);
925 fcross(hp->uy, hp->uz, hp->ux);
926 }
927
928
929 int
930 divsample( /* sample a division */
931 AMBSAMP *dp,
932 AMBHEMI *h,
933 RAY *r
934 )
935 {
936 RAY ar;
937 int hlist[3];
938 double spt[2];
939 double xd, yd, zd;
940 double b2;
941 double phi;
942 int i;
943 /* ambient coefficient for weight */
944 if (ambacc > FTINY)
945 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
946 else
947 copycolor(ar.rcoef, h->acoef);
948 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
949 return(-1);
950 if (ambacc > FTINY) {
951 multcolor(ar.rcoef, h->acoef);
952 scalecolor(ar.rcoef, 1./AVGREFL);
953 }
954 hlist[0] = r->rno;
955 hlist[1] = dp->t;
956 hlist[2] = dp->p;
957 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
958 zd = sqrt((dp->t + spt[0])/h->nt);
959 phi = 2.0*PI * (dp->p + spt[1])/h->np;
960 xd = tcos(phi) * zd;
961 yd = tsin(phi) * zd;
962 zd = sqrt(1.0 - zd*zd);
963 for (i = 0; i < 3; i++)
964 ar.rdir[i] = xd*h->ux[i] +
965 yd*h->uy[i] +
966 zd*h->uz[i];
967 checknorm(ar.rdir);
968 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
969 rayvalue(&ar);
970 ndims--;
971 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
972 addcolor(dp->v, ar.rcol);
973 /* use rt to improve gradient calc */
974 if (ar.rt > FTINY && ar.rt < FHUGE)
975 dp->r += 1.0/ar.rt;
976 /* (re)initialize error */
977 if (dp->n++) {
978 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
979 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
980 dp->k = b2/(dp->n*dp->n);
981 } else
982 dp->k = 0.0;
983 return(0);
984 }
985
986
987 static int
988 ambcmp( /* decreasing order */
989 const void *p1,
990 const void *p2
991 )
992 {
993 const AMBSAMP *d1 = (const AMBSAMP *)p1;
994 const AMBSAMP *d2 = (const AMBSAMP *)p2;
995
996 if (d1->k < d2->k)
997 return(1);
998 if (d1->k > d2->k)
999 return(-1);
1000 return(0);
1001 }
1002
1003
1004 static int
1005 ambnorm( /* standard order */
1006 const void *p1,
1007 const void *p2
1008 )
1009 {
1010 const AMBSAMP *d1 = (const AMBSAMP *)p1;
1011 const AMBSAMP *d2 = (const AMBSAMP *)p2;
1012 int c;
1013
1014 if ( (c = d1->t - d2->t) )
1015 return(c);
1016 return(d1->p - d2->p);
1017 }
1018
1019
1020 double
1021 doambient( /* compute ambient component */
1022 COLOR rcol,
1023 RAY *r,
1024 double wt,
1025 FVECT pg,
1026 FVECT dg
1027 )
1028 {
1029 double b, d=0;
1030 AMBHEMI hemi;
1031 AMBSAMP *div;
1032 AMBSAMP dnew;
1033 double acol[3];
1034 AMBSAMP *dp;
1035 double arad;
1036 int divcnt;
1037 int i, j;
1038 /* initialize hemisphere */
1039 inithemi(&hemi, rcol, r, wt);
1040 divcnt = hemi.nt * hemi.np;
1041 /* initialize */
1042 if (pg != NULL)
1043 pg[0] = pg[1] = pg[2] = 0.0;
1044 if (dg != NULL)
1045 dg[0] = dg[1] = dg[2] = 0.0;
1046 setcolor(rcol, 0.0, 0.0, 0.0);
1047 if (divcnt == 0)
1048 return(0.0);
1049 /* allocate super-samples */
1050 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
1051 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
1052 if (div == NULL)
1053 error(SYSTEM, "out of memory in doambient");
1054 } else
1055 div = NULL;
1056 /* sample the divisions */
1057 arad = 0.0;
1058 acol[0] = acol[1] = acol[2] = 0.0;
1059 if ((dp = div) == NULL)
1060 dp = &dnew;
1061 divcnt = 0;
1062 for (i = 0; i < hemi.nt; i++)
1063 for (j = 0; j < hemi.np; j++) {
1064 dp->t = i; dp->p = j;
1065 setcolor(dp->v, 0.0, 0.0, 0.0);
1066 dp->r = 0.0;
1067 dp->n = 0;
1068 if (divsample(dp, &hemi, r) < 0) {
1069 if (div != NULL)
1070 dp++;
1071 continue;
1072 }
1073 arad += dp->r;
1074 divcnt++;
1075 if (div != NULL)
1076 dp++;
1077 else
1078 addcolor(acol, dp->v);
1079 }
1080 if (!divcnt) {
1081 if (div != NULL)
1082 free((void *)div);
1083 return(0.0); /* no samples taken */
1084 }
1085 if (divcnt < hemi.nt*hemi.np) {
1086 pg = dg = NULL; /* incomplete sampling */
1087 hemi.ns = 0;
1088 } else if (arad > FTINY && divcnt/arad < minarad) {
1089 hemi.ns = 0; /* close enough */
1090 } else if (hemi.ns > 0) { /* else perform super-sampling? */
1091 comperrs(div, &hemi); /* compute errors */
1092 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
1093 /* super-sample */
1094 for (i = hemi.ns; i > 0; i--) {
1095 dnew = *div;
1096 if (divsample(&dnew, &hemi, r) < 0) {
1097 dp++;
1098 continue;
1099 }
1100 dp = div; /* reinsert */
1101 j = divcnt < i ? divcnt : i;
1102 while (--j > 0 && dnew.k < dp[1].k) {
1103 *dp = *(dp+1);
1104 dp++;
1105 }
1106 *dp = dnew;
1107 }
1108 if (pg != NULL || dg != NULL) /* restore order */
1109 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
1110 }
1111 /* compute returned values */
1112 if (div != NULL) {
1113 arad = 0.0; /* note: divcnt may be < nt*np */
1114 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
1115 arad += dp->r;
1116 if (dp->n > 1) {
1117 b = 1.0/dp->n;
1118 scalecolor(dp->v, b);
1119 dp->r *= b;
1120 dp->n = 1;
1121 }
1122 addcolor(acol, dp->v);
1123 }
1124 b = bright(acol);
1125 if (b > FTINY) {
1126 b = 1.0/b; /* compute & normalize gradient(s) */
1127 if (pg != NULL) {
1128 posgradient(pg, div, &hemi);
1129 for (i = 0; i < 3; i++)
1130 pg[i] *= b;
1131 }
1132 if (dg != NULL) {
1133 dirgradient(dg, div, &hemi);
1134 for (i = 0; i < 3; i++)
1135 dg[i] *= b;
1136 }
1137 }
1138 free((void *)div);
1139 }
1140 copycolor(rcol, acol);
1141 if (arad <= FTINY)
1142 arad = maxarad;
1143 else
1144 arad = (divcnt+hemi.ns)/arad;
1145 if (pg != NULL) { /* reduce radius if gradient large */
1146 d = DOT(pg,pg);
1147 if (d*arad*arad > 1.0)
1148 arad = 1.0/sqrt(d);
1149 }
1150 if (arad < minarad) {
1151 arad = minarad;
1152 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1153 d = 1.0/arad/sqrt(d);
1154 for (i = 0; i < 3; i++)
1155 pg[i] *= d;
1156 }
1157 }
1158 if ((arad /= sqrt(wt)) > maxarad)
1159 arad = maxarad;
1160 return(arad);
1161 }
1162
1163
1164 void
1165 comperrs( /* compute initial error estimates */
1166 AMBSAMP *da, /* assumes standard ordering */
1167 AMBHEMI *hp
1168 )
1169 {
1170 double b, b2;
1171 int i, j;
1172 AMBSAMP *dp;
1173 /* sum differences from neighbors */
1174 dp = da;
1175 for (i = 0; i < hp->nt; i++)
1176 for (j = 0; j < hp->np; j++) {
1177 #ifdef DEBUG
1178 if (dp->t != i || dp->p != j)
1179 error(CONSISTENCY,
1180 "division order in comperrs");
1181 #endif
1182 b = bright(dp[0].v);
1183 if (i > 0) { /* from above */
1184 b2 = bright(dp[-hp->np].v) - b;
1185 b2 *= b2 * 0.25;
1186 dp[0].k += b2;
1187 dp[-hp->np].k += b2;
1188 }
1189 if (j > 0) { /* from behind */
1190 b2 = bright(dp[-1].v) - b;
1191 b2 *= b2 * 0.25;
1192 dp[0].k += b2;
1193 dp[-1].k += b2;
1194 } else { /* around */
1195 b2 = bright(dp[hp->np-1].v) - b;
1196 b2 *= b2 * 0.25;
1197 dp[0].k += b2;
1198 dp[hp->np-1].k += b2;
1199 }
1200 dp++;
1201 }
1202 /* divide by number of neighbors */
1203 dp = da;
1204 for (j = 0; j < hp->np; j++) /* top row */
1205 (dp++)->k *= 1.0/3.0;
1206 if (hp->nt < 2)
1207 return;
1208 for (i = 1; i < hp->nt-1; i++) /* central region */
1209 for (j = 0; j < hp->np; j++)
1210 (dp++)->k *= 0.25;
1211 for (j = 0; j < hp->np; j++) /* bottom row */
1212 (dp++)->k *= 1.0/3.0;
1213 }
1214
1215
1216 void
1217 posgradient( /* compute position gradient */
1218 FVECT gv,
1219 AMBSAMP *da, /* assumes standard ordering */
1220 AMBHEMI *hp
1221 )
1222 {
1223 int i, j;
1224 double nextsine, lastsine, b, d;
1225 double mag0, mag1;
1226 double phi, cosp, sinp, xd, yd;
1227 AMBSAMP *dp;
1228
1229 xd = yd = 0.0;
1230 for (j = 0; j < hp->np; j++) {
1231 dp = da + j;
1232 mag0 = mag1 = 0.0;
1233 lastsine = 0.0;
1234 for (i = 0; i < hp->nt; i++) {
1235 #ifdef DEBUG
1236 if (dp->t != i || dp->p != j)
1237 error(CONSISTENCY,
1238 "division order in posgradient");
1239 #endif
1240 b = bright(dp->v);
1241 if (i > 0) {
1242 d = dp[-hp->np].r;
1243 if (dp[0].r > d) d = dp[0].r;
1244 /* sin(t)*cos(t)^2 */
1245 d *= lastsine * (1.0 - (double)i/hp->nt);
1246 mag0 += d*(b - bright(dp[-hp->np].v));
1247 }
1248 nextsine = sqrt((double)(i+1)/hp->nt);
1249 if (j > 0) {
1250 d = dp[-1].r;
1251 if (dp[0].r > d) d = dp[0].r;
1252 mag1 += d * (nextsine - lastsine) *
1253 (b - bright(dp[-1].v));
1254 } else {
1255 d = dp[hp->np-1].r;
1256 if (dp[0].r > d) d = dp[0].r;
1257 mag1 += d * (nextsine - lastsine) *
1258 (b - bright(dp[hp->np-1].v));
1259 }
1260 dp += hp->np;
1261 lastsine = nextsine;
1262 }
1263 mag0 *= 2.0*PI / hp->np;
1264 phi = 2.0*PI * (double)j/hp->np;
1265 cosp = tcos(phi); sinp = tsin(phi);
1266 xd += mag0*cosp - mag1*sinp;
1267 yd += mag0*sinp + mag1*cosp;
1268 }
1269 for (i = 0; i < 3; i++)
1270 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1271 }
1272
1273
1274 void
1275 dirgradient( /* compute direction gradient */
1276 FVECT gv,
1277 AMBSAMP *da, /* assumes standard ordering */
1278 AMBHEMI *hp
1279 )
1280 {
1281 int i, j;
1282 double mag;
1283 double phi, xd, yd;
1284 AMBSAMP *dp;
1285
1286 xd = yd = 0.0;
1287 for (j = 0; j < hp->np; j++) {
1288 dp = da + j;
1289 mag = 0.0;
1290 for (i = 0; i < hp->nt; i++) {
1291 #ifdef DEBUG
1292 if (dp->t != i || dp->p != j)
1293 error(CONSISTENCY,
1294 "division order in dirgradient");
1295 #endif
1296 /* tan(t) */
1297 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1298 dp += hp->np;
1299 }
1300 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1301 xd += mag * tcos(phi);
1302 yd += mag * tsin(phi);
1303 }
1304 for (i = 0; i < 3; i++)
1305 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1306 }
1307
1308 #endif /* ! NEWAMB */