ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.51
Committed: Wed May 7 20:20:24 2014 UTC (9 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.50: +10 -2 lines
Log Message:
Another tweak to prevent corraling in tight quarters (-DNEWAMB)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.50 2014/05/07 16:02:26 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifdef NEWAMB
25
26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27
28 /* vertex direction bit positions */
29 #define VDB_xy 0
30 #define VDB_y 01
31 #define VDB_x 02
32 #define VDB_Xy 03
33 #define VDB_xY 04
34 #define VDB_X 05
35 #define VDB_Y 06
36 #define VDB_XY 07
37 /* get opposite vertex direction bit */
38 #define VDB_OPP(f) (~(f) & 07)
39 /* adjacent triangle vertex flags */
40 static const int adjacent_trifl[8] = {
41 0, /* forbidden diagonal */
42 1<<VDB_x|1<<VDB_y|1<<VDB_Xy,
43 1<<VDB_y|1<<VDB_x|1<<VDB_xY,
44 1<<VDB_y|1<<VDB_Xy|1<<VDB_X,
45 1<<VDB_x|1<<VDB_xY|1<<VDB_Y,
46 1<<VDB_Xy|1<<VDB_X|1<<VDB_Y,
47 1<<VDB_xY|1<<VDB_Y|1<<VDB_X,
48 0, /* forbidden diagonal */
49 };
50
51 typedef struct {
52 COLOR v; /* hemisphere sample value */
53 float d; /* reciprocal distance (1/rt) */
54 FVECT p; /* intersection point */
55 } AMBSAMP; /* sample value */
56
57 typedef struct {
58 RAY *rp; /* originating ray sample */
59 FVECT ux, uy; /* tangent axis unit vectors */
60 int ns; /* number of samples per axis */
61 COLOR acoef; /* division contribution coefficient */
62 AMBSAMP sa[1]; /* sample array (extends struct) */
63 } AMBHEMI; /* ambient sample hemisphere */
64
65 #define ambndx(h,i,j) ((i)*(h)->ns + (j))
66 #define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)]
67
68 typedef struct {
69 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
70 double I1, I2;
71 int valid;
72 } FFTRI; /* vectors and coefficients for Hessian calculation */
73
74
75 /* Get index for adjacent vertex */
76 static int
77 adjacent_verti(AMBHEMI *hp, int i, int j, int dbit)
78 {
79 int i0 = i*hp->ns + j;
80
81 switch (dbit) {
82 case VDB_y: return(i0 - hp->ns);
83 case VDB_x: return(i0 - 1);
84 case VDB_Xy: return(i0 - hp->ns + 1);
85 case VDB_xY: return(i0 + hp->ns - 1);
86 case VDB_X: return(i0 + 1);
87 case VDB_Y: return(i0 + hp->ns);
88 /* the following should never occur */
89 case VDB_xy: return(i0 - hp->ns - 1);
90 case VDB_XY: return(i0 + hp->ns + 1);
91 }
92 return(-1);
93 }
94
95
96 /* Get vertex direction bit for the opposite edge to complete triangle */
97 static int
98 vdb_edge(int db1, int db2)
99 {
100 switch (db1) {
101 case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y);
102 case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X);
103 case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY);
104 case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy);
105 case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X);
106 case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y);
107 }
108 error(INTERNAL, "forbidden diagonal in vdb_edge()");
109 return(-1);
110 }
111
112
113 static AMBHEMI *
114 inithemi( /* initialize sampling hemisphere */
115 COLOR ac,
116 RAY *r,
117 double wt
118 )
119 {
120 AMBHEMI *hp;
121 double d;
122 int n, i;
123 /* set number of divisions */
124 if (ambacc <= FTINY &&
125 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
126 wt = d; /* avoid ray termination */
127 n = sqrt(ambdiv * wt) + 0.5;
128 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
129 if (n < i)
130 n = i;
131 /* allocate sampling array */
132 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
133 if (hp == NULL)
134 return(NULL);
135 hp->rp = r;
136 hp->ns = n;
137 /* assign coefficient */
138 copycolor(hp->acoef, ac);
139 d = 1.0/(n*n);
140 scalecolor(hp->acoef, d);
141 /* make tangent plane axes */
142 hp->uy[0] = 0.5 - frandom();
143 hp->uy[1] = 0.5 - frandom();
144 hp->uy[2] = 0.5 - frandom();
145 for (i = 3; i--; )
146 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
147 break;
148 if (i < 0)
149 error(CONSISTENCY, "bad ray direction in inithemi");
150 hp->uy[i] = 1.0;
151 VCROSS(hp->ux, hp->uy, r->ron);
152 normalize(hp->ux);
153 VCROSS(hp->uy, r->ron, hp->ux);
154 /* we're ready to sample */
155 return(hp);
156 }
157
158
159 /* Sample ambient division and apply weighting coefficient */
160 static int
161 getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
162 {
163 int hlist[3], ii;
164 double spt[2], zd;
165 /* ambient coefficient for weight */
166 if (ambacc > FTINY)
167 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
168 else
169 copycolor(arp->rcoef, hp->acoef);
170 if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
171 return(0);
172 if (ambacc > FTINY) {
173 multcolor(arp->rcoef, hp->acoef);
174 scalecolor(arp->rcoef, 1./AVGREFL);
175 }
176 hlist[0] = hp->rp->rno;
177 hlist[1] = j;
178 hlist[2] = i;
179 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
180 if (!n) { /* avoid border samples for n==0 */
181 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
182 spt[0] = 0.1 + 0.8*frandom();
183 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
184 spt[1] = 0.1 + 0.8*frandom();
185 }
186 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
187 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
188 for (ii = 3; ii--; )
189 arp->rdir[ii] = spt[0]*hp->ux[ii] +
190 spt[1]*hp->uy[ii] +
191 zd*hp->rp->ron[ii];
192 checknorm(arp->rdir);
193 dimlist[ndims++] = ambndx(hp,i,j) + 90171;
194 rayvalue(arp); /* evaluate ray */
195 ndims--; /* apply coefficient */
196 multcolor(arp->rcol, arp->rcoef);
197 return(1);
198 }
199
200
201 static AMBSAMP *
202 ambsample( /* initial ambient division sample */
203 AMBHEMI *hp,
204 int i,
205 int j
206 )
207 {
208 AMBSAMP *ap = &ambsam(hp,i,j);
209 RAY ar;
210 /* generate hemispherical sample */
211 if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) {
212 memset(ap, 0, sizeof(AMBSAMP));
213 return(NULL);
214 }
215 ap->d = 1.0/ar.rt; /* limit vertex distance */
216 if (ar.rt > 10.0*thescene.cusize)
217 ar.rt = 10.0*thescene.cusize;
218 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
219 copycolor(ap->v, ar.rcol);
220 return(ap);
221 }
222
223
224 /* Estimate errors based on ambient division differences */
225 static float *
226 getambdiffs(AMBHEMI *hp)
227 {
228 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
229 float *ep;
230 AMBSAMP *ap;
231 double b, d2;
232 int i, j;
233
234 if (earr == NULL) /* out of memory? */
235 return(NULL);
236 /* compute squared neighbor diffs */
237 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
238 for (j = 0; j < hp->ns; j++, ap++, ep++) {
239 b = bright(ap[0].v);
240 if (i) { /* from above */
241 d2 = b - bright(ap[-hp->ns].v);
242 d2 *= d2;
243 ep[0] += d2;
244 ep[-hp->ns] += d2;
245 }
246 if (j) { /* from behind */
247 d2 = b - bright(ap[-1].v);
248 d2 *= d2;
249 ep[0] += d2;
250 ep[-1] += d2;
251 }
252 }
253 /* correct for number of neighbors */
254 earr[0] *= 2.f;
255 earr[hp->ns-1] *= 2.f;
256 earr[(hp->ns-1)*hp->ns] *= 2.f;
257 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f;
258 for (i = 1; i < hp->ns-1; i++) {
259 earr[i*hp->ns] *= 4./3.;
260 earr[i*hp->ns + hp->ns-1] *= 4./3.;
261 }
262 for (j = 1; j < hp->ns-1; j++) {
263 earr[j] *= 4./3.;
264 earr[(hp->ns-1)*hp->ns + j] *= 4./3.;
265 }
266 return(earr);
267 }
268
269
270 /* Perform super-sampling on hemisphere (introduces bias) */
271 static void
272 ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
273 {
274 float *earr = getambdiffs(hp);
275 double e2sum = 0.0;
276 AMBSAMP *ap;
277 RAY ar;
278 double asum[3];
279 float *ep;
280 int i, j, n;
281
282 if (earr == NULL) /* just skip calc. if no memory */
283 return;
284 /* add up estimated variances */
285 for (ep = earr + hp->ns*hp->ns; ep-- > earr; )
286 e2sum += *ep;
287 ep = earr; /* perform super-sampling */
288 for (ap = hp->sa, i = 0; i < hp->ns; i++)
289 for (j = 0; j < hp->ns; j++, ap++) {
290 int nss = *ep/e2sum*cnt + frandom();
291 asum[0] = asum[1] = asum[2] = 0.0;
292 for (n = 1; n <= nss; n++) {
293 if (!getambsamp(&ar, hp, i, j, n)) {
294 nss = n-1;
295 break;
296 }
297 addcolor(asum, ar.rcol);
298 }
299 if (nss) { /* update returned ambient value */
300 const double ssf = 1./(nss + 1);
301 for (n = 3; n--; )
302 acol[n] += ssf*asum[n] +
303 (ssf - 1.)*colval(ap->v,n);
304 }
305 e2sum -= *ep++; /* update remainders */
306 cnt -= nss;
307 }
308 free(earr);
309 }
310
311
312 /* Compute vertex flags, indicating farthest in each direction */
313 static uby8 *
314 vertex_flags(AMBHEMI *hp)
315 {
316 uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8));
317 uby8 *vf;
318 AMBSAMP *ap;
319 int i, j;
320
321 if (vflags == NULL)
322 error(SYSTEM, "out of memory in vertex_flags()");
323 vf = vflags;
324 ap = hp->sa; /* compute farthest along first row */
325 for (j = 0; j < hp->ns-1; j++, vf++, ap++)
326 if (ap[0].d <= ap[1].d)
327 vf[0] |= 1<<VDB_X;
328 else
329 vf[1] |= 1<<VDB_x;
330 ++vf; ++ap;
331 /* flag subsequent rows */
332 for (i = 1; i < hp->ns; i++) {
333 for (j = 0; j < hp->ns-1; j++, vf++, ap++) {
334 if (ap[0].d <= ap[-hp->ns].d) /* row before */
335 vf[0] |= 1<<VDB_y;
336 else
337 vf[-hp->ns] |= 1<<VDB_Y;
338 if (ap[0].d <= ap[1-hp->ns].d) /* diagonal we care about */
339 vf[0] |= 1<<VDB_Xy;
340 else
341 vf[1-hp->ns] |= 1<<VDB_xY;
342 if (ap[0].d <= ap[1].d) /* column after */
343 vf[0] |= 1<<VDB_X;
344 else
345 vf[1] |= 1<<VDB_x;
346 }
347 if (ap[0].d <= ap[-hp->ns].d) /* final column edge */
348 vf[0] |= 1<<VDB_y;
349 else
350 vf[-hp->ns] |= 1<<VDB_Y;
351 ++vf; ++ap;
352 }
353 return(vflags);
354 }
355
356
357 /* Return brightness of farthest ambient sample */
358 static double
359 back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags)
360 {
361 const int v0 = ambndx(hp,i,j);
362 const int tflags = (1<<dbit1 | 1<<dbit2);
363 int v1, v2;
364
365 if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */
366 return(colval(hp->sa[v0].v,CIEY));
367 v1 = adjacent_verti(hp, i, j, dbit1);
368 if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */
369 return(colval(hp->sa[v1].v,CIEY));
370 v2 = adjacent_verti(hp, i, j, dbit2);
371 if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */
372 return(colval(hp->sa[v2].v,CIEY));
373 /* else check if v1>v2 */
374 if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2))
375 return(colval(hp->sa[v1].v,CIEY));
376 return(colval(hp->sa[v2].v,CIEY));
377 }
378
379
380 /* Compute vectors and coefficients for Hessian/gradient calcs */
381 static void
382 comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags)
383 {
384 const int i0 = ambndx(hp,i,j);
385 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
386 int i1, ii;
387
388 ftp->valid = 0; /* check if we can skip this edge */
389 ii = adjacent_trifl[dbit];
390 if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */
391 return;
392 i1 = adjacent_verti(hp, i, j, dbit);
393 ii = adjacent_trifl[VDB_OPP(dbit)];
394 if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */
395 return;
396 /* else go ahead with calculation */
397 VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop);
398 VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop);
399 VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p);
400 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
401 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
402 dot_e = DOT(ftp->e_i,ftp->e_i);
403 dot_er = DOT(ftp->e_i, ftp->r_i);
404 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
405 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
406 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
407 sqrt( rdot_cp );
408 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
409 dot_e*ftp->I1 )*0.5*rdot_cp;
410 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
411 for (ii = 3; ii--; )
412 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
413 ftp->valid++;
414 }
415
416
417 /* Compose 3x3 matrix from two vectors */
418 static void
419 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
420 {
421 mat[0][0] = 2.0*va[0]*vb[0];
422 mat[1][1] = 2.0*va[1]*vb[1];
423 mat[2][2] = 2.0*va[2]*vb[2];
424 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
425 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
426 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
427 }
428
429
430 /* Compute partial 3x3 Hessian matrix for edge */
431 static void
432 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
433 {
434 FVECT ncp;
435 FVECT m1[3], m2[3], m3[3], m4[3];
436 double d1, d2, d3, d4;
437 double I3, J3, K3;
438 int i, j;
439
440 if (!ftp->valid) { /* preemptive test */
441 memset(hess, 0, sizeof(FVECT)*3);
442 return;
443 }
444 /* compute intermediate coefficients */
445 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
446 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
447 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
448 d4 = DOT(ftp->e_i, ftp->r_i);
449 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
450 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
451 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
452 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
453 /* intermediate matrices */
454 VCROSS(ncp, nrm, ftp->e_i);
455 compose_matrix(m1, ncp, ftp->rI2_eJ2);
456 compose_matrix(m2, ftp->r_i, ftp->r_i);
457 compose_matrix(m3, ftp->e_i, ftp->e_i);
458 compose_matrix(m4, ftp->r_i, ftp->e_i);
459 d1 = DOT(nrm, ftp->rcp);
460 d2 = -d1*ftp->I2;
461 d1 *= 2.0;
462 for (i = 3; i--; ) /* final matrix sum */
463 for (j = 3; j--; ) {
464 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
465 2.0*J3*m4[i][j] );
466 hess[i][j] += d2*(i==j);
467 hess[i][j] *= -1.0/PI;
468 }
469 }
470
471
472 /* Reverse hessian calculation result for edge in other direction */
473 static void
474 rev_hessian(FVECT hess[3])
475 {
476 int i;
477
478 for (i = 3; i--; ) {
479 hess[i][0] = -hess[i][0];
480 hess[i][1] = -hess[i][1];
481 hess[i][2] = -hess[i][2];
482 }
483 }
484
485
486 /* Add to radiometric Hessian from the given triangle */
487 static void
488 add2hessian(FVECT hess[3], FVECT ehess1[3],
489 FVECT ehess2[3], FVECT ehess3[3], double v)
490 {
491 int i, j;
492
493 for (i = 3; i--; )
494 for (j = 3; j--; )
495 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
496 }
497
498
499 /* Compute partial displacement form factor gradient for edge */
500 static void
501 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
502 {
503 FVECT ncp;
504 double f1;
505 int i;
506
507 if (!ftp->valid) { /* preemptive test */
508 memset(grad, 0, sizeof(FVECT));
509 return;
510 }
511 f1 = 2.0*DOT(nrm, ftp->rcp);
512 VCROSS(ncp, nrm, ftp->e_i);
513 for (i = 3; i--; )
514 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
515 }
516
517
518 /* Reverse gradient calculation result for edge in other direction */
519 static void
520 rev_gradient(FVECT grad)
521 {
522 grad[0] = -grad[0];
523 grad[1] = -grad[1];
524 grad[2] = -grad[2];
525 }
526
527
528 /* Add to displacement gradient from the given triangle */
529 static void
530 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
531 {
532 int i;
533
534 for (i = 3; i--; )
535 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
536 }
537
538
539 /* Compute anisotropic radii and eigenvector directions */
540 static int
541 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
542 {
543 double hess2[2][2];
544 FVECT a, b;
545 double evalue[2], slope1, xmag1;
546 int i;
547 /* project Hessian to sample plane */
548 for (i = 3; i--; ) {
549 a[i] = DOT(hessian[i], uv[0]);
550 b[i] = DOT(hessian[i], uv[1]);
551 }
552 hess2[0][0] = DOT(uv[0], a);
553 hess2[0][1] = DOT(uv[0], b);
554 hess2[1][0] = DOT(uv[1], a);
555 hess2[1][1] = DOT(uv[1], b);
556 /* compute eigenvalue(s) */
557 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
558 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
559 if (i == 1) /* double-root (circle) */
560 evalue[1] = evalue[0];
561 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
562 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) )
563 error(INTERNAL, "bad eigenvalue calculation");
564
565 if (evalue[0] > evalue[1]) {
566 ra[0] = sqrt(sqrt(4.0/evalue[0]));
567 ra[1] = sqrt(sqrt(4.0/evalue[1]));
568 slope1 = evalue[1];
569 } else {
570 ra[0] = sqrt(sqrt(4.0/evalue[1]));
571 ra[1] = sqrt(sqrt(4.0/evalue[0]));
572 slope1 = evalue[0];
573 }
574 /* compute unit eigenvectors */
575 if (fabs(hess2[0][1]) <= FTINY)
576 return; /* uv OK as is */
577 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
578 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
579 for (i = 3; i--; ) {
580 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
581 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
582 }
583 VCOPY(uv[0], a);
584 VCOPY(uv[1], b);
585 }
586
587
588 static void
589 ambHessian( /* anisotropic radii & pos. gradient */
590 AMBHEMI *hp,
591 FVECT uv[2], /* returned */
592 float ra[2], /* returned (optional) */
593 float pg[2] /* returned (optional) */
594 )
595 {
596 static char memerrmsg[] = "out of memory in ambHessian()";
597 FVECT (*hessrow)[3] = NULL;
598 FVECT *gradrow = NULL;
599 uby8 *vflags;
600 FVECT hessian[3];
601 FVECT gradient;
602 FFTRI fftr;
603 int i, j;
604 /* be sure to assign unit vectors */
605 VCOPY(uv[0], hp->ux);
606 VCOPY(uv[1], hp->uy);
607 /* clock-wise vertex traversal from sample POV */
608 if (ra != NULL) { /* initialize Hessian row buffer */
609 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
610 if (hessrow == NULL)
611 error(SYSTEM, memerrmsg);
612 memset(hessian, 0, sizeof(hessian));
613 } else if (pg == NULL) /* bogus call? */
614 return;
615 if (pg != NULL) { /* initialize form factor row buffer */
616 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
617 if (gradrow == NULL)
618 error(SYSTEM, memerrmsg);
619 memset(gradient, 0, sizeof(gradient));
620 }
621 /* get vertex position flags */
622 vflags = vertex_flags(hp);
623 /* compute first row of edges */
624 for (j = 0; j < hp->ns-1; j++) {
625 comp_fftri(&fftr, hp, 0, j, VDB_X, vflags);
626 if (hessrow != NULL)
627 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
628 if (gradrow != NULL)
629 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
630 }
631 /* sum each row of triangles */
632 for (i = 0; i < hp->ns-1; i++) {
633 FVECT hesscol[3]; /* compute first vertical edge */
634 FVECT gradcol;
635 comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags);
636 if (hessrow != NULL)
637 comp_hessian(hesscol, &fftr, hp->rp->ron);
638 if (gradrow != NULL)
639 comp_gradient(gradcol, &fftr, hp->rp->ron);
640 for (j = 0; j < hp->ns-1; j++) {
641 FVECT hessdia[3]; /* compute triangle contributions */
642 FVECT graddia;
643 double backg;
644 backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags);
645 /* diagonal (inner) edge */
646 comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags);
647 if (hessrow != NULL) {
648 comp_hessian(hessdia, &fftr, hp->rp->ron);
649 rev_hessian(hesscol);
650 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
651 }
652 if (gradrow != NULL) {
653 comp_gradient(graddia, &fftr, hp->rp->ron);
654 rev_gradient(gradcol);
655 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
656 }
657 /* initialize edge in next row */
658 comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags);
659 if (hessrow != NULL)
660 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
661 if (gradrow != NULL)
662 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
663 /* new column edge & paired triangle */
664 backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags);
665 comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags);
666 if (hessrow != NULL) {
667 comp_hessian(hesscol, &fftr, hp->rp->ron);
668 rev_hessian(hessdia);
669 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
670 if (i < hp->ns-2)
671 rev_hessian(hessrow[j]);
672 }
673 if (gradrow != NULL) {
674 comp_gradient(gradcol, &fftr, hp->rp->ron);
675 rev_gradient(graddia);
676 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
677 if (i < hp->ns-2)
678 rev_gradient(gradrow[j]);
679 }
680 }
681 }
682 /* release row buffers */
683 if (hessrow != NULL) free(hessrow);
684 if (gradrow != NULL) free(gradrow);
685 free(vflags);
686
687 if (ra != NULL) /* extract eigenvectors & radii */
688 eigenvectors(uv, ra, hessian);
689 if (pg != NULL) { /* tangential position gradient */
690 pg[0] = DOT(gradient, uv[0]);
691 pg[1] = DOT(gradient, uv[1]);
692 }
693 }
694
695
696 /* Compute direction gradient from a hemispherical sampling */
697 static void
698 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
699 {
700 AMBSAMP *ap;
701 double dgsum[2];
702 int n;
703 FVECT vd;
704 double gfact;
705
706 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
707 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
708 /* use vector for azimuth + 90deg */
709 VSUB(vd, ap->p, hp->rp->rop);
710 /* brightness over cosine factor */
711 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
712 /* sine = proj_radius/vd_length */
713 dgsum[0] -= DOT(uv[1], vd) * gfact;
714 dgsum[1] += DOT(uv[0], vd) * gfact;
715 }
716 dg[0] = dgsum[0] / (hp->ns*hp->ns);
717 dg[1] = dgsum[1] / (hp->ns*hp->ns);
718 }
719
720
721 /* Compute potential light leak direction flags for cache value */
722 static uint32
723 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
724 {
725 const double max_d = 1.0/(minarad*ambacc + 0.001);
726 const double ang_res = 0.5*PI/(hp->ns-1);
727 const double ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY));
728 double avg_d = 0;
729 uint32 flgs = 0;
730 int i, j;
731 /* check distances above us */
732 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
733 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
734 avg_d += ambsam(hp,i,j).d;
735 avg_d *= 4.0/(hp->ns*hp->ns);
736 if (avg_d >= max_d) /* too close to corral? */
737 return(0);
738 /* else circle around perimeter */
739 for (i = 0; i < hp->ns; i++)
740 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
741 AMBSAMP *ap = &ambsam(hp,i,j);
742 FVECT vec;
743 double u, v;
744 double ang, a1;
745 int abp;
746 if ((ap->d <= FTINY) | (ap->d >= max_d))
747 continue; /* too far or too near */
748 VSUB(vec, ap->p, hp->rp->rop);
749 u = DOT(vec, uv[0]) * ap->d;
750 v = DOT(vec, uv[1]) * ap->d;
751 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0)
752 continue; /* occluder outside ellipse */
753 ang = atan2a(v, u); /* else set direction flags */
754 for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step)
755 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
756 }
757 return(flgs);
758 }
759
760
761 int
762 doambient( /* compute ambient component */
763 COLOR rcol, /* input/output color */
764 RAY *r,
765 double wt,
766 FVECT uv[2], /* returned (optional) */
767 float ra[2], /* returned (optional) */
768 float pg[2], /* returned (optional) */
769 float dg[2], /* returned (optional) */
770 uint32 *crlp /* returned (optional) */
771 )
772 {
773 AMBHEMI *hp = inithemi(rcol, r, wt);
774 int cnt;
775 FVECT my_uv[2];
776 double d, K, acol[3];
777 AMBSAMP *ap;
778 int i, j;
779 /* check/initialize */
780 if (hp == NULL)
781 return(0);
782 if (uv != NULL)
783 memset(uv, 0, sizeof(FVECT)*2);
784 if (ra != NULL)
785 ra[0] = ra[1] = 0.0;
786 if (pg != NULL)
787 pg[0] = pg[1] = 0.0;
788 if (dg != NULL)
789 dg[0] = dg[1] = 0.0;
790 if (crlp != NULL)
791 *crlp = 0;
792 /* sample the hemisphere */
793 acol[0] = acol[1] = acol[2] = 0.0;
794 cnt = 0;
795 for (i = hp->ns; i--; )
796 for (j = hp->ns; j--; )
797 if ((ap = ambsample(hp, i, j)) != NULL) {
798 addcolor(acol, ap->v);
799 ++cnt;
800 }
801 if (!cnt) {
802 setcolor(rcol, 0.0, 0.0, 0.0);
803 free(hp);
804 return(0); /* no valid samples */
805 }
806 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
807 copycolor(rcol, acol);
808 free(hp);
809 return(-1); /* return value w/o Hessian */
810 }
811 cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
812 if (cnt > 8)
813 ambsupersamp(acol, hp, cnt);
814 copycolor(rcol, acol); /* final indirect irradiance/PI */
815 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
816 free(hp);
817 return(-1); /* no radius or gradient calc. */
818 }
819 if ((d = bright(acol)) > FTINY) { /* normalize Y values */
820 d = 0.99*(hp->ns*hp->ns)/d;
821 K = 0.01;
822 } else { /* or fall back on geometric Hessian */
823 K = 1.0;
824 pg = NULL;
825 dg = NULL;
826 }
827 ap = hp->sa; /* relative Y channel from here on... */
828 for (i = hp->ns*hp->ns; i--; ap++)
829 colval(ap->v,CIEY) = bright(ap->v)*d + K;
830
831 if (uv == NULL) /* make sure we have axis pointers */
832 uv = my_uv;
833 /* compute radii & pos. gradient */
834 ambHessian(hp, uv, ra, pg);
835
836 if (dg != NULL) /* compute direction gradient */
837 ambdirgrad(hp, uv, dg);
838
839 if (ra != NULL) { /* scale/clamp radii */
840 if (pg != NULL) {
841 if (ra[0]*(d = fabs(pg[0])) > 1.0)
842 ra[0] = 1.0/d;
843 if (ra[1]*(d = fabs(pg[1])) > 1.0)
844 ra[1] = 1.0/d;
845 if (ra[0] > ra[1])
846 ra[0] = ra[1];
847 }
848 if (ra[0] < minarad) {
849 ra[0] = minarad;
850 if (ra[1] < minarad)
851 ra[1] = minarad;
852 }
853 ra[0] *= d = 1.0/sqrt(sqrt(wt));
854 if ((ra[1] *= d) > 2.0*ra[0])
855 ra[1] = 2.0*ra[0];
856 if (ra[1] > maxarad) {
857 ra[1] = maxarad;
858 if (ra[0] > maxarad)
859 ra[0] = maxarad;
860 }
861 if (crlp != NULL) /* flag encroached directions */
862 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
863 if (pg != NULL) { /* cap gradient if necessary */
864 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
865 if (d > 1.0) {
866 d = 1.0/sqrt(d);
867 pg[0] *= d;
868 pg[1] *= d;
869 }
870 }
871 }
872 free(hp); /* clean up and return */
873 return(1);
874 }
875
876
877 #else /* ! NEWAMB */
878
879
880 void
881 inithemi( /* initialize sampling hemisphere */
882 AMBHEMI *hp,
883 COLOR ac,
884 RAY *r,
885 double wt
886 )
887 {
888 double d;
889 int i;
890 /* set number of divisions */
891 if (ambacc <= FTINY &&
892 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
893 wt = d; /* avoid ray termination */
894 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
895 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
896 if (hp->nt < i)
897 hp->nt = i;
898 hp->np = PI * hp->nt + 0.5;
899 /* set number of super-samples */
900 hp->ns = ambssamp * wt + 0.5;
901 /* assign coefficient */
902 copycolor(hp->acoef, ac);
903 d = 1.0/(hp->nt*hp->np);
904 scalecolor(hp->acoef, d);
905 /* make axes */
906 VCOPY(hp->uz, r->ron);
907 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
908 for (i = 0; i < 3; i++)
909 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
910 break;
911 if (i >= 3)
912 error(CONSISTENCY, "bad ray direction in inithemi");
913 hp->uy[i] = 1.0;
914 fcross(hp->ux, hp->uy, hp->uz);
915 normalize(hp->ux);
916 fcross(hp->uy, hp->uz, hp->ux);
917 }
918
919
920 int
921 divsample( /* sample a division */
922 AMBSAMP *dp,
923 AMBHEMI *h,
924 RAY *r
925 )
926 {
927 RAY ar;
928 int hlist[3];
929 double spt[2];
930 double xd, yd, zd;
931 double b2;
932 double phi;
933 int i;
934 /* ambient coefficient for weight */
935 if (ambacc > FTINY)
936 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
937 else
938 copycolor(ar.rcoef, h->acoef);
939 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
940 return(-1);
941 if (ambacc > FTINY) {
942 multcolor(ar.rcoef, h->acoef);
943 scalecolor(ar.rcoef, 1./AVGREFL);
944 }
945 hlist[0] = r->rno;
946 hlist[1] = dp->t;
947 hlist[2] = dp->p;
948 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
949 zd = sqrt((dp->t + spt[0])/h->nt);
950 phi = 2.0*PI * (dp->p + spt[1])/h->np;
951 xd = tcos(phi) * zd;
952 yd = tsin(phi) * zd;
953 zd = sqrt(1.0 - zd*zd);
954 for (i = 0; i < 3; i++)
955 ar.rdir[i] = xd*h->ux[i] +
956 yd*h->uy[i] +
957 zd*h->uz[i];
958 checknorm(ar.rdir);
959 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
960 rayvalue(&ar);
961 ndims--;
962 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
963 addcolor(dp->v, ar.rcol);
964 /* use rt to improve gradient calc */
965 if (ar.rt > FTINY && ar.rt < FHUGE)
966 dp->r += 1.0/ar.rt;
967 /* (re)initialize error */
968 if (dp->n++) {
969 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
970 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
971 dp->k = b2/(dp->n*dp->n);
972 } else
973 dp->k = 0.0;
974 return(0);
975 }
976
977
978 static int
979 ambcmp( /* decreasing order */
980 const void *p1,
981 const void *p2
982 )
983 {
984 const AMBSAMP *d1 = (const AMBSAMP *)p1;
985 const AMBSAMP *d2 = (const AMBSAMP *)p2;
986
987 if (d1->k < d2->k)
988 return(1);
989 if (d1->k > d2->k)
990 return(-1);
991 return(0);
992 }
993
994
995 static int
996 ambnorm( /* standard order */
997 const void *p1,
998 const void *p2
999 )
1000 {
1001 const AMBSAMP *d1 = (const AMBSAMP *)p1;
1002 const AMBSAMP *d2 = (const AMBSAMP *)p2;
1003 int c;
1004
1005 if ( (c = d1->t - d2->t) )
1006 return(c);
1007 return(d1->p - d2->p);
1008 }
1009
1010
1011 double
1012 doambient( /* compute ambient component */
1013 COLOR rcol,
1014 RAY *r,
1015 double wt,
1016 FVECT pg,
1017 FVECT dg
1018 )
1019 {
1020 double b, d=0;
1021 AMBHEMI hemi;
1022 AMBSAMP *div;
1023 AMBSAMP dnew;
1024 double acol[3];
1025 AMBSAMP *dp;
1026 double arad;
1027 int divcnt;
1028 int i, j;
1029 /* initialize hemisphere */
1030 inithemi(&hemi, rcol, r, wt);
1031 divcnt = hemi.nt * hemi.np;
1032 /* initialize */
1033 if (pg != NULL)
1034 pg[0] = pg[1] = pg[2] = 0.0;
1035 if (dg != NULL)
1036 dg[0] = dg[1] = dg[2] = 0.0;
1037 setcolor(rcol, 0.0, 0.0, 0.0);
1038 if (divcnt == 0)
1039 return(0.0);
1040 /* allocate super-samples */
1041 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
1042 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
1043 if (div == NULL)
1044 error(SYSTEM, "out of memory in doambient");
1045 } else
1046 div = NULL;
1047 /* sample the divisions */
1048 arad = 0.0;
1049 acol[0] = acol[1] = acol[2] = 0.0;
1050 if ((dp = div) == NULL)
1051 dp = &dnew;
1052 divcnt = 0;
1053 for (i = 0; i < hemi.nt; i++)
1054 for (j = 0; j < hemi.np; j++) {
1055 dp->t = i; dp->p = j;
1056 setcolor(dp->v, 0.0, 0.0, 0.0);
1057 dp->r = 0.0;
1058 dp->n = 0;
1059 if (divsample(dp, &hemi, r) < 0) {
1060 if (div != NULL)
1061 dp++;
1062 continue;
1063 }
1064 arad += dp->r;
1065 divcnt++;
1066 if (div != NULL)
1067 dp++;
1068 else
1069 addcolor(acol, dp->v);
1070 }
1071 if (!divcnt) {
1072 if (div != NULL)
1073 free((void *)div);
1074 return(0.0); /* no samples taken */
1075 }
1076 if (divcnt < hemi.nt*hemi.np) {
1077 pg = dg = NULL; /* incomplete sampling */
1078 hemi.ns = 0;
1079 } else if (arad > FTINY && divcnt/arad < minarad) {
1080 hemi.ns = 0; /* close enough */
1081 } else if (hemi.ns > 0) { /* else perform super-sampling? */
1082 comperrs(div, &hemi); /* compute errors */
1083 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
1084 /* super-sample */
1085 for (i = hemi.ns; i > 0; i--) {
1086 dnew = *div;
1087 if (divsample(&dnew, &hemi, r) < 0) {
1088 dp++;
1089 continue;
1090 }
1091 dp = div; /* reinsert */
1092 j = divcnt < i ? divcnt : i;
1093 while (--j > 0 && dnew.k < dp[1].k) {
1094 *dp = *(dp+1);
1095 dp++;
1096 }
1097 *dp = dnew;
1098 }
1099 if (pg != NULL || dg != NULL) /* restore order */
1100 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
1101 }
1102 /* compute returned values */
1103 if (div != NULL) {
1104 arad = 0.0; /* note: divcnt may be < nt*np */
1105 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
1106 arad += dp->r;
1107 if (dp->n > 1) {
1108 b = 1.0/dp->n;
1109 scalecolor(dp->v, b);
1110 dp->r *= b;
1111 dp->n = 1;
1112 }
1113 addcolor(acol, dp->v);
1114 }
1115 b = bright(acol);
1116 if (b > FTINY) {
1117 b = 1.0/b; /* compute & normalize gradient(s) */
1118 if (pg != NULL) {
1119 posgradient(pg, div, &hemi);
1120 for (i = 0; i < 3; i++)
1121 pg[i] *= b;
1122 }
1123 if (dg != NULL) {
1124 dirgradient(dg, div, &hemi);
1125 for (i = 0; i < 3; i++)
1126 dg[i] *= b;
1127 }
1128 }
1129 free((void *)div);
1130 }
1131 copycolor(rcol, acol);
1132 if (arad <= FTINY)
1133 arad = maxarad;
1134 else
1135 arad = (divcnt+hemi.ns)/arad;
1136 if (pg != NULL) { /* reduce radius if gradient large */
1137 d = DOT(pg,pg);
1138 if (d*arad*arad > 1.0)
1139 arad = 1.0/sqrt(d);
1140 }
1141 if (arad < minarad) {
1142 arad = minarad;
1143 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1144 d = 1.0/arad/sqrt(d);
1145 for (i = 0; i < 3; i++)
1146 pg[i] *= d;
1147 }
1148 }
1149 if ((arad /= sqrt(wt)) > maxarad)
1150 arad = maxarad;
1151 return(arad);
1152 }
1153
1154
1155 void
1156 comperrs( /* compute initial error estimates */
1157 AMBSAMP *da, /* assumes standard ordering */
1158 AMBHEMI *hp
1159 )
1160 {
1161 double b, b2;
1162 int i, j;
1163 AMBSAMP *dp;
1164 /* sum differences from neighbors */
1165 dp = da;
1166 for (i = 0; i < hp->nt; i++)
1167 for (j = 0; j < hp->np; j++) {
1168 #ifdef DEBUG
1169 if (dp->t != i || dp->p != j)
1170 error(CONSISTENCY,
1171 "division order in comperrs");
1172 #endif
1173 b = bright(dp[0].v);
1174 if (i > 0) { /* from above */
1175 b2 = bright(dp[-hp->np].v) - b;
1176 b2 *= b2 * 0.25;
1177 dp[0].k += b2;
1178 dp[-hp->np].k += b2;
1179 }
1180 if (j > 0) { /* from behind */
1181 b2 = bright(dp[-1].v) - b;
1182 b2 *= b2 * 0.25;
1183 dp[0].k += b2;
1184 dp[-1].k += b2;
1185 } else { /* around */
1186 b2 = bright(dp[hp->np-1].v) - b;
1187 b2 *= b2 * 0.25;
1188 dp[0].k += b2;
1189 dp[hp->np-1].k += b2;
1190 }
1191 dp++;
1192 }
1193 /* divide by number of neighbors */
1194 dp = da;
1195 for (j = 0; j < hp->np; j++) /* top row */
1196 (dp++)->k *= 1.0/3.0;
1197 if (hp->nt < 2)
1198 return;
1199 for (i = 1; i < hp->nt-1; i++) /* central region */
1200 for (j = 0; j < hp->np; j++)
1201 (dp++)->k *= 0.25;
1202 for (j = 0; j < hp->np; j++) /* bottom row */
1203 (dp++)->k *= 1.0/3.0;
1204 }
1205
1206
1207 void
1208 posgradient( /* compute position gradient */
1209 FVECT gv,
1210 AMBSAMP *da, /* assumes standard ordering */
1211 AMBHEMI *hp
1212 )
1213 {
1214 int i, j;
1215 double nextsine, lastsine, b, d;
1216 double mag0, mag1;
1217 double phi, cosp, sinp, xd, yd;
1218 AMBSAMP *dp;
1219
1220 xd = yd = 0.0;
1221 for (j = 0; j < hp->np; j++) {
1222 dp = da + j;
1223 mag0 = mag1 = 0.0;
1224 lastsine = 0.0;
1225 for (i = 0; i < hp->nt; i++) {
1226 #ifdef DEBUG
1227 if (dp->t != i || dp->p != j)
1228 error(CONSISTENCY,
1229 "division order in posgradient");
1230 #endif
1231 b = bright(dp->v);
1232 if (i > 0) {
1233 d = dp[-hp->np].r;
1234 if (dp[0].r > d) d = dp[0].r;
1235 /* sin(t)*cos(t)^2 */
1236 d *= lastsine * (1.0 - (double)i/hp->nt);
1237 mag0 += d*(b - bright(dp[-hp->np].v));
1238 }
1239 nextsine = sqrt((double)(i+1)/hp->nt);
1240 if (j > 0) {
1241 d = dp[-1].r;
1242 if (dp[0].r > d) d = dp[0].r;
1243 mag1 += d * (nextsine - lastsine) *
1244 (b - bright(dp[-1].v));
1245 } else {
1246 d = dp[hp->np-1].r;
1247 if (dp[0].r > d) d = dp[0].r;
1248 mag1 += d * (nextsine - lastsine) *
1249 (b - bright(dp[hp->np-1].v));
1250 }
1251 dp += hp->np;
1252 lastsine = nextsine;
1253 }
1254 mag0 *= 2.0*PI / hp->np;
1255 phi = 2.0*PI * (double)j/hp->np;
1256 cosp = tcos(phi); sinp = tsin(phi);
1257 xd += mag0*cosp - mag1*sinp;
1258 yd += mag0*sinp + mag1*cosp;
1259 }
1260 for (i = 0; i < 3; i++)
1261 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1262 }
1263
1264
1265 void
1266 dirgradient( /* compute direction gradient */
1267 FVECT gv,
1268 AMBSAMP *da, /* assumes standard ordering */
1269 AMBHEMI *hp
1270 )
1271 {
1272 int i, j;
1273 double mag;
1274 double phi, xd, yd;
1275 AMBSAMP *dp;
1276
1277 xd = yd = 0.0;
1278 for (j = 0; j < hp->np; j++) {
1279 dp = da + j;
1280 mag = 0.0;
1281 for (i = 0; i < hp->nt; i++) {
1282 #ifdef DEBUG
1283 if (dp->t != i || dp->p != j)
1284 error(CONSISTENCY,
1285 "division order in dirgradient");
1286 #endif
1287 /* tan(t) */
1288 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1289 dp += hp->np;
1290 }
1291 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1292 xd += mag * tcos(phi);
1293 yd += mag * tsin(phi);
1294 }
1295 for (i = 0; i < 3; i++)
1296 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1297 }
1298
1299 #endif /* ! NEWAMB */