ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.5
Committed: Wed May 3 09:46:31 1995 UTC (29 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.4: +3 -1 lines
Log Message:
changed maxarad heuristic limit and overrode super-sampling
for ambient values that have radii less than minarad after division sampling

File Contents

# Content
1 /* Copyright (c) 1991 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Routines to compute "ambient" values using Monte Carlo
9 */
10
11 #include "ray.h"
12
13 #include "ambient.h"
14
15 #include "random.h"
16
17 typedef struct {
18 short t, p; /* theta, phi indices */
19 COLOR v; /* value sum */
20 float r; /* 1/distance sum */
21 float k; /* variance for this division */
22 int n; /* number of subsamples */
23 } AMBSAMP; /* ambient sample division */
24
25 typedef struct {
26 FVECT ux, uy, uz; /* x, y and z axis directions */
27 short nt, np; /* number of theta and phi directions */
28 } AMBHEMI; /* ambient sample hemisphere */
29
30
31 static int
32 ambcmp(d1, d2) /* decreasing order */
33 AMBSAMP *d1, *d2;
34 {
35 if (d1->k < d2->k)
36 return(1);
37 if (d1->k > d2->k)
38 return(-1);
39 return(0);
40 }
41
42
43 static int
44 ambnorm(d1, d2) /* standard order */
45 AMBSAMP *d1, *d2;
46 {
47 register int c;
48
49 if (c = d1->t - d2->t)
50 return(c);
51 return(d1->p - d2->p);
52 }
53
54
55 divsample(dp, h, r) /* sample a division */
56 register AMBSAMP *dp;
57 AMBHEMI *h;
58 RAY *r;
59 {
60 RAY ar;
61 int hlist[3];
62 double spt[2];
63 double xd, yd, zd;
64 double b2;
65 double phi;
66 register int i;
67
68 if (rayorigin(&ar, r, AMBIENT, AVGREFL) < 0)
69 return(-1);
70 hlist[0] = r->rno;
71 hlist[1] = dp->t;
72 hlist[2] = dp->p;
73 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
74 zd = sqrt((dp->t + spt[0])/h->nt);
75 phi = 2.0*PI * (dp->p + spt[1])/h->np;
76 xd = cos(phi) * zd;
77 yd = sin(phi) * zd;
78 zd = sqrt(1.0 - zd*zd);
79 for (i = 0; i < 3; i++)
80 ar.rdir[i] = xd*h->ux[i] +
81 yd*h->uy[i] +
82 zd*h->uz[i];
83 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
84 rayvalue(&ar);
85 ndims--;
86 addcolor(dp->v, ar.rcol);
87 if (ar.rt > FTINY && ar.rt < FHUGE)
88 dp->r += 1.0/ar.rt;
89 /* (re)initialize error */
90 if (dp->n++) {
91 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
92 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
93 dp->k = b2/(dp->n*dp->n);
94 } else
95 dp->k = 0.0;
96 return(0);
97 }
98
99
100 double
101 doambient(acol, r, wt, pg, dg) /* compute ambient component */
102 COLOR acol;
103 RAY *r;
104 double wt;
105 FVECT pg, dg;
106 {
107 double b, d;
108 AMBHEMI hemi;
109 AMBSAMP *div;
110 AMBSAMP dnew;
111 register AMBSAMP *dp;
112 double arad;
113 int ndivs, ns;
114 register int i, j;
115 /* initialize color */
116 setcolor(acol, 0.0, 0.0, 0.0);
117 /* initialize hemisphere */
118 inithemi(&hemi, r, wt);
119 ndivs = hemi.nt * hemi.np;
120 if (ndivs == 0)
121 return(0.0);
122 /* set number of super-samples */
123 ns = ambssamp * wt + 0.5;
124 if (ns > 0 || pg != NULL || dg != NULL) {
125 div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP));
126 if (div == NULL)
127 error(SYSTEM, "out of memory in doambient");
128 } else
129 div = NULL;
130 /* sample the divisions */
131 arad = 0.0;
132 if ((dp = div) == NULL)
133 dp = &dnew;
134 for (i = 0; i < hemi.nt; i++)
135 for (j = 0; j < hemi.np; j++) {
136 dp->t = i; dp->p = j;
137 setcolor(dp->v, 0.0, 0.0, 0.0);
138 dp->r = 0.0;
139 dp->n = 0;
140 if (divsample(dp, &hemi, r) < 0)
141 goto oopsy;
142 if (div != NULL)
143 dp++;
144 else {
145 addcolor(acol, dp->v);
146 arad += dp->r;
147 }
148 }
149 if (ns > 0 && arad > FTINY && ndivs/arad < minarad)
150 ns = 0; /* close enough */
151 else if (ns > 0) { /* else perform super-sampling */
152 comperrs(div, &hemi); /* compute errors */
153 qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */
154 /* super-sample */
155 for (i = ns; i > 0; i--) {
156 copystruct(&dnew, div);
157 if (divsample(&dnew, &hemi, r) < 0)
158 goto oopsy;
159 /* reinsert */
160 dp = div;
161 j = ndivs < i ? ndivs : i;
162 while (--j > 0 && dnew.k < dp[1].k) {
163 copystruct(dp, dp+1);
164 dp++;
165 }
166 copystruct(dp, &dnew);
167 }
168 if (pg != NULL || dg != NULL) /* restore order */
169 qsort(div, ndivs, sizeof(AMBSAMP), ambnorm);
170 }
171 /* compute returned values */
172 if (div != NULL) {
173 for (i = ndivs, dp = div; i-- > 0; dp++) {
174 arad += dp->r;
175 if (dp->n > 1) {
176 b = 1.0/dp->n;
177 scalecolor(dp->v, b);
178 dp->r *= b;
179 dp->n = 1;
180 }
181 addcolor(acol, dp->v);
182 }
183 b = bright(acol);
184 if (b > FTINY) {
185 b = ndivs/b;
186 if (pg != NULL) {
187 posgradient(pg, div, &hemi);
188 for (i = 0; i < 3; i++)
189 pg[i] *= b;
190 }
191 if (dg != NULL) {
192 dirgradient(dg, div, &hemi);
193 for (i = 0; i < 3; i++)
194 dg[i] *= b;
195 }
196 } else {
197 if (pg != NULL)
198 for (i = 0; i < 3; i++)
199 pg[i] = 0.0;
200 if (dg != NULL)
201 for (i = 0; i < 3; i++)
202 dg[i] = 0.0;
203 }
204 free((char *)div);
205 }
206 b = 1.0/ndivs;
207 scalecolor(acol, b);
208 if (arad <= FTINY)
209 arad = maxarad;
210 else
211 arad = (ndivs+ns)/arad;
212 if (pg != NULL) { /* reduce radius if gradient large */
213 d = DOT(pg,pg);
214 if (d*arad*arad > 1.0)
215 arad = 1.0/sqrt(d);
216 }
217 if (arad < minarad) {
218 arad = minarad;
219 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
220 d = 1.0/arad/sqrt(d);
221 for (i = 0; i < 3; i++)
222 pg[i] *= d;
223 }
224 }
225 if ((arad /= sqrt(wt)) > maxarad)
226 arad = maxarad;
227 return(arad);
228 oopsy:
229 if (div != NULL)
230 free((char *)div);
231 return(0.0);
232 }
233
234
235 inithemi(hp, r, wt) /* initialize sampling hemisphere */
236 register AMBHEMI *hp;
237 RAY *r;
238 double wt;
239 {
240 register int i;
241 /* set number of divisions */
242 if (wt < (.25*PI)/ambdiv+FTINY) {
243 hp->nt = hp->np = 0;
244 return; /* zero samples */
245 }
246 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
247 hp->np = PI * hp->nt + 0.5;
248 /* make axes */
249 VCOPY(hp->uz, r->ron);
250 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
251 for (i = 0; i < 3; i++)
252 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
253 break;
254 if (i >= 3)
255 error(CONSISTENCY, "bad ray direction in inithemi");
256 hp->uy[i] = 1.0;
257 fcross(hp->ux, hp->uy, hp->uz);
258 normalize(hp->ux);
259 fcross(hp->uy, hp->uz, hp->ux);
260 }
261
262
263 comperrs(da, hp) /* compute initial error estimates */
264 AMBSAMP *da; /* assumes standard ordering */
265 register AMBHEMI *hp;
266 {
267 double b, b2;
268 int i, j;
269 register AMBSAMP *dp;
270 /* sum differences from neighbors */
271 dp = da;
272 for (i = 0; i < hp->nt; i++)
273 for (j = 0; j < hp->np; j++) {
274 #ifdef DEBUG
275 if (dp->t != i || dp->p != j)
276 error(CONSISTENCY,
277 "division order in comperrs");
278 #endif
279 b = bright(dp[0].v);
280 if (i > 0) { /* from above */
281 b2 = bright(dp[-hp->np].v) - b;
282 b2 *= b2 * 0.25;
283 dp[0].k += b2;
284 dp[-hp->np].k += b2;
285 }
286 if (j > 0) { /* from behind */
287 b2 = bright(dp[-1].v) - b;
288 b2 *= b2 * 0.25;
289 dp[0].k += b2;
290 dp[-1].k += b2;
291 } else { /* around */
292 b2 = bright(dp[hp->np-1].v) - b;
293 b2 *= b2 * 0.25;
294 dp[0].k += b2;
295 dp[hp->np-1].k += b2;
296 }
297 dp++;
298 }
299 /* divide by number of neighbors */
300 dp = da;
301 for (j = 0; j < hp->np; j++) /* top row */
302 (dp++)->k *= 1.0/3.0;
303 if (hp->nt < 2)
304 return;
305 for (i = 1; i < hp->nt-1; i++) /* central region */
306 for (j = 0; j < hp->np; j++)
307 (dp++)->k *= 0.25;
308 for (j = 0; j < hp->np; j++) /* bottom row */
309 (dp++)->k *= 1.0/3.0;
310 }
311
312
313 posgradient(gv, da, hp) /* compute position gradient */
314 FVECT gv;
315 AMBSAMP *da; /* assumes standard ordering */
316 register AMBHEMI *hp;
317 {
318 register int i, j;
319 double nextsine, lastsine, b, d;
320 double mag0, mag1;
321 double phi, cosp, sinp, xd, yd;
322 register AMBSAMP *dp;
323
324 xd = yd = 0.0;
325 for (j = 0; j < hp->np; j++) {
326 dp = da + j;
327 mag0 = mag1 = 0.0;
328 lastsine = 0.0;
329 for (i = 0; i < hp->nt; i++) {
330 #ifdef DEBUG
331 if (dp->t != i || dp->p != j)
332 error(CONSISTENCY,
333 "division order in posgradient");
334 #endif
335 b = bright(dp->v);
336 if (i > 0) {
337 d = dp[-hp->np].r;
338 if (dp[0].r > d) d = dp[0].r;
339 /* sin(t)*cos(t)^2 */
340 d *= lastsine * (1.0 - (double)i/hp->nt);
341 mag0 += d*(b - bright(dp[-hp->np].v));
342 }
343 nextsine = sqrt((double)(i+1)/hp->nt);
344 if (j > 0) {
345 d = dp[-1].r;
346 if (dp[0].r > d) d = dp[0].r;
347 mag1 += d * (nextsine - lastsine) *
348 (b - bright(dp[-1].v));
349 } else {
350 d = dp[hp->np-1].r;
351 if (dp[0].r > d) d = dp[0].r;
352 mag1 += d * (nextsine - lastsine) *
353 (b - bright(dp[hp->np-1].v));
354 }
355 dp += hp->np;
356 lastsine = nextsine;
357 }
358 mag0 *= 2.0*PI / hp->np;
359 phi = 2.0*PI * (double)j/hp->np;
360 cosp = cos(phi); sinp = sin(phi);
361 xd += mag0*cosp - mag1*sinp;
362 yd += mag0*sinp + mag1*cosp;
363 }
364 for (i = 0; i < 3; i++)
365 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/PI;
366 }
367
368
369 dirgradient(gv, da, hp) /* compute direction gradient */
370 FVECT gv;
371 AMBSAMP *da; /* assumes standard ordering */
372 register AMBHEMI *hp;
373 {
374 register int i, j;
375 double mag;
376 double phi, xd, yd;
377 register AMBSAMP *dp;
378
379 xd = yd = 0.0;
380 for (j = 0; j < hp->np; j++) {
381 dp = da + j;
382 mag = 0.0;
383 for (i = 0; i < hp->nt; i++) {
384 #ifdef DEBUG
385 if (dp->t != i || dp->p != j)
386 error(CONSISTENCY,
387 "division order in dirgradient");
388 #endif
389 /* tan(t) */
390 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
391 dp += hp->np;
392 }
393 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
394 xd += mag * cos(phi);
395 yd += mag * sin(phi);
396 }
397 for (i = 0; i < 3; i++)
398 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/(hp->nt*hp->np);
399 }