ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.48
Committed: Sun May 4 01:02:13 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.47: +38 -25 lines
Log Message:
Changed (unused) algorithm to threshold at 5th percentile instead of average

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.47 2014/05/03 05:46:19 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifdef NEWAMB
25
26 /* #define AHEM_MARG 1.2 /* hem margin */
27
28 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
29
30 /* vertex direction bit positions */
31 #define VDB_xy 0
32 #define VDB_y 01
33 #define VDB_x 02
34 #define VDB_Xy 03
35 #define VDB_xY 04
36 #define VDB_X 05
37 #define VDB_Y 06
38 #define VDB_XY 07
39 /* get opposite vertex direction bit */
40 #define VDB_OPP(f) (~(f) & 07)
41 /* adjacent triangle vertex flags */
42 static const int adjacent_trifl[8] = {
43 0, /* forbidden diagonal */
44 1<<VDB_x|1<<VDB_y|1<<VDB_Xy,
45 1<<VDB_y|1<<VDB_x|1<<VDB_xY,
46 1<<VDB_y|1<<VDB_Xy|1<<VDB_X,
47 1<<VDB_x|1<<VDB_xY|1<<VDB_Y,
48 1<<VDB_Xy|1<<VDB_X|1<<VDB_Y,
49 1<<VDB_xY|1<<VDB_Y|1<<VDB_X,
50 0, /* forbidden diagonal */
51 };
52
53 typedef struct {
54 COLOR v; /* hemisphere sample value */
55 float d; /* reciprocal distance (1/rt) */
56 FVECT p; /* intersection point */
57 } AMBSAMP; /* sample value */
58
59 typedef struct {
60 RAY *rp; /* originating ray sample */
61 FVECT ux, uy; /* tangent axis unit vectors */
62 int ns; /* number of samples per axis */
63 COLOR acoef; /* division contribution coefficient */
64 AMBSAMP sa[1]; /* sample array (extends struct) */
65 } AMBHEMI; /* ambient sample hemisphere */
66
67 #define ambndx(h,i,j) ((i)*(h)->ns + (j))
68 #define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)]
69
70 typedef struct {
71 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
72 double I1, I2;
73 int valid;
74 } FFTRI; /* vectors and coefficients for Hessian calculation */
75
76
77 /* Get index for adjacent vertex */
78 static int
79 adjacent_verti(AMBHEMI *hp, int i, int j, int dbit)
80 {
81 int i0 = i*hp->ns + j;
82
83 switch (dbit) {
84 case VDB_y: return(i0 - hp->ns);
85 case VDB_x: return(i0 - 1);
86 case VDB_Xy: return(i0 - hp->ns + 1);
87 case VDB_xY: return(i0 + hp->ns - 1);
88 case VDB_X: return(i0 + 1);
89 case VDB_Y: return(i0 + hp->ns);
90 /* the following should never occur */
91 case VDB_xy: return(i0 - hp->ns - 1);
92 case VDB_XY: return(i0 + hp->ns + 1);
93 }
94 return(-1);
95 }
96
97
98 /* Get vertex direction bit for the opposite edge to complete triangle */
99 static int
100 vdb_edge(int db1, int db2)
101 {
102 switch (db1) {
103 case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y);
104 case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X);
105 case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY);
106 case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy);
107 case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X);
108 case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y);
109 }
110 error(INTERNAL, "forbidden diagonal in vdb_edge()");
111 return(-1);
112 }
113
114
115 static AMBHEMI *
116 inithemi( /* initialize sampling hemisphere */
117 COLOR ac,
118 RAY *r,
119 double wt
120 )
121 {
122 AMBHEMI *hp;
123 double d;
124 int n, i;
125 /* set number of divisions */
126 if (ambacc <= FTINY &&
127 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
128 wt = d; /* avoid ray termination */
129 n = sqrt(ambdiv * wt) + 0.5;
130 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
131 if (n < i)
132 n = i;
133 /* allocate sampling array */
134 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
135 if (hp == NULL)
136 return(NULL);
137 hp->rp = r;
138 hp->ns = n;
139 /* assign coefficient */
140 copycolor(hp->acoef, ac);
141 d = 1.0/(n*n);
142 scalecolor(hp->acoef, d);
143 /* make tangent plane axes */
144 hp->uy[0] = 0.5 - frandom();
145 hp->uy[1] = 0.5 - frandom();
146 hp->uy[2] = 0.5 - frandom();
147 for (i = 3; i--; )
148 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
149 break;
150 if (i < 0)
151 error(CONSISTENCY, "bad ray direction in inithemi");
152 hp->uy[i] = 1.0;
153 VCROSS(hp->ux, hp->uy, r->ron);
154 normalize(hp->ux);
155 VCROSS(hp->uy, r->ron, hp->ux);
156 /* we're ready to sample */
157 return(hp);
158 }
159
160
161 /* Sample ambient division and apply weighting coefficient */
162 static int
163 getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
164 {
165 int hlist[3], ii;
166 double spt[2], zd;
167 /* ambient coefficient for weight */
168 if (ambacc > FTINY)
169 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
170 else
171 copycolor(arp->rcoef, hp->acoef);
172 if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
173 return(0);
174 if (ambacc > FTINY) {
175 multcolor(arp->rcoef, hp->acoef);
176 scalecolor(arp->rcoef, 1./AVGREFL);
177 }
178 hlist[0] = hp->rp->rno;
179 hlist[1] = j;
180 hlist[2] = i;
181 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
182 if (!n) { /* avoid border samples for n==0 */
183 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
184 spt[0] = 0.1 + 0.8*frandom();
185 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
186 spt[1] = 0.1 + 0.8*frandom();
187 }
188 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
189 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
190 for (ii = 3; ii--; )
191 arp->rdir[ii] = spt[0]*hp->ux[ii] +
192 spt[1]*hp->uy[ii] +
193 zd*hp->rp->ron[ii];
194 checknorm(arp->rdir);
195 dimlist[ndims++] = ambndx(hp,i,j) + 90171;
196 rayvalue(arp); /* evaluate ray */
197 ndims--; /* apply coefficient */
198 multcolor(arp->rcol, arp->rcoef);
199 return(1);
200 }
201
202
203 static AMBSAMP *
204 ambsample( /* initial ambient division sample */
205 AMBHEMI *hp,
206 int i,
207 int j
208 )
209 {
210 AMBSAMP *ap = &ambsam(hp,i,j);
211 RAY ar;
212 /* generate hemispherical sample */
213 if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) {
214 memset(ap, 0, sizeof(AMBSAMP));
215 return(NULL);
216 }
217 ap->d = 1.0/ar.rt; /* limit vertex distance */
218 if (ar.rt > 10.0*thescene.cusize)
219 ar.rt = 10.0*thescene.cusize;
220 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
221 copycolor(ap->v, ar.rcol);
222 return(ap);
223 }
224
225
226 /* Estimate errors based on ambient division differences */
227 static float *
228 getambdiffs(AMBHEMI *hp)
229 {
230 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
231 float *ep;
232 AMBSAMP *ap;
233 double b, d2;
234 int i, j;
235
236 if (earr == NULL) /* out of memory? */
237 return(NULL);
238 /* compute squared neighbor diffs */
239 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
240 for (j = 0; j < hp->ns; j++, ap++, ep++) {
241 b = bright(ap[0].v);
242 if (i) { /* from above */
243 d2 = b - bright(ap[-hp->ns].v);
244 d2 *= d2;
245 ep[0] += d2;
246 ep[-hp->ns] += d2;
247 }
248 if (j) { /* from behind */
249 d2 = b - bright(ap[-1].v);
250 d2 *= d2;
251 ep[0] += d2;
252 ep[-1] += d2;
253 }
254 }
255 /* correct for number of neighbors */
256 earr[0] *= 2.f;
257 earr[hp->ns-1] *= 2.f;
258 earr[(hp->ns-1)*hp->ns] *= 2.f;
259 earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f;
260 for (i = 1; i < hp->ns-1; i++) {
261 earr[i*hp->ns] *= 4./3.;
262 earr[i*hp->ns + hp->ns-1] *= 4./3.;
263 }
264 for (j = 1; j < hp->ns-1; j++) {
265 earr[j] *= 4./3.;
266 earr[(hp->ns-1)*hp->ns + j] *= 4./3.;
267 }
268 return(earr);
269 }
270
271
272 /* Perform super-sampling on hemisphere (introduces bias) */
273 static void
274 ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
275 {
276 float *earr = getambdiffs(hp);
277 double e2sum = 0;
278 AMBSAMP *ap;
279 RAY ar;
280 COLOR asum;
281 float *ep;
282 int i, j, n;
283
284 if (earr == NULL) /* just skip calc. if no memory */
285 return;
286 /* add up estimated variances */
287 for (ep = earr + hp->ns*hp->ns; ep-- > earr; )
288 e2sum += *ep;
289 ep = earr; /* perform super-sampling */
290 for (ap = hp->sa, i = 0; i < hp->ns; i++)
291 for (j = 0; j < hp->ns; j++, ap++) {
292 int nss = *ep/e2sum*cnt + frandom();
293 setcolor(asum, 0., 0., 0.);
294 for (n = 1; n <= nss; n++) {
295 if (!getambsamp(&ar, hp, i, j, n)) {
296 nss = n-1;
297 break;
298 }
299 addcolor(asum, ar.rcol);
300 }
301 if (nss) { /* update returned ambient value */
302 const double ssf = 1./(nss + 1);
303 for (n = 3; n--; )
304 acol[n] += ssf*colval(asum,n) +
305 (ssf - 1.)*colval(ap->v,n);
306 }
307 e2sum -= *ep++; /* update remainders */
308 cnt -= nss;
309 }
310 free(earr);
311 }
312
313
314 /* Compute vertex flags, indicating farthest in each direction */
315 static uby8 *
316 vertex_flags(AMBHEMI *hp)
317 {
318 uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8));
319 uby8 *vf;
320 AMBSAMP *ap;
321 int i, j;
322
323 if (vflags == NULL)
324 error(SYSTEM, "out of memory in vertex_flags()");
325 vf = vflags;
326 ap = hp->sa; /* compute farthest along first row */
327 for (j = 0; j < hp->ns-1; j++, vf++, ap++)
328 if (ap[0].d <= ap[1].d)
329 vf[0] |= 1<<VDB_X;
330 else
331 vf[1] |= 1<<VDB_x;
332 ++vf; ++ap;
333 /* flag subsequent rows */
334 for (i = 1; i < hp->ns; i++) {
335 for (j = 0; j < hp->ns-1; j++, vf++, ap++) {
336 if (ap[0].d <= ap[-hp->ns].d) /* row before */
337 vf[0] |= 1<<VDB_y;
338 else
339 vf[-hp->ns] |= 1<<VDB_Y;
340 if (ap[0].d <= ap[1-hp->ns].d) /* diagonal we care about */
341 vf[0] |= 1<<VDB_Xy;
342 else
343 vf[1-hp->ns] |= 1<<VDB_xY;
344 if (ap[0].d <= ap[1].d) /* column after */
345 vf[0] |= 1<<VDB_X;
346 else
347 vf[1] |= 1<<VDB_x;
348 }
349 if (ap[0].d <= ap[-hp->ns].d) /* final column edge */
350 vf[0] |= 1<<VDB_y;
351 else
352 vf[-hp->ns] |= 1<<VDB_Y;
353 ++vf; ++ap;
354 }
355 return(vflags);
356 }
357
358
359 /* Return brightness of farthest ambient sample */
360 static double
361 back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags)
362 {
363 const int v0 = ambndx(hp,i,j);
364 const int tflags = (1<<dbit1 | 1<<dbit2);
365 int v1, v2;
366
367 if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */
368 return(colval(hp->sa[v0].v,CIEY));
369 v1 = adjacent_verti(hp, i, j, dbit1);
370 if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */
371 return(colval(hp->sa[v1].v,CIEY));
372 v2 = adjacent_verti(hp, i, j, dbit2);
373 if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */
374 return(colval(hp->sa[v2].v,CIEY));
375 /* else check if v1>v2 */
376 if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2))
377 return(colval(hp->sa[v1].v,CIEY));
378 return(colval(hp->sa[v2].v,CIEY));
379 }
380
381
382 /* Compute vectors and coefficients for Hessian/gradient calcs */
383 static void
384 comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags)
385 {
386 const int i0 = ambndx(hp,i,j);
387 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
388 int i1, ii;
389
390 ftp->valid = 0; /* check if we can skip this edge */
391 ii = adjacent_trifl[dbit];
392 if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */
393 return;
394 i1 = adjacent_verti(hp, i, j, dbit);
395 ii = adjacent_trifl[VDB_OPP(dbit)];
396 if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */
397 return;
398 /* else go ahead with calculation */
399 VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop);
400 VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop);
401 VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p);
402 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
403 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
404 dot_e = DOT(ftp->e_i,ftp->e_i);
405 dot_er = DOT(ftp->e_i, ftp->r_i);
406 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
407 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
408 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
409 sqrt( rdot_cp );
410 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
411 dot_e*ftp->I1 )*0.5*rdot_cp;
412 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
413 for (ii = 3; ii--; )
414 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
415 ftp->valid++;
416 }
417
418
419 /* Compose 3x3 matrix from two vectors */
420 static void
421 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
422 {
423 mat[0][0] = 2.0*va[0]*vb[0];
424 mat[1][1] = 2.0*va[1]*vb[1];
425 mat[2][2] = 2.0*va[2]*vb[2];
426 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
427 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
428 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
429 }
430
431
432 /* Compute partial 3x3 Hessian matrix for edge */
433 static void
434 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
435 {
436 FVECT ncp;
437 FVECT m1[3], m2[3], m3[3], m4[3];
438 double d1, d2, d3, d4;
439 double I3, J3, K3;
440 int i, j;
441
442 if (!ftp->valid) { /* preemptive test */
443 memset(hess, 0, sizeof(FVECT)*3);
444 return;
445 }
446 /* compute intermediate coefficients */
447 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
448 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
449 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
450 d4 = DOT(ftp->e_i, ftp->r_i);
451 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
452 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
453 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
454 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
455 /* intermediate matrices */
456 VCROSS(ncp, nrm, ftp->e_i);
457 compose_matrix(m1, ncp, ftp->rI2_eJ2);
458 compose_matrix(m2, ftp->r_i, ftp->r_i);
459 compose_matrix(m3, ftp->e_i, ftp->e_i);
460 compose_matrix(m4, ftp->r_i, ftp->e_i);
461 d1 = DOT(nrm, ftp->rcp);
462 d2 = -d1*ftp->I2;
463 d1 *= 2.0;
464 for (i = 3; i--; ) /* final matrix sum */
465 for (j = 3; j--; ) {
466 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
467 2.0*J3*m4[i][j] );
468 hess[i][j] += d2*(i==j);
469 hess[i][j] *= -1.0/PI;
470 }
471 }
472
473
474 /* Reverse hessian calculation result for edge in other direction */
475 static void
476 rev_hessian(FVECT hess[3])
477 {
478 int i;
479
480 for (i = 3; i--; ) {
481 hess[i][0] = -hess[i][0];
482 hess[i][1] = -hess[i][1];
483 hess[i][2] = -hess[i][2];
484 }
485 }
486
487
488 /* Add to radiometric Hessian from the given triangle */
489 static void
490 add2hessian(FVECT hess[3], FVECT ehess1[3],
491 FVECT ehess2[3], FVECT ehess3[3], double v)
492 {
493 int i, j;
494
495 for (i = 3; i--; )
496 for (j = 3; j--; )
497 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
498 }
499
500
501 /* Compute partial displacement form factor gradient for edge */
502 static void
503 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
504 {
505 FVECT ncp;
506 double f1;
507 int i;
508
509 if (!ftp->valid) { /* preemptive test */
510 memset(grad, 0, sizeof(FVECT));
511 return;
512 }
513 f1 = 2.0*DOT(nrm, ftp->rcp);
514 VCROSS(ncp, nrm, ftp->e_i);
515 for (i = 3; i--; )
516 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
517 }
518
519
520 /* Reverse gradient calculation result for edge in other direction */
521 static void
522 rev_gradient(FVECT grad)
523 {
524 grad[0] = -grad[0];
525 grad[1] = -grad[1];
526 grad[2] = -grad[2];
527 }
528
529
530 /* Add to displacement gradient from the given triangle */
531 static void
532 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
533 {
534 int i;
535
536 for (i = 3; i--; )
537 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
538 }
539
540
541 /* Compute anisotropic radii and eigenvector directions */
542 static int
543 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
544 {
545 double hess2[2][2];
546 FVECT a, b;
547 double evalue[2], slope1, xmag1;
548 int i;
549 /* project Hessian to sample plane */
550 for (i = 3; i--; ) {
551 a[i] = DOT(hessian[i], uv[0]);
552 b[i] = DOT(hessian[i], uv[1]);
553 }
554 hess2[0][0] = DOT(uv[0], a);
555 hess2[0][1] = DOT(uv[0], b);
556 hess2[1][0] = DOT(uv[1], a);
557 hess2[1][1] = DOT(uv[1], b);
558 /* compute eigenvalue(s) */
559 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
560 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
561 if (i == 1) /* double-root (circle) */
562 evalue[1] = evalue[0];
563 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
564 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) )
565 error(INTERNAL, "bad eigenvalue calculation");
566
567 if (evalue[0] > evalue[1]) {
568 ra[0] = sqrt(sqrt(4.0/evalue[0]));
569 ra[1] = sqrt(sqrt(4.0/evalue[1]));
570 slope1 = evalue[1];
571 } else {
572 ra[0] = sqrt(sqrt(4.0/evalue[1]));
573 ra[1] = sqrt(sqrt(4.0/evalue[0]));
574 slope1 = evalue[0];
575 }
576 /* compute unit eigenvectors */
577 if (fabs(hess2[0][1]) <= FTINY)
578 return; /* uv OK as is */
579 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
580 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
581 for (i = 3; i--; ) {
582 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
583 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
584 }
585 VCOPY(uv[0], a);
586 VCOPY(uv[1], b);
587 }
588
589
590 static void
591 ambHessian( /* anisotropic radii & pos. gradient */
592 AMBHEMI *hp,
593 FVECT uv[2], /* returned */
594 float ra[2], /* returned (optional) */
595 float pg[2] /* returned (optional) */
596 )
597 {
598 static char memerrmsg[] = "out of memory in ambHessian()";
599 FVECT (*hessrow)[3] = NULL;
600 FVECT *gradrow = NULL;
601 uby8 *vflags;
602 FVECT hessian[3];
603 FVECT gradient;
604 FFTRI fftr;
605 int i, j;
606 /* be sure to assign unit vectors */
607 VCOPY(uv[0], hp->ux);
608 VCOPY(uv[1], hp->uy);
609 /* clock-wise vertex traversal from sample POV */
610 if (ra != NULL) { /* initialize Hessian row buffer */
611 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
612 if (hessrow == NULL)
613 error(SYSTEM, memerrmsg);
614 memset(hessian, 0, sizeof(hessian));
615 } else if (pg == NULL) /* bogus call? */
616 return;
617 if (pg != NULL) { /* initialize form factor row buffer */
618 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
619 if (gradrow == NULL)
620 error(SYSTEM, memerrmsg);
621 memset(gradient, 0, sizeof(gradient));
622 }
623 /* get vertex position flags */
624 vflags = vertex_flags(hp);
625 /* compute first row of edges */
626 for (j = 0; j < hp->ns-1; j++) {
627 comp_fftri(&fftr, hp, 0, j, VDB_X, vflags);
628 if (hessrow != NULL)
629 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
630 if (gradrow != NULL)
631 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
632 }
633 /* sum each row of triangles */
634 for (i = 0; i < hp->ns-1; i++) {
635 FVECT hesscol[3]; /* compute first vertical edge */
636 FVECT gradcol;
637 comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags);
638 if (hessrow != NULL)
639 comp_hessian(hesscol, &fftr, hp->rp->ron);
640 if (gradrow != NULL)
641 comp_gradient(gradcol, &fftr, hp->rp->ron);
642 for (j = 0; j < hp->ns-1; j++) {
643 FVECT hessdia[3]; /* compute triangle contributions */
644 FVECT graddia;
645 double backg;
646 backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags);
647 /* diagonal (inner) edge */
648 comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags);
649 if (hessrow != NULL) {
650 comp_hessian(hessdia, &fftr, hp->rp->ron);
651 rev_hessian(hesscol);
652 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
653 }
654 if (gradrow != NULL) {
655 comp_gradient(graddia, &fftr, hp->rp->ron);
656 rev_gradient(gradcol);
657 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
658 }
659 /* initialize edge in next row */
660 comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags);
661 if (hessrow != NULL)
662 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
663 if (gradrow != NULL)
664 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
665 /* new column edge & paired triangle */
666 backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags);
667 comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags);
668 if (hessrow != NULL) {
669 comp_hessian(hesscol, &fftr, hp->rp->ron);
670 rev_hessian(hessdia);
671 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
672 if (i < hp->ns-2)
673 rev_hessian(hessrow[j]);
674 }
675 if (gradrow != NULL) {
676 comp_gradient(gradcol, &fftr, hp->rp->ron);
677 rev_gradient(graddia);
678 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
679 if (i < hp->ns-2)
680 rev_gradient(gradrow[j]);
681 }
682 }
683 }
684 /* release row buffers */
685 if (hessrow != NULL) free(hessrow);
686 if (gradrow != NULL) free(gradrow);
687 free(vflags);
688
689 if (ra != NULL) /* extract eigenvectors & radii */
690 eigenvectors(uv, ra, hessian);
691 if (pg != NULL) { /* tangential position gradient */
692 pg[0] = DOT(gradient, uv[0]);
693 pg[1] = DOT(gradient, uv[1]);
694 }
695 }
696
697
698 /* Compute direction gradient from a hemispherical sampling */
699 static void
700 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
701 {
702 AMBSAMP *ap;
703 double dgsum[2];
704 int n;
705 FVECT vd;
706 double gfact;
707
708 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
709 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
710 /* use vector for azimuth + 90deg */
711 VSUB(vd, ap->p, hp->rp->rop);
712 /* brightness over cosine factor */
713 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
714 /* sine = proj_radius/vd_length */
715 dgsum[0] -= DOT(uv[1], vd) * gfact;
716 dgsum[1] += DOT(uv[0], vd) * gfact;
717 }
718 dg[0] = dgsum[0] / (hp->ns*hp->ns);
719 dg[1] = dgsum[1] / (hp->ns*hp->ns);
720 }
721
722
723 /* Make sure radii don't extend beyond what we see in our periphery */
724 static int
725 hem_radii(AMBHEMI *hp, FVECT uv[2], float ra[2])
726 {
727 #ifdef AHEM_MARG
728 #define MAXDACCUM 47
729 const double hemarg = AHEM_MARG*ambacc; /* hem margin */
730 float radivisor2[MAXDACCUM+1];
731 int i, j, k = hp->ns/10 + 1; /* around 5%ile */
732 const int n2accum = (k < MAXDACCUM) ? k : MAXDACCUM ;
733 int na = 0;
734 double d;
735 /* circle around perimeter */
736 for (i = 0; i < hp->ns; i++)
737 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
738 AMBSAMP *ap = &ambsam(hp,i,j);
739 double radiv2 = 0;
740 FVECT vec;
741 if (ap->d <= FTINY)
742 continue;
743 VSUB(vec, ap->p, hp->rp->rop);
744 for (k = 2; k--; ) {
745 d = ap->d * DOT(vec, uv[k]) * ra[k];
746 radiv2 += d*d;
747 }
748 radiv2 *= hemarg*hemarg * ap->d * ap->d;
749 if (radiv2 <= 1.0)
750 continue;
751 /* insert in percentile list */
752 for (k = na; k && radiv2 > radivisor2[k-1]; k--)
753 radivisor2[k] = radivisor2[k-1];
754 radivisor2[k] = radiv2;
755 na += (na < n2accum);
756 }
757 if (na < n2accum) /* current radii are OK? */
758 return(0);
759 /* else apply divisor */
760 d = 1.0/sqrt(radivisor2[na-1]);
761 ra[0] *= d;
762 ra[1] *= d;
763 return(1);
764 #undef MAXDACCUM
765 #else
766 return(0);
767 #endif
768 }
769
770
771 int
772 doambient( /* compute ambient component */
773 COLOR rcol, /* input/output color */
774 RAY *r,
775 double wt,
776 FVECT uv[2], /* returned (optional) */
777 float ra[2], /* returned (optional) */
778 float pg[2], /* returned (optional) */
779 float dg[2] /* returned (optional) */
780 )
781 {
782 AMBHEMI *hp = inithemi(rcol, r, wt);
783 int cnt;
784 FVECT my_uv[2];
785 double d, K, acol[3];
786 AMBSAMP *ap;
787 int i, j;
788 /* check/initialize */
789 if (hp == NULL)
790 return(0);
791 if (uv != NULL)
792 memset(uv, 0, sizeof(FVECT)*2);
793 if (ra != NULL)
794 ra[0] = ra[1] = 0.0;
795 if (pg != NULL)
796 pg[0] = pg[1] = 0.0;
797 if (dg != NULL)
798 dg[0] = dg[1] = 0.0;
799 /* sample the hemisphere */
800 acol[0] = acol[1] = acol[2] = 0.0;
801 cnt = 0;
802 for (i = hp->ns; i--; )
803 for (j = hp->ns; j--; )
804 if ((ap = ambsample(hp, i, j)) != NULL) {
805 addcolor(acol, ap->v);
806 ++cnt;
807 }
808 if (!cnt) {
809 setcolor(rcol, 0.0, 0.0, 0.0);
810 free(hp);
811 return(0); /* no valid samples */
812 }
813 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
814 copycolor(rcol, acol);
815 free(hp);
816 return(-1); /* return value w/o Hessian */
817 }
818 cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
819 if (cnt > 0)
820 ambsupersamp(acol, hp, cnt);
821 copycolor(rcol, acol); /* final indirect irradiance/PI */
822 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
823 free(hp);
824 return(-1); /* no radius or gradient calc. */
825 }
826 if ((d = bright(acol)) > FTINY) { /* normalize Y values */
827 d = 0.99*(hp->ns*hp->ns)/d;
828 K = 0.01;
829 } else { /* or fall back on geometric Hessian */
830 K = 1.0;
831 pg = NULL;
832 dg = NULL;
833 }
834 ap = hp->sa; /* relative Y channel from here on... */
835 for (i = hp->ns*hp->ns; i--; ap++)
836 colval(ap->v,CIEY) = bright(ap->v)*d + K;
837
838 if (uv == NULL) /* make sure we have axis pointers */
839 uv = my_uv;
840 /* compute radii & pos. gradient */
841 ambHessian(hp, uv, ra, pg);
842
843 if (dg != NULL) /* compute direction gradient */
844 ambdirgrad(hp, uv, dg);
845
846 if (ra != NULL) { /* scale/clamp radii */
847 if (pg != NULL) {
848 if (ra[0]*(d = fabs(pg[0])) > 1.0)
849 ra[0] = 1.0/d;
850 if (ra[1]*(d = fabs(pg[1])) > 1.0)
851 ra[1] = 1.0/d;
852 if (ra[0] > ra[1])
853 ra[0] = ra[1];
854 }
855 hem_radii(hp, uv, ra);
856 if (ra[0] < minarad) {
857 ra[0] = minarad;
858 if (ra[1] < minarad)
859 ra[1] = minarad;
860 }
861 ra[0] *= d = 1.0/sqrt(sqrt(wt));
862 if ((ra[1] *= d) > 2.0*ra[0])
863 ra[1] = 2.0*ra[0];
864 if (ra[1] > maxarad) {
865 ra[1] = maxarad;
866 if (ra[0] > maxarad)
867 ra[0] = maxarad;
868 }
869 if (pg != NULL) { /* cap gradient if necessary */
870 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
871 if (d > 1.0) {
872 d = 1.0/sqrt(d);
873 pg[0] *= d;
874 pg[1] *= d;
875 }
876 }
877 }
878 free(hp); /* clean up and return */
879 return(1);
880 }
881
882
883 #else /* ! NEWAMB */
884
885
886 void
887 inithemi( /* initialize sampling hemisphere */
888 AMBHEMI *hp,
889 COLOR ac,
890 RAY *r,
891 double wt
892 )
893 {
894 double d;
895 int i;
896 /* set number of divisions */
897 if (ambacc <= FTINY &&
898 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
899 wt = d; /* avoid ray termination */
900 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
901 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
902 if (hp->nt < i)
903 hp->nt = i;
904 hp->np = PI * hp->nt + 0.5;
905 /* set number of super-samples */
906 hp->ns = ambssamp * wt + 0.5;
907 /* assign coefficient */
908 copycolor(hp->acoef, ac);
909 d = 1.0/(hp->nt*hp->np);
910 scalecolor(hp->acoef, d);
911 /* make axes */
912 VCOPY(hp->uz, r->ron);
913 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
914 for (i = 0; i < 3; i++)
915 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
916 break;
917 if (i >= 3)
918 error(CONSISTENCY, "bad ray direction in inithemi");
919 hp->uy[i] = 1.0;
920 fcross(hp->ux, hp->uy, hp->uz);
921 normalize(hp->ux);
922 fcross(hp->uy, hp->uz, hp->ux);
923 }
924
925
926 int
927 divsample( /* sample a division */
928 AMBSAMP *dp,
929 AMBHEMI *h,
930 RAY *r
931 )
932 {
933 RAY ar;
934 int hlist[3];
935 double spt[2];
936 double xd, yd, zd;
937 double b2;
938 double phi;
939 int i;
940 /* ambient coefficient for weight */
941 if (ambacc > FTINY)
942 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
943 else
944 copycolor(ar.rcoef, h->acoef);
945 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
946 return(-1);
947 if (ambacc > FTINY) {
948 multcolor(ar.rcoef, h->acoef);
949 scalecolor(ar.rcoef, 1./AVGREFL);
950 }
951 hlist[0] = r->rno;
952 hlist[1] = dp->t;
953 hlist[2] = dp->p;
954 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
955 zd = sqrt((dp->t + spt[0])/h->nt);
956 phi = 2.0*PI * (dp->p + spt[1])/h->np;
957 xd = tcos(phi) * zd;
958 yd = tsin(phi) * zd;
959 zd = sqrt(1.0 - zd*zd);
960 for (i = 0; i < 3; i++)
961 ar.rdir[i] = xd*h->ux[i] +
962 yd*h->uy[i] +
963 zd*h->uz[i];
964 checknorm(ar.rdir);
965 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
966 rayvalue(&ar);
967 ndims--;
968 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
969 addcolor(dp->v, ar.rcol);
970 /* use rt to improve gradient calc */
971 if (ar.rt > FTINY && ar.rt < FHUGE)
972 dp->r += 1.0/ar.rt;
973 /* (re)initialize error */
974 if (dp->n++) {
975 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
976 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
977 dp->k = b2/(dp->n*dp->n);
978 } else
979 dp->k = 0.0;
980 return(0);
981 }
982
983
984 static int
985 ambcmp( /* decreasing order */
986 const void *p1,
987 const void *p2
988 )
989 {
990 const AMBSAMP *d1 = (const AMBSAMP *)p1;
991 const AMBSAMP *d2 = (const AMBSAMP *)p2;
992
993 if (d1->k < d2->k)
994 return(1);
995 if (d1->k > d2->k)
996 return(-1);
997 return(0);
998 }
999
1000
1001 static int
1002 ambnorm( /* standard order */
1003 const void *p1,
1004 const void *p2
1005 )
1006 {
1007 const AMBSAMP *d1 = (const AMBSAMP *)p1;
1008 const AMBSAMP *d2 = (const AMBSAMP *)p2;
1009 int c;
1010
1011 if ( (c = d1->t - d2->t) )
1012 return(c);
1013 return(d1->p - d2->p);
1014 }
1015
1016
1017 double
1018 doambient( /* compute ambient component */
1019 COLOR rcol,
1020 RAY *r,
1021 double wt,
1022 FVECT pg,
1023 FVECT dg
1024 )
1025 {
1026 double b, d=0;
1027 AMBHEMI hemi;
1028 AMBSAMP *div;
1029 AMBSAMP dnew;
1030 double acol[3];
1031 AMBSAMP *dp;
1032 double arad;
1033 int divcnt;
1034 int i, j;
1035 /* initialize hemisphere */
1036 inithemi(&hemi, rcol, r, wt);
1037 divcnt = hemi.nt * hemi.np;
1038 /* initialize */
1039 if (pg != NULL)
1040 pg[0] = pg[1] = pg[2] = 0.0;
1041 if (dg != NULL)
1042 dg[0] = dg[1] = dg[2] = 0.0;
1043 setcolor(rcol, 0.0, 0.0, 0.0);
1044 if (divcnt == 0)
1045 return(0.0);
1046 /* allocate super-samples */
1047 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
1048 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
1049 if (div == NULL)
1050 error(SYSTEM, "out of memory in doambient");
1051 } else
1052 div = NULL;
1053 /* sample the divisions */
1054 arad = 0.0;
1055 acol[0] = acol[1] = acol[2] = 0.0;
1056 if ((dp = div) == NULL)
1057 dp = &dnew;
1058 divcnt = 0;
1059 for (i = 0; i < hemi.nt; i++)
1060 for (j = 0; j < hemi.np; j++) {
1061 dp->t = i; dp->p = j;
1062 setcolor(dp->v, 0.0, 0.0, 0.0);
1063 dp->r = 0.0;
1064 dp->n = 0;
1065 if (divsample(dp, &hemi, r) < 0) {
1066 if (div != NULL)
1067 dp++;
1068 continue;
1069 }
1070 arad += dp->r;
1071 divcnt++;
1072 if (div != NULL)
1073 dp++;
1074 else
1075 addcolor(acol, dp->v);
1076 }
1077 if (!divcnt) {
1078 if (div != NULL)
1079 free((void *)div);
1080 return(0.0); /* no samples taken */
1081 }
1082 if (divcnt < hemi.nt*hemi.np) {
1083 pg = dg = NULL; /* incomplete sampling */
1084 hemi.ns = 0;
1085 } else if (arad > FTINY && divcnt/arad < minarad) {
1086 hemi.ns = 0; /* close enough */
1087 } else if (hemi.ns > 0) { /* else perform super-sampling? */
1088 comperrs(div, &hemi); /* compute errors */
1089 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
1090 /* super-sample */
1091 for (i = hemi.ns; i > 0; i--) {
1092 dnew = *div;
1093 if (divsample(&dnew, &hemi, r) < 0) {
1094 dp++;
1095 continue;
1096 }
1097 dp = div; /* reinsert */
1098 j = divcnt < i ? divcnt : i;
1099 while (--j > 0 && dnew.k < dp[1].k) {
1100 *dp = *(dp+1);
1101 dp++;
1102 }
1103 *dp = dnew;
1104 }
1105 if (pg != NULL || dg != NULL) /* restore order */
1106 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
1107 }
1108 /* compute returned values */
1109 if (div != NULL) {
1110 arad = 0.0; /* note: divcnt may be < nt*np */
1111 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
1112 arad += dp->r;
1113 if (dp->n > 1) {
1114 b = 1.0/dp->n;
1115 scalecolor(dp->v, b);
1116 dp->r *= b;
1117 dp->n = 1;
1118 }
1119 addcolor(acol, dp->v);
1120 }
1121 b = bright(acol);
1122 if (b > FTINY) {
1123 b = 1.0/b; /* compute & normalize gradient(s) */
1124 if (pg != NULL) {
1125 posgradient(pg, div, &hemi);
1126 for (i = 0; i < 3; i++)
1127 pg[i] *= b;
1128 }
1129 if (dg != NULL) {
1130 dirgradient(dg, div, &hemi);
1131 for (i = 0; i < 3; i++)
1132 dg[i] *= b;
1133 }
1134 }
1135 free((void *)div);
1136 }
1137 copycolor(rcol, acol);
1138 if (arad <= FTINY)
1139 arad = maxarad;
1140 else
1141 arad = (divcnt+hemi.ns)/arad;
1142 if (pg != NULL) { /* reduce radius if gradient large */
1143 d = DOT(pg,pg);
1144 if (d*arad*arad > 1.0)
1145 arad = 1.0/sqrt(d);
1146 }
1147 if (arad < minarad) {
1148 arad = minarad;
1149 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1150 d = 1.0/arad/sqrt(d);
1151 for (i = 0; i < 3; i++)
1152 pg[i] *= d;
1153 }
1154 }
1155 if ((arad /= sqrt(wt)) > maxarad)
1156 arad = maxarad;
1157 return(arad);
1158 }
1159
1160
1161 void
1162 comperrs( /* compute initial error estimates */
1163 AMBSAMP *da, /* assumes standard ordering */
1164 AMBHEMI *hp
1165 )
1166 {
1167 double b, b2;
1168 int i, j;
1169 AMBSAMP *dp;
1170 /* sum differences from neighbors */
1171 dp = da;
1172 for (i = 0; i < hp->nt; i++)
1173 for (j = 0; j < hp->np; j++) {
1174 #ifdef DEBUG
1175 if (dp->t != i || dp->p != j)
1176 error(CONSISTENCY,
1177 "division order in comperrs");
1178 #endif
1179 b = bright(dp[0].v);
1180 if (i > 0) { /* from above */
1181 b2 = bright(dp[-hp->np].v) - b;
1182 b2 *= b2 * 0.25;
1183 dp[0].k += b2;
1184 dp[-hp->np].k += b2;
1185 }
1186 if (j > 0) { /* from behind */
1187 b2 = bright(dp[-1].v) - b;
1188 b2 *= b2 * 0.25;
1189 dp[0].k += b2;
1190 dp[-1].k += b2;
1191 } else { /* around */
1192 b2 = bright(dp[hp->np-1].v) - b;
1193 b2 *= b2 * 0.25;
1194 dp[0].k += b2;
1195 dp[hp->np-1].k += b2;
1196 }
1197 dp++;
1198 }
1199 /* divide by number of neighbors */
1200 dp = da;
1201 for (j = 0; j < hp->np; j++) /* top row */
1202 (dp++)->k *= 1.0/3.0;
1203 if (hp->nt < 2)
1204 return;
1205 for (i = 1; i < hp->nt-1; i++) /* central region */
1206 for (j = 0; j < hp->np; j++)
1207 (dp++)->k *= 0.25;
1208 for (j = 0; j < hp->np; j++) /* bottom row */
1209 (dp++)->k *= 1.0/3.0;
1210 }
1211
1212
1213 void
1214 posgradient( /* compute position gradient */
1215 FVECT gv,
1216 AMBSAMP *da, /* assumes standard ordering */
1217 AMBHEMI *hp
1218 )
1219 {
1220 int i, j;
1221 double nextsine, lastsine, b, d;
1222 double mag0, mag1;
1223 double phi, cosp, sinp, xd, yd;
1224 AMBSAMP *dp;
1225
1226 xd = yd = 0.0;
1227 for (j = 0; j < hp->np; j++) {
1228 dp = da + j;
1229 mag0 = mag1 = 0.0;
1230 lastsine = 0.0;
1231 for (i = 0; i < hp->nt; i++) {
1232 #ifdef DEBUG
1233 if (dp->t != i || dp->p != j)
1234 error(CONSISTENCY,
1235 "division order in posgradient");
1236 #endif
1237 b = bright(dp->v);
1238 if (i > 0) {
1239 d = dp[-hp->np].r;
1240 if (dp[0].r > d) d = dp[0].r;
1241 /* sin(t)*cos(t)^2 */
1242 d *= lastsine * (1.0 - (double)i/hp->nt);
1243 mag0 += d*(b - bright(dp[-hp->np].v));
1244 }
1245 nextsine = sqrt((double)(i+1)/hp->nt);
1246 if (j > 0) {
1247 d = dp[-1].r;
1248 if (dp[0].r > d) d = dp[0].r;
1249 mag1 += d * (nextsine - lastsine) *
1250 (b - bright(dp[-1].v));
1251 } else {
1252 d = dp[hp->np-1].r;
1253 if (dp[0].r > d) d = dp[0].r;
1254 mag1 += d * (nextsine - lastsine) *
1255 (b - bright(dp[hp->np-1].v));
1256 }
1257 dp += hp->np;
1258 lastsine = nextsine;
1259 }
1260 mag0 *= 2.0*PI / hp->np;
1261 phi = 2.0*PI * (double)j/hp->np;
1262 cosp = tcos(phi); sinp = tsin(phi);
1263 xd += mag0*cosp - mag1*sinp;
1264 yd += mag0*sinp + mag1*cosp;
1265 }
1266 for (i = 0; i < 3; i++)
1267 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1268 }
1269
1270
1271 void
1272 dirgradient( /* compute direction gradient */
1273 FVECT gv,
1274 AMBSAMP *da, /* assumes standard ordering */
1275 AMBHEMI *hp
1276 )
1277 {
1278 int i, j;
1279 double mag;
1280 double phi, xd, yd;
1281 AMBSAMP *dp;
1282
1283 xd = yd = 0.0;
1284 for (j = 0; j < hp->np; j++) {
1285 dp = da + j;
1286 mag = 0.0;
1287 for (i = 0; i < hp->nt; i++) {
1288 #ifdef DEBUG
1289 if (dp->t != i || dp->p != j)
1290 error(CONSISTENCY,
1291 "division order in dirgradient");
1292 #endif
1293 /* tan(t) */
1294 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1295 dp += hp->np;
1296 }
1297 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1298 xd += mag * tcos(phi);
1299 yd += mag * tsin(phi);
1300 }
1301 for (i = 0; i < 3; i++)
1302 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1303 }
1304
1305 #endif /* ! NEWAMB */