ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.49
Committed: Wed May 7 01:16:02 2014 UTC (9 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.48: +27 -40 lines
Log Message:
Added "corral" flags to prevent light leaks in new calculation (-DNEWAMB)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.48 2014/05/04 01:02:13 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifdef NEWAMB
25
26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27
28 /* vertex direction bit positions */
29 #define VDB_xy 0
30 #define VDB_y 01
31 #define VDB_x 02
32 #define VDB_Xy 03
33 #define VDB_xY 04
34 #define VDB_X 05
35 #define VDB_Y 06
36 #define VDB_XY 07
37 /* get opposite vertex direction bit */
38 #define VDB_OPP(f) (~(f) & 07)
39 /* adjacent triangle vertex flags */
40 static const int adjacent_trifl[8] = {
41 0, /* forbidden diagonal */
42 1<<VDB_x|1<<VDB_y|1<<VDB_Xy,
43 1<<VDB_y|1<<VDB_x|1<<VDB_xY,
44 1<<VDB_y|1<<VDB_Xy|1<<VDB_X,
45 1<<VDB_x|1<<VDB_xY|1<<VDB_Y,
46 1<<VDB_Xy|1<<VDB_X|1<<VDB_Y,
47 1<<VDB_xY|1<<VDB_Y|1<<VDB_X,
48 0, /* forbidden diagonal */
49 };
50
51 typedef struct {
52 COLOR v; /* hemisphere sample value */
53 float d; /* reciprocal distance (1/rt) */
54 FVECT p; /* intersection point */
55 } AMBSAMP; /* sample value */
56
57 typedef struct {
58 RAY *rp; /* originating ray sample */
59 FVECT ux, uy; /* tangent axis unit vectors */
60 int ns; /* number of samples per axis */
61 COLOR acoef; /* division contribution coefficient */
62 AMBSAMP sa[1]; /* sample array (extends struct) */
63 } AMBHEMI; /* ambient sample hemisphere */
64
65 #define ambndx(h,i,j) ((i)*(h)->ns + (j))
66 #define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)]
67
68 typedef struct {
69 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
70 double I1, I2;
71 int valid;
72 } FFTRI; /* vectors and coefficients for Hessian calculation */
73
74
75 /* Get index for adjacent vertex */
76 static int
77 adjacent_verti(AMBHEMI *hp, int i, int j, int dbit)
78 {
79 int i0 = i*hp->ns + j;
80
81 switch (dbit) {
82 case VDB_y: return(i0 - hp->ns);
83 case VDB_x: return(i0 - 1);
84 case VDB_Xy: return(i0 - hp->ns + 1);
85 case VDB_xY: return(i0 + hp->ns - 1);
86 case VDB_X: return(i0 + 1);
87 case VDB_Y: return(i0 + hp->ns);
88 /* the following should never occur */
89 case VDB_xy: return(i0 - hp->ns - 1);
90 case VDB_XY: return(i0 + hp->ns + 1);
91 }
92 return(-1);
93 }
94
95
96 /* Get vertex direction bit for the opposite edge to complete triangle */
97 static int
98 vdb_edge(int db1, int db2)
99 {
100 switch (db1) {
101 case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y);
102 case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X);
103 case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY);
104 case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy);
105 case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X);
106 case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y);
107 }
108 error(INTERNAL, "forbidden diagonal in vdb_edge()");
109 return(-1);
110 }
111
112
113 static AMBHEMI *
114 inithemi( /* initialize sampling hemisphere */
115 COLOR ac,
116 RAY *r,
117 double wt
118 )
119 {
120 AMBHEMI *hp;
121 double d;
122 int n, i;
123 /* set number of divisions */
124 if (ambacc <= FTINY &&
125 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
126 wt = d; /* avoid ray termination */
127 n = sqrt(ambdiv * wt) + 0.5;
128 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
129 if (n < i)
130 n = i;
131 /* allocate sampling array */
132 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
133 if (hp == NULL)
134 return(NULL);
135 hp->rp = r;
136 hp->ns = n;
137 /* assign coefficient */
138 copycolor(hp->acoef, ac);
139 d = 1.0/(n*n);
140 scalecolor(hp->acoef, d);
141 /* make tangent plane axes */
142 hp->uy[0] = 0.5 - frandom();
143 hp->uy[1] = 0.5 - frandom();
144 hp->uy[2] = 0.5 - frandom();
145 for (i = 3; i--; )
146 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
147 break;
148 if (i < 0)
149 error(CONSISTENCY, "bad ray direction in inithemi");
150 hp->uy[i] = 1.0;
151 VCROSS(hp->ux, hp->uy, r->ron);
152 normalize(hp->ux);
153 VCROSS(hp->uy, r->ron, hp->ux);
154 /* we're ready to sample */
155 return(hp);
156 }
157
158
159 /* Sample ambient division and apply weighting coefficient */
160 static int
161 getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
162 {
163 int hlist[3], ii;
164 double spt[2], zd;
165 /* ambient coefficient for weight */
166 if (ambacc > FTINY)
167 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
168 else
169 copycolor(arp->rcoef, hp->acoef);
170 if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
171 return(0);
172 if (ambacc > FTINY) {
173 multcolor(arp->rcoef, hp->acoef);
174 scalecolor(arp->rcoef, 1./AVGREFL);
175 }
176 hlist[0] = hp->rp->rno;
177 hlist[1] = j;
178 hlist[2] = i;
179 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
180 if (!n) { /* avoid border samples for n==0 */
181 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
182 spt[0] = 0.1 + 0.8*frandom();
183 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
184 spt[1] = 0.1 + 0.8*frandom();
185 }
186 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
187 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
188 for (ii = 3; ii--; )
189 arp->rdir[ii] = spt[0]*hp->ux[ii] +
190 spt[1]*hp->uy[ii] +
191 zd*hp->rp->ron[ii];
192 checknorm(arp->rdir);
193 dimlist[ndims++] = ambndx(hp,i,j) + 90171;
194 rayvalue(arp); /* evaluate ray */
195 ndims--; /* apply coefficient */
196 multcolor(arp->rcol, arp->rcoef);
197 return(1);
198 }
199
200
201 static AMBSAMP *
202 ambsample( /* initial ambient division sample */
203 AMBHEMI *hp,
204 int i,
205 int j
206 )
207 {
208 AMBSAMP *ap = &ambsam(hp,i,j);
209 RAY ar;
210 /* generate hemispherical sample */
211 if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) {
212 memset(ap, 0, sizeof(AMBSAMP));
213 return(NULL);
214 }
215 ap->d = 1.0/ar.rt; /* limit vertex distance */
216 if (ar.rt > 10.0*thescene.cusize)
217 ar.rt = 10.0*thescene.cusize;
218 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
219 copycolor(ap->v, ar.rcol);
220 return(ap);
221 }
222
223
224 /* Estimate errors based on ambient division differences */
225 static float *
226 getambdiffs(AMBHEMI *hp)
227 {
228 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
229 float *ep;
230 AMBSAMP *ap;
231 double b, d2;
232 int i, j;
233
234 if (earr == NULL) /* out of memory? */
235 return(NULL);
236 /* compute squared neighbor diffs */
237 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
238 for (j = 0; j < hp->ns; j++, ap++, ep++) {
239 b = bright(ap[0].v);
240 if (i) { /* from above */
241 d2 = b - bright(ap[-hp->ns].v);
242 d2 *= d2;
243 ep[0] += d2;
244 ep[-hp->ns] += d2;
245 }
246 if (j) { /* from behind */
247 d2 = b - bright(ap[-1].v);
248 d2 *= d2;
249 ep[0] += d2;
250 ep[-1] += d2;
251 }
252 }
253 /* correct for number of neighbors */
254 earr[0] *= 2.f;
255 earr[hp->ns-1] *= 2.f;
256 earr[(hp->ns-1)*hp->ns] *= 2.f;
257 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f;
258 for (i = 1; i < hp->ns-1; i++) {
259 earr[i*hp->ns] *= 4./3.;
260 earr[i*hp->ns + hp->ns-1] *= 4./3.;
261 }
262 for (j = 1; j < hp->ns-1; j++) {
263 earr[j] *= 4./3.;
264 earr[(hp->ns-1)*hp->ns + j] *= 4./3.;
265 }
266 return(earr);
267 }
268
269
270 /* Perform super-sampling on hemisphere (introduces bias) */
271 static void
272 ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
273 {
274 float *earr = getambdiffs(hp);
275 double e2sum = 0;
276 AMBSAMP *ap;
277 RAY ar;
278 COLOR asum;
279 float *ep;
280 int i, j, n;
281
282 if (earr == NULL) /* just skip calc. if no memory */
283 return;
284 /* add up estimated variances */
285 for (ep = earr + hp->ns*hp->ns; ep-- > earr; )
286 e2sum += *ep;
287 ep = earr; /* perform super-sampling */
288 for (ap = hp->sa, i = 0; i < hp->ns; i++)
289 for (j = 0; j < hp->ns; j++, ap++) {
290 int nss = *ep/e2sum*cnt + frandom();
291 setcolor(asum, 0., 0., 0.);
292 for (n = 1; n <= nss; n++) {
293 if (!getambsamp(&ar, hp, i, j, n)) {
294 nss = n-1;
295 break;
296 }
297 addcolor(asum, ar.rcol);
298 }
299 if (nss) { /* update returned ambient value */
300 const double ssf = 1./(nss + 1);
301 for (n = 3; n--; )
302 acol[n] += ssf*colval(asum,n) +
303 (ssf - 1.)*colval(ap->v,n);
304 }
305 e2sum -= *ep++; /* update remainders */
306 cnt -= nss;
307 }
308 free(earr);
309 }
310
311
312 /* Compute vertex flags, indicating farthest in each direction */
313 static uby8 *
314 vertex_flags(AMBHEMI *hp)
315 {
316 uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8));
317 uby8 *vf;
318 AMBSAMP *ap;
319 int i, j;
320
321 if (vflags == NULL)
322 error(SYSTEM, "out of memory in vertex_flags()");
323 vf = vflags;
324 ap = hp->sa; /* compute farthest along first row */
325 for (j = 0; j < hp->ns-1; j++, vf++, ap++)
326 if (ap[0].d <= ap[1].d)
327 vf[0] |= 1<<VDB_X;
328 else
329 vf[1] |= 1<<VDB_x;
330 ++vf; ++ap;
331 /* flag subsequent rows */
332 for (i = 1; i < hp->ns; i++) {
333 for (j = 0; j < hp->ns-1; j++, vf++, ap++) {
334 if (ap[0].d <= ap[-hp->ns].d) /* row before */
335 vf[0] |= 1<<VDB_y;
336 else
337 vf[-hp->ns] |= 1<<VDB_Y;
338 if (ap[0].d <= ap[1-hp->ns].d) /* diagonal we care about */
339 vf[0] |= 1<<VDB_Xy;
340 else
341 vf[1-hp->ns] |= 1<<VDB_xY;
342 if (ap[0].d <= ap[1].d) /* column after */
343 vf[0] |= 1<<VDB_X;
344 else
345 vf[1] |= 1<<VDB_x;
346 }
347 if (ap[0].d <= ap[-hp->ns].d) /* final column edge */
348 vf[0] |= 1<<VDB_y;
349 else
350 vf[-hp->ns] |= 1<<VDB_Y;
351 ++vf; ++ap;
352 }
353 return(vflags);
354 }
355
356
357 /* Return brightness of farthest ambient sample */
358 static double
359 back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags)
360 {
361 const int v0 = ambndx(hp,i,j);
362 const int tflags = (1<<dbit1 | 1<<dbit2);
363 int v1, v2;
364
365 if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */
366 return(colval(hp->sa[v0].v,CIEY));
367 v1 = adjacent_verti(hp, i, j, dbit1);
368 if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */
369 return(colval(hp->sa[v1].v,CIEY));
370 v2 = adjacent_verti(hp, i, j, dbit2);
371 if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */
372 return(colval(hp->sa[v2].v,CIEY));
373 /* else check if v1>v2 */
374 if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2))
375 return(colval(hp->sa[v1].v,CIEY));
376 return(colval(hp->sa[v2].v,CIEY));
377 }
378
379
380 /* Compute vectors and coefficients for Hessian/gradient calcs */
381 static void
382 comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags)
383 {
384 const int i0 = ambndx(hp,i,j);
385 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
386 int i1, ii;
387
388 ftp->valid = 0; /* check if we can skip this edge */
389 ii = adjacent_trifl[dbit];
390 if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */
391 return;
392 i1 = adjacent_verti(hp, i, j, dbit);
393 ii = adjacent_trifl[VDB_OPP(dbit)];
394 if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */
395 return;
396 /* else go ahead with calculation */
397 VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop);
398 VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop);
399 VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p);
400 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
401 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
402 dot_e = DOT(ftp->e_i,ftp->e_i);
403 dot_er = DOT(ftp->e_i, ftp->r_i);
404 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
405 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
406 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
407 sqrt( rdot_cp );
408 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
409 dot_e*ftp->I1 )*0.5*rdot_cp;
410 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
411 for (ii = 3; ii--; )
412 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
413 ftp->valid++;
414 }
415
416
417 /* Compose 3x3 matrix from two vectors */
418 static void
419 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
420 {
421 mat[0][0] = 2.0*va[0]*vb[0];
422 mat[1][1] = 2.0*va[1]*vb[1];
423 mat[2][2] = 2.0*va[2]*vb[2];
424 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
425 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
426 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
427 }
428
429
430 /* Compute partial 3x3 Hessian matrix for edge */
431 static void
432 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
433 {
434 FVECT ncp;
435 FVECT m1[3], m2[3], m3[3], m4[3];
436 double d1, d2, d3, d4;
437 double I3, J3, K3;
438 int i, j;
439
440 if (!ftp->valid) { /* preemptive test */
441 memset(hess, 0, sizeof(FVECT)*3);
442 return;
443 }
444 /* compute intermediate coefficients */
445 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
446 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
447 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
448 d4 = DOT(ftp->e_i, ftp->r_i);
449 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
450 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
451 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
452 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
453 /* intermediate matrices */
454 VCROSS(ncp, nrm, ftp->e_i);
455 compose_matrix(m1, ncp, ftp->rI2_eJ2);
456 compose_matrix(m2, ftp->r_i, ftp->r_i);
457 compose_matrix(m3, ftp->e_i, ftp->e_i);
458 compose_matrix(m4, ftp->r_i, ftp->e_i);
459 d1 = DOT(nrm, ftp->rcp);
460 d2 = -d1*ftp->I2;
461 d1 *= 2.0;
462 for (i = 3; i--; ) /* final matrix sum */
463 for (j = 3; j--; ) {
464 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
465 2.0*J3*m4[i][j] );
466 hess[i][j] += d2*(i==j);
467 hess[i][j] *= -1.0/PI;
468 }
469 }
470
471
472 /* Reverse hessian calculation result for edge in other direction */
473 static void
474 rev_hessian(FVECT hess[3])
475 {
476 int i;
477
478 for (i = 3; i--; ) {
479 hess[i][0] = -hess[i][0];
480 hess[i][1] = -hess[i][1];
481 hess[i][2] = -hess[i][2];
482 }
483 }
484
485
486 /* Add to radiometric Hessian from the given triangle */
487 static void
488 add2hessian(FVECT hess[3], FVECT ehess1[3],
489 FVECT ehess2[3], FVECT ehess3[3], double v)
490 {
491 int i, j;
492
493 for (i = 3; i--; )
494 for (j = 3; j--; )
495 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
496 }
497
498
499 /* Compute partial displacement form factor gradient for edge */
500 static void
501 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
502 {
503 FVECT ncp;
504 double f1;
505 int i;
506
507 if (!ftp->valid) { /* preemptive test */
508 memset(grad, 0, sizeof(FVECT));
509 return;
510 }
511 f1 = 2.0*DOT(nrm, ftp->rcp);
512 VCROSS(ncp, nrm, ftp->e_i);
513 for (i = 3; i--; )
514 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
515 }
516
517
518 /* Reverse gradient calculation result for edge in other direction */
519 static void
520 rev_gradient(FVECT grad)
521 {
522 grad[0] = -grad[0];
523 grad[1] = -grad[1];
524 grad[2] = -grad[2];
525 }
526
527
528 /* Add to displacement gradient from the given triangle */
529 static void
530 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
531 {
532 int i;
533
534 for (i = 3; i--; )
535 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
536 }
537
538
539 /* Compute anisotropic radii and eigenvector directions */
540 static int
541 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
542 {
543 double hess2[2][2];
544 FVECT a, b;
545 double evalue[2], slope1, xmag1;
546 int i;
547 /* project Hessian to sample plane */
548 for (i = 3; i--; ) {
549 a[i] = DOT(hessian[i], uv[0]);
550 b[i] = DOT(hessian[i], uv[1]);
551 }
552 hess2[0][0] = DOT(uv[0], a);
553 hess2[0][1] = DOT(uv[0], b);
554 hess2[1][0] = DOT(uv[1], a);
555 hess2[1][1] = DOT(uv[1], b);
556 /* compute eigenvalue(s) */
557 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
558 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
559 if (i == 1) /* double-root (circle) */
560 evalue[1] = evalue[0];
561 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
562 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) )
563 error(INTERNAL, "bad eigenvalue calculation");
564
565 if (evalue[0] > evalue[1]) {
566 ra[0] = sqrt(sqrt(4.0/evalue[0]));
567 ra[1] = sqrt(sqrt(4.0/evalue[1]));
568 slope1 = evalue[1];
569 } else {
570 ra[0] = sqrt(sqrt(4.0/evalue[1]));
571 ra[1] = sqrt(sqrt(4.0/evalue[0]));
572 slope1 = evalue[0];
573 }
574 /* compute unit eigenvectors */
575 if (fabs(hess2[0][1]) <= FTINY)
576 return; /* uv OK as is */
577 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
578 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
579 for (i = 3; i--; ) {
580 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
581 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
582 }
583 VCOPY(uv[0], a);
584 VCOPY(uv[1], b);
585 }
586
587
588 static void
589 ambHessian( /* anisotropic radii & pos. gradient */
590 AMBHEMI *hp,
591 FVECT uv[2], /* returned */
592 float ra[2], /* returned (optional) */
593 float pg[2] /* returned (optional) */
594 )
595 {
596 static char memerrmsg[] = "out of memory in ambHessian()";
597 FVECT (*hessrow)[3] = NULL;
598 FVECT *gradrow = NULL;
599 uby8 *vflags;
600 FVECT hessian[3];
601 FVECT gradient;
602 FFTRI fftr;
603 int i, j;
604 /* be sure to assign unit vectors */
605 VCOPY(uv[0], hp->ux);
606 VCOPY(uv[1], hp->uy);
607 /* clock-wise vertex traversal from sample POV */
608 if (ra != NULL) { /* initialize Hessian row buffer */
609 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
610 if (hessrow == NULL)
611 error(SYSTEM, memerrmsg);
612 memset(hessian, 0, sizeof(hessian));
613 } else if (pg == NULL) /* bogus call? */
614 return;
615 if (pg != NULL) { /* initialize form factor row buffer */
616 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
617 if (gradrow == NULL)
618 error(SYSTEM, memerrmsg);
619 memset(gradient, 0, sizeof(gradient));
620 }
621 /* get vertex position flags */
622 vflags = vertex_flags(hp);
623 /* compute first row of edges */
624 for (j = 0; j < hp->ns-1; j++) {
625 comp_fftri(&fftr, hp, 0, j, VDB_X, vflags);
626 if (hessrow != NULL)
627 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
628 if (gradrow != NULL)
629 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
630 }
631 /* sum each row of triangles */
632 for (i = 0; i < hp->ns-1; i++) {
633 FVECT hesscol[3]; /* compute first vertical edge */
634 FVECT gradcol;
635 comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags);
636 if (hessrow != NULL)
637 comp_hessian(hesscol, &fftr, hp->rp->ron);
638 if (gradrow != NULL)
639 comp_gradient(gradcol, &fftr, hp->rp->ron);
640 for (j = 0; j < hp->ns-1; j++) {
641 FVECT hessdia[3]; /* compute triangle contributions */
642 FVECT graddia;
643 double backg;
644 backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags);
645 /* diagonal (inner) edge */
646 comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags);
647 if (hessrow != NULL) {
648 comp_hessian(hessdia, &fftr, hp->rp->ron);
649 rev_hessian(hesscol);
650 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
651 }
652 if (gradrow != NULL) {
653 comp_gradient(graddia, &fftr, hp->rp->ron);
654 rev_gradient(gradcol);
655 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
656 }
657 /* initialize edge in next row */
658 comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags);
659 if (hessrow != NULL)
660 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
661 if (gradrow != NULL)
662 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
663 /* new column edge & paired triangle */
664 backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags);
665 comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags);
666 if (hessrow != NULL) {
667 comp_hessian(hesscol, &fftr, hp->rp->ron);
668 rev_hessian(hessdia);
669 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
670 if (i < hp->ns-2)
671 rev_hessian(hessrow[j]);
672 }
673 if (gradrow != NULL) {
674 comp_gradient(gradcol, &fftr, hp->rp->ron);
675 rev_gradient(graddia);
676 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
677 if (i < hp->ns-2)
678 rev_gradient(gradrow[j]);
679 }
680 }
681 }
682 /* release row buffers */
683 if (hessrow != NULL) free(hessrow);
684 if (gradrow != NULL) free(gradrow);
685 free(vflags);
686
687 if (ra != NULL) /* extract eigenvectors & radii */
688 eigenvectors(uv, ra, hessian);
689 if (pg != NULL) { /* tangential position gradient */
690 pg[0] = DOT(gradient, uv[0]);
691 pg[1] = DOT(gradient, uv[1]);
692 }
693 }
694
695
696 /* Compute direction gradient from a hemispherical sampling */
697 static void
698 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
699 {
700 AMBSAMP *ap;
701 double dgsum[2];
702 int n;
703 FVECT vd;
704 double gfact;
705
706 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
707 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
708 /* use vector for azimuth + 90deg */
709 VSUB(vd, ap->p, hp->rp->rop);
710 /* brightness over cosine factor */
711 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
712 /* sine = proj_radius/vd_length */
713 dgsum[0] -= DOT(uv[1], vd) * gfact;
714 dgsum[1] += DOT(uv[0], vd) * gfact;
715 }
716 dg[0] = dgsum[0] / (hp->ns*hp->ns);
717 dg[1] = dgsum[1] / (hp->ns*hp->ns);
718 }
719
720
721 /* Compute potential light leak direction flags for cache value */
722 static uint32
723 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
724 {
725 uint32 flgs = 0;
726 int i, j;
727 /* circle around perimeter */
728 for (i = 0; i < hp->ns; i++)
729 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
730 AMBSAMP *ap = &ambsam(hp,i,j);
731 FVECT vec;
732 double u, v;
733 double ang;
734 int abp;
735 if (ap->d <= FTINY)
736 continue;
737 VSUB(vec, ap->p, hp->rp->rop);
738 u = DOT(vec, uv[0]) * ap->d;
739 v = DOT(vec, uv[1]) * ap->d;
740 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0)
741 continue; /* occluder outside ellipse */
742 ang = atan2a(v, u); /* else set direction flags */
743 ang += 2.0*PI*(ang < 0);
744 ang *= 16./PI;
745 if ((ang < .5) | (ang >= 31.5))
746 flgs |= 0x80000001;
747 else
748 flgs |= 3L<<(int)(ang-.5);
749 }
750 return(flgs);
751 }
752
753
754 int
755 doambient( /* compute ambient component */
756 COLOR rcol, /* input/output color */
757 RAY *r,
758 double wt,
759 FVECT uv[2], /* returned (optional) */
760 float ra[2], /* returned (optional) */
761 float pg[2], /* returned (optional) */
762 float dg[2], /* returned (optional) */
763 uint32 *crlp /* returned (optional) */
764 )
765 {
766 AMBHEMI *hp = inithemi(rcol, r, wt);
767 int cnt;
768 FVECT my_uv[2];
769 double d, K, acol[3];
770 AMBSAMP *ap;
771 int i, j;
772 /* check/initialize */
773 if (hp == NULL)
774 return(0);
775 if (uv != NULL)
776 memset(uv, 0, sizeof(FVECT)*2);
777 if (ra != NULL)
778 ra[0] = ra[1] = 0.0;
779 if (pg != NULL)
780 pg[0] = pg[1] = 0.0;
781 if (dg != NULL)
782 dg[0] = dg[1] = 0.0;
783 if (crlp != NULL)
784 *crlp = 0;
785 /* sample the hemisphere */
786 acol[0] = acol[1] = acol[2] = 0.0;
787 cnt = 0;
788 for (i = hp->ns; i--; )
789 for (j = hp->ns; j--; )
790 if ((ap = ambsample(hp, i, j)) != NULL) {
791 addcolor(acol, ap->v);
792 ++cnt;
793 }
794 if (!cnt) {
795 setcolor(rcol, 0.0, 0.0, 0.0);
796 free(hp);
797 return(0); /* no valid samples */
798 }
799 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
800 copycolor(rcol, acol);
801 free(hp);
802 return(-1); /* return value w/o Hessian */
803 }
804 cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
805 if (cnt > 0)
806 ambsupersamp(acol, hp, cnt);
807 copycolor(rcol, acol); /* final indirect irradiance/PI */
808 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
809 free(hp);
810 return(-1); /* no radius or gradient calc. */
811 }
812 if ((d = bright(acol)) > FTINY) { /* normalize Y values */
813 d = 0.99*(hp->ns*hp->ns)/d;
814 K = 0.01;
815 } else { /* or fall back on geometric Hessian */
816 K = 1.0;
817 pg = NULL;
818 dg = NULL;
819 }
820 ap = hp->sa; /* relative Y channel from here on... */
821 for (i = hp->ns*hp->ns; i--; ap++)
822 colval(ap->v,CIEY) = bright(ap->v)*d + K;
823
824 if (uv == NULL) /* make sure we have axis pointers */
825 uv = my_uv;
826 /* compute radii & pos. gradient */
827 ambHessian(hp, uv, ra, pg);
828
829 if (dg != NULL) /* compute direction gradient */
830 ambdirgrad(hp, uv, dg);
831
832 if (ra != NULL) { /* scale/clamp radii */
833 if (pg != NULL) {
834 if (ra[0]*(d = fabs(pg[0])) > 1.0)
835 ra[0] = 1.0/d;
836 if (ra[1]*(d = fabs(pg[1])) > 1.0)
837 ra[1] = 1.0/d;
838 if (ra[0] > ra[1])
839 ra[0] = ra[1];
840 }
841 if (ra[0] < minarad) {
842 ra[0] = minarad;
843 if (ra[1] < minarad)
844 ra[1] = minarad;
845 }
846 ra[0] *= d = 1.0/sqrt(sqrt(wt));
847 if ((ra[1] *= d) > 2.0*ra[0])
848 ra[1] = 2.0*ra[0];
849 if (ra[1] > maxarad) {
850 ra[1] = maxarad;
851 if (ra[0] > maxarad)
852 ra[0] = maxarad;
853 }
854 if (crlp != NULL) /* flag encroached directions */
855 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
856 if (pg != NULL) { /* cap gradient if necessary */
857 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
858 if (d > 1.0) {
859 d = 1.0/sqrt(d);
860 pg[0] *= d;
861 pg[1] *= d;
862 }
863 }
864 }
865 free(hp); /* clean up and return */
866 return(1);
867 }
868
869
870 #else /* ! NEWAMB */
871
872
873 void
874 inithemi( /* initialize sampling hemisphere */
875 AMBHEMI *hp,
876 COLOR ac,
877 RAY *r,
878 double wt
879 )
880 {
881 double d;
882 int i;
883 /* set number of divisions */
884 if (ambacc <= FTINY &&
885 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
886 wt = d; /* avoid ray termination */
887 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
888 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
889 if (hp->nt < i)
890 hp->nt = i;
891 hp->np = PI * hp->nt + 0.5;
892 /* set number of super-samples */
893 hp->ns = ambssamp * wt + 0.5;
894 /* assign coefficient */
895 copycolor(hp->acoef, ac);
896 d = 1.0/(hp->nt*hp->np);
897 scalecolor(hp->acoef, d);
898 /* make axes */
899 VCOPY(hp->uz, r->ron);
900 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
901 for (i = 0; i < 3; i++)
902 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
903 break;
904 if (i >= 3)
905 error(CONSISTENCY, "bad ray direction in inithemi");
906 hp->uy[i] = 1.0;
907 fcross(hp->ux, hp->uy, hp->uz);
908 normalize(hp->ux);
909 fcross(hp->uy, hp->uz, hp->ux);
910 }
911
912
913 int
914 divsample( /* sample a division */
915 AMBSAMP *dp,
916 AMBHEMI *h,
917 RAY *r
918 )
919 {
920 RAY ar;
921 int hlist[3];
922 double spt[2];
923 double xd, yd, zd;
924 double b2;
925 double phi;
926 int i;
927 /* ambient coefficient for weight */
928 if (ambacc > FTINY)
929 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
930 else
931 copycolor(ar.rcoef, h->acoef);
932 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
933 return(-1);
934 if (ambacc > FTINY) {
935 multcolor(ar.rcoef, h->acoef);
936 scalecolor(ar.rcoef, 1./AVGREFL);
937 }
938 hlist[0] = r->rno;
939 hlist[1] = dp->t;
940 hlist[2] = dp->p;
941 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
942 zd = sqrt((dp->t + spt[0])/h->nt);
943 phi = 2.0*PI * (dp->p + spt[1])/h->np;
944 xd = tcos(phi) * zd;
945 yd = tsin(phi) * zd;
946 zd = sqrt(1.0 - zd*zd);
947 for (i = 0; i < 3; i++)
948 ar.rdir[i] = xd*h->ux[i] +
949 yd*h->uy[i] +
950 zd*h->uz[i];
951 checknorm(ar.rdir);
952 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
953 rayvalue(&ar);
954 ndims--;
955 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
956 addcolor(dp->v, ar.rcol);
957 /* use rt to improve gradient calc */
958 if (ar.rt > FTINY && ar.rt < FHUGE)
959 dp->r += 1.0/ar.rt;
960 /* (re)initialize error */
961 if (dp->n++) {
962 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
963 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
964 dp->k = b2/(dp->n*dp->n);
965 } else
966 dp->k = 0.0;
967 return(0);
968 }
969
970
971 static int
972 ambcmp( /* decreasing order */
973 const void *p1,
974 const void *p2
975 )
976 {
977 const AMBSAMP *d1 = (const AMBSAMP *)p1;
978 const AMBSAMP *d2 = (const AMBSAMP *)p2;
979
980 if (d1->k < d2->k)
981 return(1);
982 if (d1->k > d2->k)
983 return(-1);
984 return(0);
985 }
986
987
988 static int
989 ambnorm( /* standard order */
990 const void *p1,
991 const void *p2
992 )
993 {
994 const AMBSAMP *d1 = (const AMBSAMP *)p1;
995 const AMBSAMP *d2 = (const AMBSAMP *)p2;
996 int c;
997
998 if ( (c = d1->t - d2->t) )
999 return(c);
1000 return(d1->p - d2->p);
1001 }
1002
1003
1004 double
1005 doambient( /* compute ambient component */
1006 COLOR rcol,
1007 RAY *r,
1008 double wt,
1009 FVECT pg,
1010 FVECT dg
1011 )
1012 {
1013 double b, d=0;
1014 AMBHEMI hemi;
1015 AMBSAMP *div;
1016 AMBSAMP dnew;
1017 double acol[3];
1018 AMBSAMP *dp;
1019 double arad;
1020 int divcnt;
1021 int i, j;
1022 /* initialize hemisphere */
1023 inithemi(&hemi, rcol, r, wt);
1024 divcnt = hemi.nt * hemi.np;
1025 /* initialize */
1026 if (pg != NULL)
1027 pg[0] = pg[1] = pg[2] = 0.0;
1028 if (dg != NULL)
1029 dg[0] = dg[1] = dg[2] = 0.0;
1030 setcolor(rcol, 0.0, 0.0, 0.0);
1031 if (divcnt == 0)
1032 return(0.0);
1033 /* allocate super-samples */
1034 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
1035 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
1036 if (div == NULL)
1037 error(SYSTEM, "out of memory in doambient");
1038 } else
1039 div = NULL;
1040 /* sample the divisions */
1041 arad = 0.0;
1042 acol[0] = acol[1] = acol[2] = 0.0;
1043 if ((dp = div) == NULL)
1044 dp = &dnew;
1045 divcnt = 0;
1046 for (i = 0; i < hemi.nt; i++)
1047 for (j = 0; j < hemi.np; j++) {
1048 dp->t = i; dp->p = j;
1049 setcolor(dp->v, 0.0, 0.0, 0.0);
1050 dp->r = 0.0;
1051 dp->n = 0;
1052 if (divsample(dp, &hemi, r) < 0) {
1053 if (div != NULL)
1054 dp++;
1055 continue;
1056 }
1057 arad += dp->r;
1058 divcnt++;
1059 if (div != NULL)
1060 dp++;
1061 else
1062 addcolor(acol, dp->v);
1063 }
1064 if (!divcnt) {
1065 if (div != NULL)
1066 free((void *)div);
1067 return(0.0); /* no samples taken */
1068 }
1069 if (divcnt < hemi.nt*hemi.np) {
1070 pg = dg = NULL; /* incomplete sampling */
1071 hemi.ns = 0;
1072 } else if (arad > FTINY && divcnt/arad < minarad) {
1073 hemi.ns = 0; /* close enough */
1074 } else if (hemi.ns > 0) { /* else perform super-sampling? */
1075 comperrs(div, &hemi); /* compute errors */
1076 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
1077 /* super-sample */
1078 for (i = hemi.ns; i > 0; i--) {
1079 dnew = *div;
1080 if (divsample(&dnew, &hemi, r) < 0) {
1081 dp++;
1082 continue;
1083 }
1084 dp = div; /* reinsert */
1085 j = divcnt < i ? divcnt : i;
1086 while (--j > 0 && dnew.k < dp[1].k) {
1087 *dp = *(dp+1);
1088 dp++;
1089 }
1090 *dp = dnew;
1091 }
1092 if (pg != NULL || dg != NULL) /* restore order */
1093 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
1094 }
1095 /* compute returned values */
1096 if (div != NULL) {
1097 arad = 0.0; /* note: divcnt may be < nt*np */
1098 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
1099 arad += dp->r;
1100 if (dp->n > 1) {
1101 b = 1.0/dp->n;
1102 scalecolor(dp->v, b);
1103 dp->r *= b;
1104 dp->n = 1;
1105 }
1106 addcolor(acol, dp->v);
1107 }
1108 b = bright(acol);
1109 if (b > FTINY) {
1110 b = 1.0/b; /* compute & normalize gradient(s) */
1111 if (pg != NULL) {
1112 posgradient(pg, div, &hemi);
1113 for (i = 0; i < 3; i++)
1114 pg[i] *= b;
1115 }
1116 if (dg != NULL) {
1117 dirgradient(dg, div, &hemi);
1118 for (i = 0; i < 3; i++)
1119 dg[i] *= b;
1120 }
1121 }
1122 free((void *)div);
1123 }
1124 copycolor(rcol, acol);
1125 if (arad <= FTINY)
1126 arad = maxarad;
1127 else
1128 arad = (divcnt+hemi.ns)/arad;
1129 if (pg != NULL) { /* reduce radius if gradient large */
1130 d = DOT(pg,pg);
1131 if (d*arad*arad > 1.0)
1132 arad = 1.0/sqrt(d);
1133 }
1134 if (arad < minarad) {
1135 arad = minarad;
1136 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1137 d = 1.0/arad/sqrt(d);
1138 for (i = 0; i < 3; i++)
1139 pg[i] *= d;
1140 }
1141 }
1142 if ((arad /= sqrt(wt)) > maxarad)
1143 arad = maxarad;
1144 return(arad);
1145 }
1146
1147
1148 void
1149 comperrs( /* compute initial error estimates */
1150 AMBSAMP *da, /* assumes standard ordering */
1151 AMBHEMI *hp
1152 )
1153 {
1154 double b, b2;
1155 int i, j;
1156 AMBSAMP *dp;
1157 /* sum differences from neighbors */
1158 dp = da;
1159 for (i = 0; i < hp->nt; i++)
1160 for (j = 0; j < hp->np; j++) {
1161 #ifdef DEBUG
1162 if (dp->t != i || dp->p != j)
1163 error(CONSISTENCY,
1164 "division order in comperrs");
1165 #endif
1166 b = bright(dp[0].v);
1167 if (i > 0) { /* from above */
1168 b2 = bright(dp[-hp->np].v) - b;
1169 b2 *= b2 * 0.25;
1170 dp[0].k += b2;
1171 dp[-hp->np].k += b2;
1172 }
1173 if (j > 0) { /* from behind */
1174 b2 = bright(dp[-1].v) - b;
1175 b2 *= b2 * 0.25;
1176 dp[0].k += b2;
1177 dp[-1].k += b2;
1178 } else { /* around */
1179 b2 = bright(dp[hp->np-1].v) - b;
1180 b2 *= b2 * 0.25;
1181 dp[0].k += b2;
1182 dp[hp->np-1].k += b2;
1183 }
1184 dp++;
1185 }
1186 /* divide by number of neighbors */
1187 dp = da;
1188 for (j = 0; j < hp->np; j++) /* top row */
1189 (dp++)->k *= 1.0/3.0;
1190 if (hp->nt < 2)
1191 return;
1192 for (i = 1; i < hp->nt-1; i++) /* central region */
1193 for (j = 0; j < hp->np; j++)
1194 (dp++)->k *= 0.25;
1195 for (j = 0; j < hp->np; j++) /* bottom row */
1196 (dp++)->k *= 1.0/3.0;
1197 }
1198
1199
1200 void
1201 posgradient( /* compute position gradient */
1202 FVECT gv,
1203 AMBSAMP *da, /* assumes standard ordering */
1204 AMBHEMI *hp
1205 )
1206 {
1207 int i, j;
1208 double nextsine, lastsine, b, d;
1209 double mag0, mag1;
1210 double phi, cosp, sinp, xd, yd;
1211 AMBSAMP *dp;
1212
1213 xd = yd = 0.0;
1214 for (j = 0; j < hp->np; j++) {
1215 dp = da + j;
1216 mag0 = mag1 = 0.0;
1217 lastsine = 0.0;
1218 for (i = 0; i < hp->nt; i++) {
1219 #ifdef DEBUG
1220 if (dp->t != i || dp->p != j)
1221 error(CONSISTENCY,
1222 "division order in posgradient");
1223 #endif
1224 b = bright(dp->v);
1225 if (i > 0) {
1226 d = dp[-hp->np].r;
1227 if (dp[0].r > d) d = dp[0].r;
1228 /* sin(t)*cos(t)^2 */
1229 d *= lastsine * (1.0 - (double)i/hp->nt);
1230 mag0 += d*(b - bright(dp[-hp->np].v));
1231 }
1232 nextsine = sqrt((double)(i+1)/hp->nt);
1233 if (j > 0) {
1234 d = dp[-1].r;
1235 if (dp[0].r > d) d = dp[0].r;
1236 mag1 += d * (nextsine - lastsine) *
1237 (b - bright(dp[-1].v));
1238 } else {
1239 d = dp[hp->np-1].r;
1240 if (dp[0].r > d) d = dp[0].r;
1241 mag1 += d * (nextsine - lastsine) *
1242 (b - bright(dp[hp->np-1].v));
1243 }
1244 dp += hp->np;
1245 lastsine = nextsine;
1246 }
1247 mag0 *= 2.0*PI / hp->np;
1248 phi = 2.0*PI * (double)j/hp->np;
1249 cosp = tcos(phi); sinp = tsin(phi);
1250 xd += mag0*cosp - mag1*sinp;
1251 yd += mag0*sinp + mag1*cosp;
1252 }
1253 for (i = 0; i < 3; i++)
1254 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1255 }
1256
1257
1258 void
1259 dirgradient( /* compute direction gradient */
1260 FVECT gv,
1261 AMBSAMP *da, /* assumes standard ordering */
1262 AMBHEMI *hp
1263 )
1264 {
1265 int i, j;
1266 double mag;
1267 double phi, xd, yd;
1268 AMBSAMP *dp;
1269
1270 xd = yd = 0.0;
1271 for (j = 0; j < hp->np; j++) {
1272 dp = da + j;
1273 mag = 0.0;
1274 for (i = 0; i < hp->nt; i++) {
1275 #ifdef DEBUG
1276 if (dp->t != i || dp->p != j)
1277 error(CONSISTENCY,
1278 "division order in dirgradient");
1279 #endif
1280 /* tan(t) */
1281 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1282 dp += hp->np;
1283 }
1284 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1285 xd += mag * tcos(phi);
1286 yd += mag * tsin(phi);
1287 }
1288 for (i = 0; i < 3; i++)
1289 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1290 }
1291
1292 #endif /* ! NEWAMB */