ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.53
Committed: Thu May 8 04:02:40 2014 UTC (9 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.52: +10 -7 lines
Log Message:
Fixed problem with too-distant samples and limited corral to 2 bounces (NEWAMB)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.52 2014/05/07 21:45:13 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifdef NEWAMB
25
26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27
28 /* vertex direction bit positions */
29 #define VDB_xy 0
30 #define VDB_y 01
31 #define VDB_x 02
32 #define VDB_Xy 03
33 #define VDB_xY 04
34 #define VDB_X 05
35 #define VDB_Y 06
36 #define VDB_XY 07
37 /* get opposite vertex direction bit */
38 #define VDB_OPP(f) (~(f) & 07)
39 /* adjacent triangle vertex flags */
40 static const int adjacent_trifl[8] = {
41 0, /* forbidden diagonal */
42 1<<VDB_x|1<<VDB_y|1<<VDB_Xy,
43 1<<VDB_y|1<<VDB_x|1<<VDB_xY,
44 1<<VDB_y|1<<VDB_Xy|1<<VDB_X,
45 1<<VDB_x|1<<VDB_xY|1<<VDB_Y,
46 1<<VDB_Xy|1<<VDB_X|1<<VDB_Y,
47 1<<VDB_xY|1<<VDB_Y|1<<VDB_X,
48 0, /* forbidden diagonal */
49 };
50
51 typedef struct {
52 COLOR v; /* hemisphere sample value */
53 float d; /* reciprocal distance (1/rt) */
54 FVECT p; /* intersection point */
55 } AMBSAMP; /* sample value */
56
57 typedef struct {
58 RAY *rp; /* originating ray sample */
59 FVECT ux, uy; /* tangent axis unit vectors */
60 int ns; /* number of samples per axis */
61 COLOR acoef; /* division contribution coefficient */
62 AMBSAMP sa[1]; /* sample array (extends struct) */
63 } AMBHEMI; /* ambient sample hemisphere */
64
65 #define ambndx(h,i,j) ((i)*(h)->ns + (j))
66 #define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)]
67
68 typedef struct {
69 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
70 double I1, I2;
71 int valid;
72 } FFTRI; /* vectors and coefficients for Hessian calculation */
73
74
75 /* Get index for adjacent vertex */
76 static int
77 adjacent_verti(AMBHEMI *hp, int i, int j, int dbit)
78 {
79 int i0 = i*hp->ns + j;
80
81 switch (dbit) {
82 case VDB_y: return(i0 - hp->ns);
83 case VDB_x: return(i0 - 1);
84 case VDB_Xy: return(i0 - hp->ns + 1);
85 case VDB_xY: return(i0 + hp->ns - 1);
86 case VDB_X: return(i0 + 1);
87 case VDB_Y: return(i0 + hp->ns);
88 /* the following should never occur */
89 case VDB_xy: return(i0 - hp->ns - 1);
90 case VDB_XY: return(i0 + hp->ns + 1);
91 }
92 return(-1);
93 }
94
95
96 /* Get vertex direction bit for the opposite edge to complete triangle */
97 static int
98 vdb_edge(int db1, int db2)
99 {
100 switch (db1) {
101 case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y);
102 case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X);
103 case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY);
104 case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy);
105 case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X);
106 case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y);
107 }
108 error(CONSISTENCY, "forbidden diagonal in vdb_edge()");
109 return(-1);
110 }
111
112
113 static AMBHEMI *
114 inithemi( /* initialize sampling hemisphere */
115 COLOR ac,
116 RAY *r,
117 double wt
118 )
119 {
120 AMBHEMI *hp;
121 double d;
122 int n, i;
123 /* set number of divisions */
124 if (ambacc <= FTINY &&
125 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
126 wt = d; /* avoid ray termination */
127 n = sqrt(ambdiv * wt) + 0.5;
128 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
129 if (n < i)
130 n = i;
131 /* allocate sampling array */
132 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
133 if (hp == NULL)
134 return(NULL);
135 hp->rp = r;
136 hp->ns = n;
137 /* assign coefficient */
138 copycolor(hp->acoef, ac);
139 d = 1.0/(n*n);
140 scalecolor(hp->acoef, d);
141 /* make tangent plane axes */
142 hp->uy[0] = 0.5 - frandom();
143 hp->uy[1] = 0.5 - frandom();
144 hp->uy[2] = 0.5 - frandom();
145 for (i = 3; i--; )
146 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
147 break;
148 if (i < 0)
149 error(CONSISTENCY, "bad ray direction in inithemi");
150 hp->uy[i] = 1.0;
151 VCROSS(hp->ux, hp->uy, r->ron);
152 normalize(hp->ux);
153 VCROSS(hp->uy, r->ron, hp->ux);
154 /* we're ready to sample */
155 return(hp);
156 }
157
158
159 /* Sample ambient division and apply weighting coefficient */
160 static int
161 getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
162 {
163 int hlist[3], ii;
164 double spt[2], zd;
165 /* ambient coefficient for weight */
166 if (ambacc > FTINY)
167 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
168 else
169 copycolor(arp->rcoef, hp->acoef);
170 if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
171 return(0);
172 if (ambacc > FTINY) {
173 multcolor(arp->rcoef, hp->acoef);
174 scalecolor(arp->rcoef, 1./AVGREFL);
175 }
176 hlist[0] = hp->rp->rno;
177 hlist[1] = j;
178 hlist[2] = i;
179 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
180 if (!n) { /* avoid border samples for n==0 */
181 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
182 spt[0] = 0.1 + 0.8*frandom();
183 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
184 spt[1] = 0.1 + 0.8*frandom();
185 }
186 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
187 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
188 for (ii = 3; ii--; )
189 arp->rdir[ii] = spt[0]*hp->ux[ii] +
190 spt[1]*hp->uy[ii] +
191 zd*hp->rp->ron[ii];
192 checknorm(arp->rdir);
193 dimlist[ndims++] = ambndx(hp,i,j) + 90171;
194 rayvalue(arp); /* evaluate ray */
195 ndims--; /* apply coefficient */
196 multcolor(arp->rcol, arp->rcoef);
197 return(1);
198 }
199
200
201 static AMBSAMP *
202 ambsample( /* initial ambient division sample */
203 AMBHEMI *hp,
204 int i,
205 int j
206 )
207 {
208 AMBSAMP *ap = &ambsam(hp,i,j);
209 RAY ar;
210 /* generate hemispherical sample */
211 if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) {
212 memset(ap, 0, sizeof(AMBSAMP));
213 return(NULL);
214 }
215 ap->d = 1.0/ar.rt; /* limit vertex distance */
216 if (ar.rt > 10.0*thescene.cusize)
217 ar.rt = 10.0*thescene.cusize;
218 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
219 copycolor(ap->v, ar.rcol);
220 return(ap);
221 }
222
223
224 /* Estimate errors based on ambient division differences */
225 static float *
226 getambdiffs(AMBHEMI *hp)
227 {
228 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
229 float *ep;
230 AMBSAMP *ap;
231 double b, d2;
232 int i, j;
233
234 if (earr == NULL) /* out of memory? */
235 return(NULL);
236 /* compute squared neighbor diffs */
237 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
238 for (j = 0; j < hp->ns; j++, ap++, ep++) {
239 b = bright(ap[0].v);
240 if (i) { /* from above */
241 d2 = b - bright(ap[-hp->ns].v);
242 d2 *= d2;
243 ep[0] += d2;
244 ep[-hp->ns] += d2;
245 }
246 if (j) { /* from behind */
247 d2 = b - bright(ap[-1].v);
248 d2 *= d2;
249 ep[0] += d2;
250 ep[-1] += d2;
251 }
252 }
253 /* correct for number of neighbors */
254 earr[0] *= 2.f;
255 earr[hp->ns-1] *= 2.f;
256 earr[(hp->ns-1)*hp->ns] *= 2.f;
257 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f;
258 for (i = 1; i < hp->ns-1; i++) {
259 earr[i*hp->ns] *= 4./3.;
260 earr[i*hp->ns + hp->ns-1] *= 4./3.;
261 }
262 for (j = 1; j < hp->ns-1; j++) {
263 earr[j] *= 4./3.;
264 earr[(hp->ns-1)*hp->ns + j] *= 4./3.;
265 }
266 return(earr);
267 }
268
269
270 /* Perform super-sampling on hemisphere (introduces bias) */
271 static void
272 ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
273 {
274 float *earr = getambdiffs(hp);
275 double e2sum = 0.0;
276 AMBSAMP *ap;
277 RAY ar;
278 double asum[3];
279 float *ep;
280 int i, j, n;
281
282 if (earr == NULL) /* just skip calc. if no memory */
283 return;
284 /* add up estimated variances */
285 for (ep = earr + hp->ns*hp->ns; ep-- > earr; )
286 e2sum += *ep;
287 ep = earr; /* perform super-sampling */
288 for (ap = hp->sa, i = 0; i < hp->ns; i++)
289 for (j = 0; j < hp->ns; j++, ap++) {
290 int nss = *ep/e2sum*cnt + frandom();
291 asum[0] = asum[1] = asum[2] = 0.0;
292 for (n = 1; n <= nss; n++) {
293 if (!getambsamp(&ar, hp, i, j, n)) {
294 nss = n-1;
295 break;
296 }
297 addcolor(asum, ar.rcol);
298 }
299 if (nss) { /* update returned ambient value */
300 const double ssf = 1./(nss + 1);
301 for (n = 3; n--; )
302 acol[n] += ssf*asum[n] +
303 (ssf - 1.)*colval(ap->v,n);
304 }
305 e2sum -= *ep++; /* update remainders */
306 cnt -= nss;
307 }
308 free(earr);
309 }
310
311
312 /* Compute vertex flags, indicating farthest in each direction */
313 static uby8 *
314 vertex_flags(AMBHEMI *hp)
315 {
316 uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8));
317 uby8 *vf;
318 AMBSAMP *ap;
319 int i, j;
320
321 if (vflags == NULL)
322 error(SYSTEM, "out of memory in vertex_flags()");
323 vf = vflags;
324 ap = hp->sa; /* compute farthest along first row */
325 for (j = 0; j < hp->ns-1; j++, vf++, ap++)
326 if (ap[0].d <= ap[1].d)
327 vf[0] |= 1<<VDB_X;
328 else
329 vf[1] |= 1<<VDB_x;
330 ++vf; ++ap;
331 /* flag subsequent rows */
332 for (i = 1; i < hp->ns; i++) {
333 for (j = 0; j < hp->ns-1; j++, vf++, ap++) {
334 if (ap[0].d <= ap[-hp->ns].d) /* row before */
335 vf[0] |= 1<<VDB_y;
336 else
337 vf[-hp->ns] |= 1<<VDB_Y;
338 if (ap[0].d <= ap[1-hp->ns].d) /* diagonal we care about */
339 vf[0] |= 1<<VDB_Xy;
340 else
341 vf[1-hp->ns] |= 1<<VDB_xY;
342 if (ap[0].d <= ap[1].d) /* column after */
343 vf[0] |= 1<<VDB_X;
344 else
345 vf[1] |= 1<<VDB_x;
346 }
347 if (ap[0].d <= ap[-hp->ns].d) /* final column edge */
348 vf[0] |= 1<<VDB_y;
349 else
350 vf[-hp->ns] |= 1<<VDB_Y;
351 ++vf; ++ap;
352 }
353 return(vflags);
354 }
355
356
357 /* Return brightness of farthest ambient sample */
358 static double
359 back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags)
360 {
361 const int v0 = ambndx(hp,i,j);
362 const int tflags = (1<<dbit1 | 1<<dbit2);
363 int v1, v2;
364
365 if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */
366 return(colval(hp->sa[v0].v,CIEY));
367 v1 = adjacent_verti(hp, i, j, dbit1);
368 if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */
369 return(colval(hp->sa[v1].v,CIEY));
370 v2 = adjacent_verti(hp, i, j, dbit2);
371 if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */
372 return(colval(hp->sa[v2].v,CIEY));
373 /* else check if v1>v2 */
374 if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2))
375 return(colval(hp->sa[v1].v,CIEY));
376 return(colval(hp->sa[v2].v,CIEY));
377 }
378
379
380 /* Compute vectors and coefficients for Hessian/gradient calcs */
381 static void
382 comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags)
383 {
384 const int i0 = ambndx(hp,i,j);
385 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
386 int i1, ii;
387
388 ftp->valid = 0; /* check if we can skip this edge */
389 ii = adjacent_trifl[dbit];
390 if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */
391 return;
392 i1 = adjacent_verti(hp, i, j, dbit);
393 ii = adjacent_trifl[VDB_OPP(dbit)];
394 if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */
395 return;
396 /* else go ahead with calculation */
397 VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop);
398 VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop);
399 VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p);
400 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
401 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
402 dot_e = DOT(ftp->e_i,ftp->e_i);
403 dot_er = DOT(ftp->e_i, ftp->r_i);
404 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
405 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
406 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
407 sqrt( rdot_cp );
408 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
409 dot_e*ftp->I1 )*0.5*rdot_cp;
410 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
411 for (ii = 3; ii--; )
412 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
413 ftp->valid++;
414 }
415
416
417 /* Compose 3x3 matrix from two vectors */
418 static void
419 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
420 {
421 mat[0][0] = 2.0*va[0]*vb[0];
422 mat[1][1] = 2.0*va[1]*vb[1];
423 mat[2][2] = 2.0*va[2]*vb[2];
424 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
425 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
426 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
427 }
428
429
430 /* Compute partial 3x3 Hessian matrix for edge */
431 static void
432 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
433 {
434 FVECT ncp;
435 FVECT m1[3], m2[3], m3[3], m4[3];
436 double d1, d2, d3, d4;
437 double I3, J3, K3;
438 int i, j;
439
440 if (!ftp->valid) { /* preemptive test */
441 memset(hess, 0, sizeof(FVECT)*3);
442 return;
443 }
444 /* compute intermediate coefficients */
445 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
446 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
447 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
448 d4 = DOT(ftp->e_i, ftp->r_i);
449 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
450 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
451 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
452 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
453 /* intermediate matrices */
454 VCROSS(ncp, nrm, ftp->e_i);
455 compose_matrix(m1, ncp, ftp->rI2_eJ2);
456 compose_matrix(m2, ftp->r_i, ftp->r_i);
457 compose_matrix(m3, ftp->e_i, ftp->e_i);
458 compose_matrix(m4, ftp->r_i, ftp->e_i);
459 d1 = DOT(nrm, ftp->rcp);
460 d2 = -d1*ftp->I2;
461 d1 *= 2.0;
462 for (i = 3; i--; ) /* final matrix sum */
463 for (j = 3; j--; ) {
464 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
465 2.0*J3*m4[i][j] );
466 hess[i][j] += d2*(i==j);
467 hess[i][j] *= -1.0/PI;
468 }
469 }
470
471
472 /* Reverse hessian calculation result for edge in other direction */
473 static void
474 rev_hessian(FVECT hess[3])
475 {
476 int i;
477
478 for (i = 3; i--; ) {
479 hess[i][0] = -hess[i][0];
480 hess[i][1] = -hess[i][1];
481 hess[i][2] = -hess[i][2];
482 }
483 }
484
485
486 /* Add to radiometric Hessian from the given triangle */
487 static void
488 add2hessian(FVECT hess[3], FVECT ehess1[3],
489 FVECT ehess2[3], FVECT ehess3[3], double v)
490 {
491 int i, j;
492
493 for (i = 3; i--; )
494 for (j = 3; j--; )
495 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
496 }
497
498
499 /* Compute partial displacement form factor gradient for edge */
500 static void
501 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
502 {
503 FVECT ncp;
504 double f1;
505 int i;
506
507 if (!ftp->valid) { /* preemptive test */
508 memset(grad, 0, sizeof(FVECT));
509 return;
510 }
511 f1 = 2.0*DOT(nrm, ftp->rcp);
512 VCROSS(ncp, nrm, ftp->e_i);
513 for (i = 3; i--; )
514 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
515 }
516
517
518 /* Reverse gradient calculation result for edge in other direction */
519 static void
520 rev_gradient(FVECT grad)
521 {
522 grad[0] = -grad[0];
523 grad[1] = -grad[1];
524 grad[2] = -grad[2];
525 }
526
527
528 /* Add to displacement gradient from the given triangle */
529 static void
530 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
531 {
532 int i;
533
534 for (i = 3; i--; )
535 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
536 }
537
538
539 /* Compute anisotropic radii and eigenvector directions */
540 static void
541 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
542 {
543 double hess2[2][2];
544 FVECT a, b;
545 double evalue[2], slope1, xmag1;
546 int i;
547 /* project Hessian to sample plane */
548 for (i = 3; i--; ) {
549 a[i] = DOT(hessian[i], uv[0]);
550 b[i] = DOT(hessian[i], uv[1]);
551 }
552 hess2[0][0] = DOT(uv[0], a);
553 hess2[0][1] = DOT(uv[0], b);
554 hess2[1][0] = DOT(uv[1], a);
555 hess2[1][1] = DOT(uv[1], b);
556 /* compute eigenvalue(s) */
557 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
558 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
559 if (i == 1) /* double-root (circle) */
560 evalue[1] = evalue[0];
561 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
562 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
563 ra[0] = ra[1] = maxarad;
564 return;
565 }
566 if (evalue[0] > evalue[1]) {
567 ra[0] = sqrt(sqrt(4.0/evalue[0]));
568 ra[1] = sqrt(sqrt(4.0/evalue[1]));
569 slope1 = evalue[1];
570 } else {
571 ra[0] = sqrt(sqrt(4.0/evalue[1]));
572 ra[1] = sqrt(sqrt(4.0/evalue[0]));
573 slope1 = evalue[0];
574 }
575 /* compute unit eigenvectors */
576 if (fabs(hess2[0][1]) <= FTINY)
577 return; /* uv OK as is */
578 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
579 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
580 for (i = 3; i--; ) {
581 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
582 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
583 }
584 VCOPY(uv[0], a);
585 VCOPY(uv[1], b);
586 }
587
588
589 static void
590 ambHessian( /* anisotropic radii & pos. gradient */
591 AMBHEMI *hp,
592 FVECT uv[2], /* returned */
593 float ra[2], /* returned (optional) */
594 float pg[2] /* returned (optional) */
595 )
596 {
597 static char memerrmsg[] = "out of memory in ambHessian()";
598 FVECT (*hessrow)[3] = NULL;
599 FVECT *gradrow = NULL;
600 uby8 *vflags;
601 FVECT hessian[3];
602 FVECT gradient;
603 FFTRI fftr;
604 int i, j;
605 /* be sure to assign unit vectors */
606 VCOPY(uv[0], hp->ux);
607 VCOPY(uv[1], hp->uy);
608 /* clock-wise vertex traversal from sample POV */
609 if (ra != NULL) { /* initialize Hessian row buffer */
610 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
611 if (hessrow == NULL)
612 error(SYSTEM, memerrmsg);
613 memset(hessian, 0, sizeof(hessian));
614 } else if (pg == NULL) /* bogus call? */
615 return;
616 if (pg != NULL) { /* initialize form factor row buffer */
617 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
618 if (gradrow == NULL)
619 error(SYSTEM, memerrmsg);
620 memset(gradient, 0, sizeof(gradient));
621 }
622 /* get vertex position flags */
623 vflags = vertex_flags(hp);
624 /* compute first row of edges */
625 for (j = 0; j < hp->ns-1; j++) {
626 comp_fftri(&fftr, hp, 0, j, VDB_X, vflags);
627 if (hessrow != NULL)
628 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
629 if (gradrow != NULL)
630 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
631 }
632 /* sum each row of triangles */
633 for (i = 0; i < hp->ns-1; i++) {
634 FVECT hesscol[3]; /* compute first vertical edge */
635 FVECT gradcol;
636 comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags);
637 if (hessrow != NULL)
638 comp_hessian(hesscol, &fftr, hp->rp->ron);
639 if (gradrow != NULL)
640 comp_gradient(gradcol, &fftr, hp->rp->ron);
641 for (j = 0; j < hp->ns-1; j++) {
642 FVECT hessdia[3]; /* compute triangle contributions */
643 FVECT graddia;
644 double backg;
645 backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags);
646 /* diagonal (inner) edge */
647 comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags);
648 if (hessrow != NULL) {
649 comp_hessian(hessdia, &fftr, hp->rp->ron);
650 rev_hessian(hesscol);
651 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
652 }
653 if (gradrow != NULL) {
654 comp_gradient(graddia, &fftr, hp->rp->ron);
655 rev_gradient(gradcol);
656 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
657 }
658 /* initialize edge in next row */
659 comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags);
660 if (hessrow != NULL)
661 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
662 if (gradrow != NULL)
663 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
664 /* new column edge & paired triangle */
665 backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags);
666 comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags);
667 if (hessrow != NULL) {
668 comp_hessian(hesscol, &fftr, hp->rp->ron);
669 rev_hessian(hessdia);
670 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
671 if (i < hp->ns-2)
672 rev_hessian(hessrow[j]);
673 }
674 if (gradrow != NULL) {
675 comp_gradient(gradcol, &fftr, hp->rp->ron);
676 rev_gradient(graddia);
677 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
678 if (i < hp->ns-2)
679 rev_gradient(gradrow[j]);
680 }
681 }
682 }
683 /* release row buffers */
684 if (hessrow != NULL) free(hessrow);
685 if (gradrow != NULL) free(gradrow);
686 free(vflags);
687
688 if (ra != NULL) /* extract eigenvectors & radii */
689 eigenvectors(uv, ra, hessian);
690 if (pg != NULL) { /* tangential position gradient */
691 pg[0] = DOT(gradient, uv[0]);
692 pg[1] = DOT(gradient, uv[1]);
693 }
694 }
695
696
697 /* Compute direction gradient from a hemispherical sampling */
698 static void
699 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
700 {
701 AMBSAMP *ap;
702 double dgsum[2];
703 int n;
704 FVECT vd;
705 double gfact;
706
707 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
708 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
709 /* use vector for azimuth + 90deg */
710 VSUB(vd, ap->p, hp->rp->rop);
711 /* brightness over cosine factor */
712 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
713 /* sine = proj_radius/vd_length */
714 dgsum[0] -= DOT(uv[1], vd) * gfact;
715 dgsum[1] += DOT(uv[0], vd) * gfact;
716 }
717 dg[0] = dgsum[0] / (hp->ns*hp->ns);
718 dg[1] = dgsum[1] / (hp->ns*hp->ns);
719 }
720
721
722 /* Compute potential light leak direction flags for cache value */
723 static uint32
724 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
725 {
726 const double max_d = 1.0/(minarad*ambacc + 0.001);
727 const double ang_res = 0.5*PI/(hp->ns-1);
728 const double ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY));
729 double avg_d = 0;
730 uint32 flgs = 0;
731 int i, j;
732 /* don't bother for a few samples */
733 if (hp->ns < 12)
734 return(0);
735 /* check distances overhead */
736 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
737 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
738 avg_d += ambsam(hp,i,j).d;
739 avg_d *= 4.0/(hp->ns*hp->ns);
740 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
741 return(0);
742 if (avg_d >= max_d) /* insurance */
743 return(0);
744 /* else circle around perimeter */
745 for (i = 0; i < hp->ns; i++)
746 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
747 AMBSAMP *ap = &ambsam(hp,i,j);
748 FVECT vec;
749 double u, v;
750 double ang, a1;
751 int abp;
752 if ((ap->d <= FTINY) | (ap->d >= max_d))
753 continue; /* too far or too near */
754 VSUB(vec, ap->p, hp->rp->rop);
755 u = DOT(vec, uv[0]) * ap->d;
756 v = DOT(vec, uv[1]) * ap->d;
757 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0)
758 continue; /* occluder outside ellipse */
759 ang = atan2a(v, u); /* else set direction flags */
760 for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step)
761 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
762 }
763 return(flgs);
764 }
765
766
767 int
768 doambient( /* compute ambient component */
769 COLOR rcol, /* input/output color */
770 RAY *r,
771 double wt,
772 FVECT uv[2], /* returned (optional) */
773 float ra[2], /* returned (optional) */
774 float pg[2], /* returned (optional) */
775 float dg[2], /* returned (optional) */
776 uint32 *crlp /* returned (optional) */
777 )
778 {
779 AMBHEMI *hp = inithemi(rcol, r, wt);
780 int cnt;
781 FVECT my_uv[2];
782 double d, K, acol[3];
783 AMBSAMP *ap;
784 int i, j;
785 /* check/initialize */
786 if (hp == NULL)
787 return(0);
788 if (uv != NULL)
789 memset(uv, 0, sizeof(FVECT)*2);
790 if (ra != NULL)
791 ra[0] = ra[1] = 0.0;
792 if (pg != NULL)
793 pg[0] = pg[1] = 0.0;
794 if (dg != NULL)
795 dg[0] = dg[1] = 0.0;
796 if (crlp != NULL)
797 *crlp = 0;
798 /* sample the hemisphere */
799 acol[0] = acol[1] = acol[2] = 0.0;
800 cnt = 0;
801 for (i = hp->ns; i--; )
802 for (j = hp->ns; j--; )
803 if ((ap = ambsample(hp, i, j)) != NULL) {
804 addcolor(acol, ap->v);
805 ++cnt;
806 }
807 if (!cnt) {
808 setcolor(rcol, 0.0, 0.0, 0.0);
809 free(hp);
810 return(0); /* no valid samples */
811 }
812 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
813 copycolor(rcol, acol);
814 free(hp);
815 return(-1); /* return value w/o Hessian */
816 }
817 cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
818 if (cnt > 8)
819 ambsupersamp(acol, hp, cnt);
820 copycolor(rcol, acol); /* final indirect irradiance/PI */
821 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
822 free(hp);
823 return(-1); /* no radius or gradient calc. */
824 }
825 if ((d = bright(acol)) > FTINY) { /* normalize Y values */
826 d = 0.99*(hp->ns*hp->ns)/d;
827 K = 0.01;
828 } else { /* or fall back on geometric Hessian */
829 K = 1.0;
830 pg = NULL;
831 dg = NULL;
832 crlp = NULL;
833 }
834 ap = hp->sa; /* relative Y channel from here on... */
835 for (i = hp->ns*hp->ns; i--; ap++)
836 colval(ap->v,CIEY) = bright(ap->v)*d + K;
837
838 if (uv == NULL) /* make sure we have axis pointers */
839 uv = my_uv;
840 /* compute radii & pos. gradient */
841 ambHessian(hp, uv, ra, pg);
842
843 if (dg != NULL) /* compute direction gradient */
844 ambdirgrad(hp, uv, dg);
845
846 if (ra != NULL) { /* scale/clamp radii */
847 if (pg != NULL) {
848 if (ra[0]*(d = fabs(pg[0])) > 1.0)
849 ra[0] = 1.0/d;
850 if (ra[1]*(d = fabs(pg[1])) > 1.0)
851 ra[1] = 1.0/d;
852 if (ra[0] > ra[1])
853 ra[0] = ra[1];
854 }
855 if (ra[0] < minarad) {
856 ra[0] = minarad;
857 if (ra[1] < minarad)
858 ra[1] = minarad;
859 }
860 ra[0] *= d = 1.0/sqrt(sqrt(wt));
861 if ((ra[1] *= d) > 2.0*ra[0])
862 ra[1] = 2.0*ra[0];
863 if (ra[1] > maxarad) {
864 ra[1] = maxarad;
865 if (ra[0] > maxarad)
866 ra[0] = maxarad;
867 }
868 /* flag encroached directions */
869 if ((wt >= 0.5-FTINY) & (crlp != NULL))
870 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
871 if (pg != NULL) { /* cap gradient if necessary */
872 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
873 if (d > 1.0) {
874 d = 1.0/sqrt(d);
875 pg[0] *= d;
876 pg[1] *= d;
877 }
878 }
879 }
880 free(hp); /* clean up and return */
881 return(1);
882 }
883
884
885 #else /* ! NEWAMB */
886
887
888 void
889 inithemi( /* initialize sampling hemisphere */
890 AMBHEMI *hp,
891 COLOR ac,
892 RAY *r,
893 double wt
894 )
895 {
896 double d;
897 int i;
898 /* set number of divisions */
899 if (ambacc <= FTINY &&
900 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
901 wt = d; /* avoid ray termination */
902 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
903 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
904 if (hp->nt < i)
905 hp->nt = i;
906 hp->np = PI * hp->nt + 0.5;
907 /* set number of super-samples */
908 hp->ns = ambssamp * wt + 0.5;
909 /* assign coefficient */
910 copycolor(hp->acoef, ac);
911 d = 1.0/(hp->nt*hp->np);
912 scalecolor(hp->acoef, d);
913 /* make axes */
914 VCOPY(hp->uz, r->ron);
915 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
916 for (i = 0; i < 3; i++)
917 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
918 break;
919 if (i >= 3)
920 error(CONSISTENCY, "bad ray direction in inithemi");
921 hp->uy[i] = 1.0;
922 fcross(hp->ux, hp->uy, hp->uz);
923 normalize(hp->ux);
924 fcross(hp->uy, hp->uz, hp->ux);
925 }
926
927
928 int
929 divsample( /* sample a division */
930 AMBSAMP *dp,
931 AMBHEMI *h,
932 RAY *r
933 )
934 {
935 RAY ar;
936 int hlist[3];
937 double spt[2];
938 double xd, yd, zd;
939 double b2;
940 double phi;
941 int i;
942 /* ambient coefficient for weight */
943 if (ambacc > FTINY)
944 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
945 else
946 copycolor(ar.rcoef, h->acoef);
947 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
948 return(-1);
949 if (ambacc > FTINY) {
950 multcolor(ar.rcoef, h->acoef);
951 scalecolor(ar.rcoef, 1./AVGREFL);
952 }
953 hlist[0] = r->rno;
954 hlist[1] = dp->t;
955 hlist[2] = dp->p;
956 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
957 zd = sqrt((dp->t + spt[0])/h->nt);
958 phi = 2.0*PI * (dp->p + spt[1])/h->np;
959 xd = tcos(phi) * zd;
960 yd = tsin(phi) * zd;
961 zd = sqrt(1.0 - zd*zd);
962 for (i = 0; i < 3; i++)
963 ar.rdir[i] = xd*h->ux[i] +
964 yd*h->uy[i] +
965 zd*h->uz[i];
966 checknorm(ar.rdir);
967 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
968 rayvalue(&ar);
969 ndims--;
970 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
971 addcolor(dp->v, ar.rcol);
972 /* use rt to improve gradient calc */
973 if (ar.rt > FTINY && ar.rt < FHUGE)
974 dp->r += 1.0/ar.rt;
975 /* (re)initialize error */
976 if (dp->n++) {
977 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
978 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
979 dp->k = b2/(dp->n*dp->n);
980 } else
981 dp->k = 0.0;
982 return(0);
983 }
984
985
986 static int
987 ambcmp( /* decreasing order */
988 const void *p1,
989 const void *p2
990 )
991 {
992 const AMBSAMP *d1 = (const AMBSAMP *)p1;
993 const AMBSAMP *d2 = (const AMBSAMP *)p2;
994
995 if (d1->k < d2->k)
996 return(1);
997 if (d1->k > d2->k)
998 return(-1);
999 return(0);
1000 }
1001
1002
1003 static int
1004 ambnorm( /* standard order */
1005 const void *p1,
1006 const void *p2
1007 )
1008 {
1009 const AMBSAMP *d1 = (const AMBSAMP *)p1;
1010 const AMBSAMP *d2 = (const AMBSAMP *)p2;
1011 int c;
1012
1013 if ( (c = d1->t - d2->t) )
1014 return(c);
1015 return(d1->p - d2->p);
1016 }
1017
1018
1019 double
1020 doambient( /* compute ambient component */
1021 COLOR rcol,
1022 RAY *r,
1023 double wt,
1024 FVECT pg,
1025 FVECT dg
1026 )
1027 {
1028 double b, d=0;
1029 AMBHEMI hemi;
1030 AMBSAMP *div;
1031 AMBSAMP dnew;
1032 double acol[3];
1033 AMBSAMP *dp;
1034 double arad;
1035 int divcnt;
1036 int i, j;
1037 /* initialize hemisphere */
1038 inithemi(&hemi, rcol, r, wt);
1039 divcnt = hemi.nt * hemi.np;
1040 /* initialize */
1041 if (pg != NULL)
1042 pg[0] = pg[1] = pg[2] = 0.0;
1043 if (dg != NULL)
1044 dg[0] = dg[1] = dg[2] = 0.0;
1045 setcolor(rcol, 0.0, 0.0, 0.0);
1046 if (divcnt == 0)
1047 return(0.0);
1048 /* allocate super-samples */
1049 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
1050 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
1051 if (div == NULL)
1052 error(SYSTEM, "out of memory in doambient");
1053 } else
1054 div = NULL;
1055 /* sample the divisions */
1056 arad = 0.0;
1057 acol[0] = acol[1] = acol[2] = 0.0;
1058 if ((dp = div) == NULL)
1059 dp = &dnew;
1060 divcnt = 0;
1061 for (i = 0; i < hemi.nt; i++)
1062 for (j = 0; j < hemi.np; j++) {
1063 dp->t = i; dp->p = j;
1064 setcolor(dp->v, 0.0, 0.0, 0.0);
1065 dp->r = 0.0;
1066 dp->n = 0;
1067 if (divsample(dp, &hemi, r) < 0) {
1068 if (div != NULL)
1069 dp++;
1070 continue;
1071 }
1072 arad += dp->r;
1073 divcnt++;
1074 if (div != NULL)
1075 dp++;
1076 else
1077 addcolor(acol, dp->v);
1078 }
1079 if (!divcnt) {
1080 if (div != NULL)
1081 free((void *)div);
1082 return(0.0); /* no samples taken */
1083 }
1084 if (divcnt < hemi.nt*hemi.np) {
1085 pg = dg = NULL; /* incomplete sampling */
1086 hemi.ns = 0;
1087 } else if (arad > FTINY && divcnt/arad < minarad) {
1088 hemi.ns = 0; /* close enough */
1089 } else if (hemi.ns > 0) { /* else perform super-sampling? */
1090 comperrs(div, &hemi); /* compute errors */
1091 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
1092 /* super-sample */
1093 for (i = hemi.ns; i > 0; i--) {
1094 dnew = *div;
1095 if (divsample(&dnew, &hemi, r) < 0) {
1096 dp++;
1097 continue;
1098 }
1099 dp = div; /* reinsert */
1100 j = divcnt < i ? divcnt : i;
1101 while (--j > 0 && dnew.k < dp[1].k) {
1102 *dp = *(dp+1);
1103 dp++;
1104 }
1105 *dp = dnew;
1106 }
1107 if (pg != NULL || dg != NULL) /* restore order */
1108 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
1109 }
1110 /* compute returned values */
1111 if (div != NULL) {
1112 arad = 0.0; /* note: divcnt may be < nt*np */
1113 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
1114 arad += dp->r;
1115 if (dp->n > 1) {
1116 b = 1.0/dp->n;
1117 scalecolor(dp->v, b);
1118 dp->r *= b;
1119 dp->n = 1;
1120 }
1121 addcolor(acol, dp->v);
1122 }
1123 b = bright(acol);
1124 if (b > FTINY) {
1125 b = 1.0/b; /* compute & normalize gradient(s) */
1126 if (pg != NULL) {
1127 posgradient(pg, div, &hemi);
1128 for (i = 0; i < 3; i++)
1129 pg[i] *= b;
1130 }
1131 if (dg != NULL) {
1132 dirgradient(dg, div, &hemi);
1133 for (i = 0; i < 3; i++)
1134 dg[i] *= b;
1135 }
1136 }
1137 free((void *)div);
1138 }
1139 copycolor(rcol, acol);
1140 if (arad <= FTINY)
1141 arad = maxarad;
1142 else
1143 arad = (divcnt+hemi.ns)/arad;
1144 if (pg != NULL) { /* reduce radius if gradient large */
1145 d = DOT(pg,pg);
1146 if (d*arad*arad > 1.0)
1147 arad = 1.0/sqrt(d);
1148 }
1149 if (arad < minarad) {
1150 arad = minarad;
1151 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1152 d = 1.0/arad/sqrt(d);
1153 for (i = 0; i < 3; i++)
1154 pg[i] *= d;
1155 }
1156 }
1157 if ((arad /= sqrt(wt)) > maxarad)
1158 arad = maxarad;
1159 return(arad);
1160 }
1161
1162
1163 void
1164 comperrs( /* compute initial error estimates */
1165 AMBSAMP *da, /* assumes standard ordering */
1166 AMBHEMI *hp
1167 )
1168 {
1169 double b, b2;
1170 int i, j;
1171 AMBSAMP *dp;
1172 /* sum differences from neighbors */
1173 dp = da;
1174 for (i = 0; i < hp->nt; i++)
1175 for (j = 0; j < hp->np; j++) {
1176 #ifdef DEBUG
1177 if (dp->t != i || dp->p != j)
1178 error(CONSISTENCY,
1179 "division order in comperrs");
1180 #endif
1181 b = bright(dp[0].v);
1182 if (i > 0) { /* from above */
1183 b2 = bright(dp[-hp->np].v) - b;
1184 b2 *= b2 * 0.25;
1185 dp[0].k += b2;
1186 dp[-hp->np].k += b2;
1187 }
1188 if (j > 0) { /* from behind */
1189 b2 = bright(dp[-1].v) - b;
1190 b2 *= b2 * 0.25;
1191 dp[0].k += b2;
1192 dp[-1].k += b2;
1193 } else { /* around */
1194 b2 = bright(dp[hp->np-1].v) - b;
1195 b2 *= b2 * 0.25;
1196 dp[0].k += b2;
1197 dp[hp->np-1].k += b2;
1198 }
1199 dp++;
1200 }
1201 /* divide by number of neighbors */
1202 dp = da;
1203 for (j = 0; j < hp->np; j++) /* top row */
1204 (dp++)->k *= 1.0/3.0;
1205 if (hp->nt < 2)
1206 return;
1207 for (i = 1; i < hp->nt-1; i++) /* central region */
1208 for (j = 0; j < hp->np; j++)
1209 (dp++)->k *= 0.25;
1210 for (j = 0; j < hp->np; j++) /* bottom row */
1211 (dp++)->k *= 1.0/3.0;
1212 }
1213
1214
1215 void
1216 posgradient( /* compute position gradient */
1217 FVECT gv,
1218 AMBSAMP *da, /* assumes standard ordering */
1219 AMBHEMI *hp
1220 )
1221 {
1222 int i, j;
1223 double nextsine, lastsine, b, d;
1224 double mag0, mag1;
1225 double phi, cosp, sinp, xd, yd;
1226 AMBSAMP *dp;
1227
1228 xd = yd = 0.0;
1229 for (j = 0; j < hp->np; j++) {
1230 dp = da + j;
1231 mag0 = mag1 = 0.0;
1232 lastsine = 0.0;
1233 for (i = 0; i < hp->nt; i++) {
1234 #ifdef DEBUG
1235 if (dp->t != i || dp->p != j)
1236 error(CONSISTENCY,
1237 "division order in posgradient");
1238 #endif
1239 b = bright(dp->v);
1240 if (i > 0) {
1241 d = dp[-hp->np].r;
1242 if (dp[0].r > d) d = dp[0].r;
1243 /* sin(t)*cos(t)^2 */
1244 d *= lastsine * (1.0 - (double)i/hp->nt);
1245 mag0 += d*(b - bright(dp[-hp->np].v));
1246 }
1247 nextsine = sqrt((double)(i+1)/hp->nt);
1248 if (j > 0) {
1249 d = dp[-1].r;
1250 if (dp[0].r > d) d = dp[0].r;
1251 mag1 += d * (nextsine - lastsine) *
1252 (b - bright(dp[-1].v));
1253 } else {
1254 d = dp[hp->np-1].r;
1255 if (dp[0].r > d) d = dp[0].r;
1256 mag1 += d * (nextsine - lastsine) *
1257 (b - bright(dp[hp->np-1].v));
1258 }
1259 dp += hp->np;
1260 lastsine = nextsine;
1261 }
1262 mag0 *= 2.0*PI / hp->np;
1263 phi = 2.0*PI * (double)j/hp->np;
1264 cosp = tcos(phi); sinp = tsin(phi);
1265 xd += mag0*cosp - mag1*sinp;
1266 yd += mag0*sinp + mag1*cosp;
1267 }
1268 for (i = 0; i < 3; i++)
1269 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1270 }
1271
1272
1273 void
1274 dirgradient( /* compute direction gradient */
1275 FVECT gv,
1276 AMBSAMP *da, /* assumes standard ordering */
1277 AMBHEMI *hp
1278 )
1279 {
1280 int i, j;
1281 double mag;
1282 double phi, xd, yd;
1283 AMBSAMP *dp;
1284
1285 xd = yd = 0.0;
1286 for (j = 0; j < hp->np; j++) {
1287 dp = da + j;
1288 mag = 0.0;
1289 for (i = 0; i < hp->nt; i++) {
1290 #ifdef DEBUG
1291 if (dp->t != i || dp->p != j)
1292 error(CONSISTENCY,
1293 "division order in dirgradient");
1294 #endif
1295 /* tan(t) */
1296 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1297 dp += hp->np;
1298 }
1299 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1300 xd += mag * tcos(phi);
1301 yd += mag * tsin(phi);
1302 }
1303 for (i = 0; i < 3; i++)
1304 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1305 }
1306
1307 #endif /* ! NEWAMB */