#ifndef lint static const char RCSid[] = "$Id: ambcomp.c,v 2.46 2014/05/02 21:58:50 greg Exp $"; #endif /* * Routines to compute "ambient" values using Monte Carlo * * Hessian calculations based on "Practical Hessian-Based Error Control * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz * from ACM SIGGRAPH Asia 2012 conference proceedings. * * Added book-keeping optimization to avoid calculations that would * cancel due to traversal both directions on edges that are adjacent * to same-valued triangles. This cuts about half of Hessian math. * * Declarations of external symbols in ambient.h */ #include "copyright.h" #include "ray.h" #include "ambient.h" #include "random.h" #ifdef NEWAMB extern void SDsquare2disk(double ds[2], double seedx, double seedy); /* vertex direction bit positions */ #define VDB_xy 0 #define VDB_y 01 #define VDB_x 02 #define VDB_Xy 03 #define VDB_xY 04 #define VDB_X 05 #define VDB_Y 06 #define VDB_XY 07 /* get opposite vertex direction bit */ #define VDB_OPP(f) (~(f) & 07) /* adjacent triangle vertex flags */ static const int adjacent_trifl[8] = { 0, /* forbidden diagonal */ 1<ns + (j)) #define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)] typedef struct { FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; double I1, I2; int valid; } FFTRI; /* vectors and coefficients for Hessian calculation */ /* Get index for adjacent vertex */ static int adjacent_verti(AMBHEMI *hp, int i, int j, int dbit) { int i0 = i*hp->ns + j; switch (dbit) { case VDB_y: return(i0 - hp->ns); case VDB_x: return(i0 - 1); case VDB_Xy: return(i0 - hp->ns + 1); case VDB_xY: return(i0 + hp->ns - 1); case VDB_X: return(i0 + 1); case VDB_Y: return(i0 + hp->ns); /* the following should never occur */ case VDB_xy: return(i0 - hp->ns - 1); case VDB_XY: return(i0 + hp->ns + 1); } return(-1); } /* Get vertex direction bit for the opposite edge to complete triangle */ static int vdb_edge(int db1, int db2) { switch (db1) { case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y); case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X); case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY); case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy); case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X); case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y); } error(INTERNAL, "forbidden diagonal in vdb_edge()"); return(-1); } static AMBHEMI * inithemi( /* initialize sampling hemisphere */ COLOR ac, RAY *r, double wt ) { AMBHEMI *hp; double d; int n, i; /* set number of divisions */ if (ambacc <= FTINY && wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) wt = d; /* avoid ray termination */ n = sqrt(ambdiv * wt) + 0.5; i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ if (n < i) n = i; /* allocate sampling array */ hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); if (hp == NULL) return(NULL); hp->rp = r; hp->ns = n; /* assign coefficient */ copycolor(hp->acoef, ac); d = 1.0/(n*n); scalecolor(hp->acoef, d); /* make tangent plane axes */ hp->uy[0] = 0.5 - frandom(); hp->uy[1] = 0.5 - frandom(); hp->uy[2] = 0.5 - frandom(); for (i = 3; i--; ) if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6)) break; if (i < 0) error(CONSISTENCY, "bad ray direction in inithemi"); hp->uy[i] = 1.0; VCROSS(hp->ux, hp->uy, r->ron); normalize(hp->ux); VCROSS(hp->uy, r->ron, hp->ux); /* we're ready to sample */ return(hp); } /* Sample ambient division and apply weighting coefficient */ static int getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n) { int hlist[3], ii; double spt[2], zd; /* ambient coefficient for weight */ if (ambacc > FTINY) setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL); else copycolor(arp->rcoef, hp->acoef); if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0) return(0); if (ambacc > FTINY) { multcolor(arp->rcoef, hp->acoef); scalecolor(arp->rcoef, 1./AVGREFL); } hlist[0] = hp->rp->rno; hlist[1] = j; hlist[2] = i; multisamp(spt, 2, urand(ilhash(hlist,3)+n)); if (!n) { /* avoid border samples for n==0 */ if ((spt[0] < 0.1) | (spt[0] >= 0.9)) spt[0] = 0.1 + 0.8*frandom(); if ((spt[1] < 0.1) | (spt[1] >= 0.9)) spt[1] = 0.1 + 0.8*frandom(); } SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns); zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); for (ii = 3; ii--; ) arp->rdir[ii] = spt[0]*hp->ux[ii] + spt[1]*hp->uy[ii] + zd*hp->rp->ron[ii]; checknorm(arp->rdir); dimlist[ndims++] = ambndx(hp,i,j) + 90171; rayvalue(arp); /* evaluate ray */ ndims--; /* apply coefficient */ multcolor(arp->rcol, arp->rcoef); return(1); } static AMBSAMP * ambsample( /* initial ambient division sample */ AMBHEMI *hp, int i, int j ) { AMBSAMP *ap = &ambsam(hp,i,j); RAY ar; /* generate hemispherical sample */ if (!getambsamp(&ar, hp, i, j, 0)) goto badsample; /* limit vertex distance */ if (ar.rt > 10.0*thescene.cusize) ar.rt = 10.0*thescene.cusize; else if (ar.rt <= FTINY) /* should never happen! */ goto badsample; VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); copycolor(ap->v, ar.rcol); return(ap); badsample: setcolor(ap->v, 0., 0., 0.); VCOPY(ap->p, hp->rp->rop); return(NULL); } /* Estimate errors based on ambient division differences */ static float * getambdiffs(AMBHEMI *hp) { float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float)); float *ep; AMBSAMP *ap; double b, d2; int i, j; if (earr == NULL) /* out of memory? */ return(NULL); /* compute squared neighbor diffs */ for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) for (j = 0; j < hp->ns; j++, ap++, ep++) { b = bright(ap[0].v); if (i) { /* from above */ d2 = b - bright(ap[-hp->ns].v); d2 *= d2; ep[0] += d2; ep[-hp->ns] += d2; } if (j) { /* from behind */ d2 = b - bright(ap[-1].v); d2 *= d2; ep[0] += d2; ep[-1] += d2; } } /* correct for number of neighbors */ earr[0] *= 2.f; earr[hp->ns-1] *= 2.f; earr[(hp->ns-1)*hp->ns] *= 2.f; earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f; for (i = 1; i < hp->ns-1; i++) { earr[i*hp->ns] *= 4./3.; earr[i*hp->ns + hp->ns-1] *= 4./3.; } for (j = 1; j < hp->ns-1; j++) { earr[j] *= 4./3.; earr[(hp->ns-1)*hp->ns + j] *= 4./3.; } return(earr); } /* Perform super-sampling on hemisphere (introduces bias) */ static void ambsupersamp(double acol[3], AMBHEMI *hp, int cnt) { float *earr = getambdiffs(hp); double e2sum = 0; AMBSAMP *ap; RAY ar; COLOR asum; float *ep; int i, j, n; if (earr == NULL) /* just skip calc. if no memory */ return; /* add up estimated variances */ for (ep = earr + hp->ns*hp->ns; ep-- > earr; ) e2sum += *ep; ep = earr; /* perform super-sampling */ for (ap = hp->sa, i = 0; i < hp->ns; i++) for (j = 0; j < hp->ns; j++, ap++) { int nss = *ep/e2sum*cnt + frandom(); setcolor(asum, 0., 0., 0.); for (n = 1; n <= nss; n++) { if (!getambsamp(&ar, hp, i, j, n)) { nss = n-1; break; } addcolor(asum, ar.rcol); } if (nss) { /* update returned ambient value */ const double ssf = 1./(nss + 1); for (n = 3; n--; ) acol[n] += ssf*colval(asum,n) + (ssf - 1.)*colval(ap->v,n); } e2sum -= *ep++; /* update remainders */ cnt -= nss; } free(earr); } /* Compute vertex flags, indicating farthest in each direction */ static uby8 * vertex_flags(AMBHEMI *hp) { uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8)); double *dist2a = (double *)malloc(sizeof(double)*hp->ns); uby8 *vf; int i, j; if ((vflags == NULL) | (dist2a == NULL)) error(SYSTEM, "out of memory in vertex_flags()"); vf = vflags; /* compute distances along first row */ for (j = 0; j < hp->ns; j++) { dist2a[j] = dist2(ambsam(hp,0,j).p, hp->rp->rop); ++vf; if (!j) continue; if (dist2a[j] >= dist2a[j-1]) vf[0] |= 1<ns; i++) { double d2n = dist2(ambsam(hp,i,0).p, hp->rp->rop); for (j = 0; j < hp->ns-1; j++) { double d2 = d2n; if (d2 >= dist2a[j]) /* row before */ vf[0] |= 1<ns] |= 1<= dist2a[j+1]) /* diagonal we care about */ vf[0] |= 1<ns] |= 1<rp->rop); if (d2 >= d2n) /* column after */ vf[0] |= 1<= dist2a[j]) /* final column edge */ vf[0] |= 1<ns] |= 1<sa[v0].v,CIEY)); v1 = adjacent_verti(hp, i, j, dbit1); if (vflags[v0] & 1<v2 */ return(colval(hp->sa[v1].v,CIEY)); v2 = adjacent_verti(hp, i, j, dbit2); if (vflags[v0] & 1<v1 */ return(colval(hp->sa[v2].v,CIEY)); /* else check if v1>v2 */ if (vflags[v1] & 1<sa[v1].v,CIEY)); return(colval(hp->sa[v2].v,CIEY)); } /* Compute vectors and coefficients for Hessian/gradient calcs */ static void comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags) { const int i0 = ambndx(hp,i,j); double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; int i1, ii; ftp->valid = 0; /* check if we can skip this edge */ ii = adjacent_trifl[dbit]; if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */ return; i1 = adjacent_verti(hp, i, j, dbit); ii = adjacent_trifl[VDB_OPP(dbit)]; if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */ return; /* else go ahead with calculation */ VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop); VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop); VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p); VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); dot_e = DOT(ftp->e_i,ftp->e_i); dot_er = DOT(ftp->e_i, ftp->r_i); rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i); rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1); ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) * sqrt( rdot_cp ); ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r + dot_e*ftp->I1 )*0.5*rdot_cp; J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; for (ii = 3; ii--; ) ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii]; ftp->valid++; } /* Compose 3x3 matrix from two vectors */ static void compose_matrix(FVECT mat[3], FVECT va, FVECT vb) { mat[0][0] = 2.0*va[0]*vb[0]; mat[1][1] = 2.0*va[1]*vb[1]; mat[2][2] = 2.0*va[2]*vb[2]; mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0]; mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0]; mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1]; } /* Compute partial 3x3 Hessian matrix for edge */ static void comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) { FVECT ncp; FVECT m1[3], m2[3], m3[3], m4[3]; double d1, d2, d3, d4; double I3, J3, K3; int i, j; if (!ftp->valid) { /* preemptive test */ memset(hess, 0, sizeof(FVECT)*3); return; } /* compute intermediate coefficients */ d1 = 1.0/DOT(ftp->r_i,ftp->r_i); d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1); d3 = 1.0/DOT(ftp->e_i,ftp->e_i); d4 = DOT(ftp->e_i, ftp->r_i); I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 ) / ( 4.0*DOT(ftp->rcp,ftp->rcp) ); J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3; K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3); /* intermediate matrices */ VCROSS(ncp, nrm, ftp->e_i); compose_matrix(m1, ncp, ftp->rI2_eJ2); compose_matrix(m2, ftp->r_i, ftp->r_i); compose_matrix(m3, ftp->e_i, ftp->e_i); compose_matrix(m4, ftp->r_i, ftp->e_i); d1 = DOT(nrm, ftp->rcp); d2 = -d1*ftp->I2; d1 *= 2.0; for (i = 3; i--; ) /* final matrix sum */ for (j = 3; j--; ) { hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] + 2.0*J3*m4[i][j] ); hess[i][j] += d2*(i==j); hess[i][j] *= -1.0/PI; } } /* Reverse hessian calculation result for edge in other direction */ static void rev_hessian(FVECT hess[3]) { int i; for (i = 3; i--; ) { hess[i][0] = -hess[i][0]; hess[i][1] = -hess[i][1]; hess[i][2] = -hess[i][2]; } } /* Add to radiometric Hessian from the given triangle */ static void add2hessian(FVECT hess[3], FVECT ehess1[3], FVECT ehess2[3], FVECT ehess3[3], double v) { int i, j; for (i = 3; i--; ) for (j = 3; j--; ) hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] ); } /* Compute partial displacement form factor gradient for edge */ static void comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm) { FVECT ncp; double f1; int i; if (!ftp->valid) { /* preemptive test */ memset(grad, 0, sizeof(FVECT)); return; } f1 = 2.0*DOT(nrm, ftp->rcp); VCROSS(ncp, nrm, ftp->e_i); for (i = 3; i--; ) grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); } /* Reverse gradient calculation result for edge in other direction */ static void rev_gradient(FVECT grad) { grad[0] = -grad[0]; grad[1] = -grad[1]; grad[2] = -grad[2]; } /* Add to displacement gradient from the given triangle */ static void add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v) { int i; for (i = 3; i--; ) grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] ); } /* Compute anisotropic radii and eigenvector directions */ static int eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3]) { double hess2[2][2]; FVECT a, b; double evalue[2], slope1, xmag1; int i; /* project Hessian to sample plane */ for (i = 3; i--; ) { a[i] = DOT(hessian[i], uv[0]); b[i] = DOT(hessian[i], uv[1]); } hess2[0][0] = DOT(uv[0], a); hess2[0][1] = DOT(uv[0], b); hess2[1][0] = DOT(uv[1], a); hess2[1][1] = DOT(uv[1], b); /* compute eigenvalue(s) */ i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]); if (i == 1) /* double-root (circle) */ evalue[1] = evalue[0]; if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) error(INTERNAL, "bad eigenvalue calculation"); if (evalue[0] > evalue[1]) { ra[0] = sqrt(sqrt(4.0/evalue[0])); ra[1] = sqrt(sqrt(4.0/evalue[1])); slope1 = evalue[1]; } else { ra[0] = sqrt(sqrt(4.0/evalue[1])); ra[1] = sqrt(sqrt(4.0/evalue[0])); slope1 = evalue[0]; } /* compute unit eigenvectors */ if (fabs(hess2[0][1]) <= FTINY) return; /* uv OK as is */ slope1 = (slope1 - hess2[0][0]) / hess2[0][1]; xmag1 = sqrt(1.0/(1.0 + slope1*slope1)); for (i = 3; i--; ) { b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i]; a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i]; } VCOPY(uv[0], a); VCOPY(uv[1], b); } static void ambHessian( /* anisotropic radii & pos. gradient */ AMBHEMI *hp, FVECT uv[2], /* returned */ float ra[2], /* returned (optional) */ float pg[2] /* returned (optional) */ ) { static char memerrmsg[] = "out of memory in ambHessian()"; FVECT (*hessrow)[3] = NULL; FVECT *gradrow = NULL; uby8 *vflags; FVECT hessian[3]; FVECT gradient; FFTRI fftr; int i, j; /* be sure to assign unit vectors */ VCOPY(uv[0], hp->ux); VCOPY(uv[1], hp->uy); /* clock-wise vertex traversal from sample POV */ if (ra != NULL) { /* initialize Hessian row buffer */ hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1)); if (hessrow == NULL) error(SYSTEM, memerrmsg); memset(hessian, 0, sizeof(hessian)); } else if (pg == NULL) /* bogus call? */ return; if (pg != NULL) { /* initialize form factor row buffer */ gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1)); if (gradrow == NULL) error(SYSTEM, memerrmsg); memset(gradient, 0, sizeof(gradient)); } /* get vertex position flags */ vflags = vertex_flags(hp); /* compute first row of edges */ for (j = 0; j < hp->ns-1; j++) { comp_fftri(&fftr, hp, 0, j, VDB_X, vflags); if (hessrow != NULL) comp_hessian(hessrow[j], &fftr, hp->rp->ron); if (gradrow != NULL) comp_gradient(gradrow[j], &fftr, hp->rp->ron); } /* sum each row of triangles */ for (i = 0; i < hp->ns-1; i++) { FVECT hesscol[3]; /* compute first vertical edge */ FVECT gradcol; comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags); if (hessrow != NULL) comp_hessian(hesscol, &fftr, hp->rp->ron); if (gradrow != NULL) comp_gradient(gradcol, &fftr, hp->rp->ron); for (j = 0; j < hp->ns-1; j++) { FVECT hessdia[3]; /* compute triangle contributions */ FVECT graddia; double backg; backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags); /* diagonal (inner) edge */ comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags); if (hessrow != NULL) { comp_hessian(hessdia, &fftr, hp->rp->ron); rev_hessian(hesscol); add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); } if (gradrow != NULL) { comp_gradient(graddia, &fftr, hp->rp->ron); rev_gradient(gradcol); add2gradient(gradient, gradrow[j], graddia, gradcol, backg); } /* initialize edge in next row */ comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags); if (hessrow != NULL) comp_hessian(hessrow[j], &fftr, hp->rp->ron); if (gradrow != NULL) comp_gradient(gradrow[j], &fftr, hp->rp->ron); /* new column edge & paired triangle */ backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags); comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags); if (hessrow != NULL) { comp_hessian(hesscol, &fftr, hp->rp->ron); rev_hessian(hessdia); add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); if (i < hp->ns-2) rev_hessian(hessrow[j]); } if (gradrow != NULL) { comp_gradient(gradcol, &fftr, hp->rp->ron); rev_gradient(graddia); add2gradient(gradient, gradrow[j], graddia, gradcol, backg); if (i < hp->ns-2) rev_gradient(gradrow[j]); } } } /* release row buffers */ if (hessrow != NULL) free(hessrow); if (gradrow != NULL) free(gradrow); free(vflags); if (ra != NULL) /* extract eigenvectors & radii */ eigenvectors(uv, ra, hessian); if (pg != NULL) { /* tangential position gradient */ pg[0] = DOT(gradient, uv[0]); pg[1] = DOT(gradient, uv[1]); } } /* Compute direction gradient from a hemispherical sampling */ static void ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) { AMBSAMP *ap; double dgsum[2]; int n; FVECT vd; double gfact; dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */ for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) { /* use vector for azimuth + 90deg */ VSUB(vd, ap->p, hp->rp->rop); /* brightness over cosine factor */ gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); /* sine = proj_radius/vd_length */ dgsum[0] -= DOT(uv[1], vd) * gfact; dgsum[1] += DOT(uv[0], vd) * gfact; } dg[0] = dgsum[0] / (hp->ns*hp->ns); dg[1] = dgsum[1] / (hp->ns*hp->ns); } int doambient( /* compute ambient component */ COLOR rcol, /* input/output color */ RAY *r, double wt, FVECT uv[2], /* returned (optional) */ float ra[2], /* returned (optional) */ float pg[2], /* returned (optional) */ float dg[2] /* returned (optional) */ ) { AMBHEMI *hp = inithemi(rcol, r, wt); int cnt; FVECT my_uv[2]; double d, K, acol[3]; AMBSAMP *ap; int i, j; /* check/initialize */ if (hp == NULL) return(0); if (uv != NULL) memset(uv, 0, sizeof(FVECT)*2); if (ra != NULL) ra[0] = ra[1] = 0.0; if (pg != NULL) pg[0] = pg[1] = 0.0; if (dg != NULL) dg[0] = dg[1] = 0.0; /* sample the hemisphere */ acol[0] = acol[1] = acol[2] = 0.0; cnt = 0; for (i = hp->ns; i--; ) for (j = hp->ns; j--; ) if ((ap = ambsample(hp, i, j)) != NULL) { addcolor(acol, ap->v); ++cnt; } if (!cnt) { setcolor(rcol, 0.0, 0.0, 0.0); free(hp); return(0); /* no valid samples */ } if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */ copycolor(rcol, acol); free(hp); return(-1); /* return value w/o Hessian */ } cnt = ambssamp*wt + 0.5; /* perform super-sampling? */ if (cnt > 0) ambsupersamp(acol, hp, cnt); copycolor(rcol, acol); /* final indirect irradiance/PI */ if ((ra == NULL) & (pg == NULL) & (dg == NULL)) { free(hp); return(-1); /* no radius or gradient calc. */ } if ((d = bright(acol)) > FTINY) { /* normalize Y values */ d = 0.99*(hp->ns*hp->ns)/d; K = 0.01; } else { /* or fall back on geometric Hessian */ K = 1.0; pg = NULL; dg = NULL; } ap = hp->sa; /* relative Y channel from here on... */ for (i = hp->ns*hp->ns; i--; ap++) colval(ap->v,CIEY) = bright(ap->v)*d + K; if (uv == NULL) /* make sure we have axis pointers */ uv = my_uv; /* compute radii & pos. gradient */ ambHessian(hp, uv, ra, pg); if (dg != NULL) /* compute direction gradient */ ambdirgrad(hp, uv, dg); if (ra != NULL) { /* scale/clamp radii */ if (pg != NULL) { if (ra[0]*(d = fabs(pg[0])) > 1.0) ra[0] = 1.0/d; if (ra[1]*(d = fabs(pg[1])) > 1.0) ra[1] = 1.0/d; if (ra[0] > ra[1]) ra[0] = ra[1]; } if (ra[0] < minarad) { ra[0] = minarad; if (ra[1] < minarad) ra[1] = minarad; } ra[0] *= d = 1.0/sqrt(sqrt(wt)); if ((ra[1] *= d) > 2.0*ra[0]) ra[1] = 2.0*ra[0]; if (ra[1] > maxarad) { ra[1] = maxarad; if (ra[0] > maxarad) ra[0] = maxarad; } if (pg != NULL) { /* cap gradient if necessary */ d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; if (d > 1.0) { d = 1.0/sqrt(d); pg[0] *= d; pg[1] *= d; } } } free(hp); /* clean up and return */ return(1); } #else /* ! NEWAMB */ void inithemi( /* initialize sampling hemisphere */ AMBHEMI *hp, COLOR ac, RAY *r, double wt ) { double d; int i; /* set number of divisions */ if (ambacc <= FTINY && wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) wt = d; /* avoid ray termination */ hp->nt = sqrt(ambdiv * wt / PI) + 0.5; i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */ if (hp->nt < i) hp->nt = i; hp->np = PI * hp->nt + 0.5; /* set number of super-samples */ hp->ns = ambssamp * wt + 0.5; /* assign coefficient */ copycolor(hp->acoef, ac); d = 1.0/(hp->nt*hp->np); scalecolor(hp->acoef, d); /* make axes */ VCOPY(hp->uz, r->ron); hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; for (i = 0; i < 3; i++) if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6) break; if (i >= 3) error(CONSISTENCY, "bad ray direction in inithemi"); hp->uy[i] = 1.0; fcross(hp->ux, hp->uy, hp->uz); normalize(hp->ux); fcross(hp->uy, hp->uz, hp->ux); } int divsample( /* sample a division */ AMBSAMP *dp, AMBHEMI *h, RAY *r ) { RAY ar; int hlist[3]; double spt[2]; double xd, yd, zd; double b2; double phi; int i; /* ambient coefficient for weight */ if (ambacc > FTINY) setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); else copycolor(ar.rcoef, h->acoef); if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0) return(-1); if (ambacc > FTINY) { multcolor(ar.rcoef, h->acoef); scalecolor(ar.rcoef, 1./AVGREFL); } hlist[0] = r->rno; hlist[1] = dp->t; hlist[2] = dp->p; multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n)); zd = sqrt((dp->t + spt[0])/h->nt); phi = 2.0*PI * (dp->p + spt[1])/h->np; xd = tcos(phi) * zd; yd = tsin(phi) * zd; zd = sqrt(1.0 - zd*zd); for (i = 0; i < 3; i++) ar.rdir[i] = xd*h->ux[i] + yd*h->uy[i] + zd*h->uz[i]; checknorm(ar.rdir); dimlist[ndims++] = dp->t*h->np + dp->p + 90171; rayvalue(&ar); ndims--; multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ addcolor(dp->v, ar.rcol); /* use rt to improve gradient calc */ if (ar.rt > FTINY && ar.rt < FHUGE) dp->r += 1.0/ar.rt; /* (re)initialize error */ if (dp->n++) { b2 = bright(dp->v)/dp->n - bright(ar.rcol); b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1)); dp->k = b2/(dp->n*dp->n); } else dp->k = 0.0; return(0); } static int ambcmp( /* decreasing order */ const void *p1, const void *p2 ) { const AMBSAMP *d1 = (const AMBSAMP *)p1; const AMBSAMP *d2 = (const AMBSAMP *)p2; if (d1->k < d2->k) return(1); if (d1->k > d2->k) return(-1); return(0); } static int ambnorm( /* standard order */ const void *p1, const void *p2 ) { const AMBSAMP *d1 = (const AMBSAMP *)p1; const AMBSAMP *d2 = (const AMBSAMP *)p2; int c; if ( (c = d1->t - d2->t) ) return(c); return(d1->p - d2->p); } double doambient( /* compute ambient component */ COLOR rcol, RAY *r, double wt, FVECT pg, FVECT dg ) { double b, d=0; AMBHEMI hemi; AMBSAMP *div; AMBSAMP dnew; double acol[3]; AMBSAMP *dp; double arad; int divcnt; int i, j; /* initialize hemisphere */ inithemi(&hemi, rcol, r, wt); divcnt = hemi.nt * hemi.np; /* initialize */ if (pg != NULL) pg[0] = pg[1] = pg[2] = 0.0; if (dg != NULL) dg[0] = dg[1] = dg[2] = 0.0; setcolor(rcol, 0.0, 0.0, 0.0); if (divcnt == 0) return(0.0); /* allocate super-samples */ if (hemi.ns > 0 || pg != NULL || dg != NULL) { div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP)); if (div == NULL) error(SYSTEM, "out of memory in doambient"); } else div = NULL; /* sample the divisions */ arad = 0.0; acol[0] = acol[1] = acol[2] = 0.0; if ((dp = div) == NULL) dp = &dnew; divcnt = 0; for (i = 0; i < hemi.nt; i++) for (j = 0; j < hemi.np; j++) { dp->t = i; dp->p = j; setcolor(dp->v, 0.0, 0.0, 0.0); dp->r = 0.0; dp->n = 0; if (divsample(dp, &hemi, r) < 0) { if (div != NULL) dp++; continue; } arad += dp->r; divcnt++; if (div != NULL) dp++; else addcolor(acol, dp->v); } if (!divcnt) { if (div != NULL) free((void *)div); return(0.0); /* no samples taken */ } if (divcnt < hemi.nt*hemi.np) { pg = dg = NULL; /* incomplete sampling */ hemi.ns = 0; } else if (arad > FTINY && divcnt/arad < minarad) { hemi.ns = 0; /* close enough */ } else if (hemi.ns > 0) { /* else perform super-sampling? */ comperrs(div, &hemi); /* compute errors */ qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */ /* super-sample */ for (i = hemi.ns; i > 0; i--) { dnew = *div; if (divsample(&dnew, &hemi, r) < 0) { dp++; continue; } dp = div; /* reinsert */ j = divcnt < i ? divcnt : i; while (--j > 0 && dnew.k < dp[1].k) { *dp = *(dp+1); dp++; } *dp = dnew; } if (pg != NULL || dg != NULL) /* restore order */ qsort(div, divcnt, sizeof(AMBSAMP), ambnorm); } /* compute returned values */ if (div != NULL) { arad = 0.0; /* note: divcnt may be < nt*np */ for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) { arad += dp->r; if (dp->n > 1) { b = 1.0/dp->n; scalecolor(dp->v, b); dp->r *= b; dp->n = 1; } addcolor(acol, dp->v); } b = bright(acol); if (b > FTINY) { b = 1.0/b; /* compute & normalize gradient(s) */ if (pg != NULL) { posgradient(pg, div, &hemi); for (i = 0; i < 3; i++) pg[i] *= b; } if (dg != NULL) { dirgradient(dg, div, &hemi); for (i = 0; i < 3; i++) dg[i] *= b; } } free((void *)div); } copycolor(rcol, acol); if (arad <= FTINY) arad = maxarad; else arad = (divcnt+hemi.ns)/arad; if (pg != NULL) { /* reduce radius if gradient large */ d = DOT(pg,pg); if (d*arad*arad > 1.0) arad = 1.0/sqrt(d); } if (arad < minarad) { arad = minarad; if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */ d = 1.0/arad/sqrt(d); for (i = 0; i < 3; i++) pg[i] *= d; } } if ((arad /= sqrt(wt)) > maxarad) arad = maxarad; return(arad); } void comperrs( /* compute initial error estimates */ AMBSAMP *da, /* assumes standard ordering */ AMBHEMI *hp ) { double b, b2; int i, j; AMBSAMP *dp; /* sum differences from neighbors */ dp = da; for (i = 0; i < hp->nt; i++) for (j = 0; j < hp->np; j++) { #ifdef DEBUG if (dp->t != i || dp->p != j) error(CONSISTENCY, "division order in comperrs"); #endif b = bright(dp[0].v); if (i > 0) { /* from above */ b2 = bright(dp[-hp->np].v) - b; b2 *= b2 * 0.25; dp[0].k += b2; dp[-hp->np].k += b2; } if (j > 0) { /* from behind */ b2 = bright(dp[-1].v) - b; b2 *= b2 * 0.25; dp[0].k += b2; dp[-1].k += b2; } else { /* around */ b2 = bright(dp[hp->np-1].v) - b; b2 *= b2 * 0.25; dp[0].k += b2; dp[hp->np-1].k += b2; } dp++; } /* divide by number of neighbors */ dp = da; for (j = 0; j < hp->np; j++) /* top row */ (dp++)->k *= 1.0/3.0; if (hp->nt < 2) return; for (i = 1; i < hp->nt-1; i++) /* central region */ for (j = 0; j < hp->np; j++) (dp++)->k *= 0.25; for (j = 0; j < hp->np; j++) /* bottom row */ (dp++)->k *= 1.0/3.0; } void posgradient( /* compute position gradient */ FVECT gv, AMBSAMP *da, /* assumes standard ordering */ AMBHEMI *hp ) { int i, j; double nextsine, lastsine, b, d; double mag0, mag1; double phi, cosp, sinp, xd, yd; AMBSAMP *dp; xd = yd = 0.0; for (j = 0; j < hp->np; j++) { dp = da + j; mag0 = mag1 = 0.0; lastsine = 0.0; for (i = 0; i < hp->nt; i++) { #ifdef DEBUG if (dp->t != i || dp->p != j) error(CONSISTENCY, "division order in posgradient"); #endif b = bright(dp->v); if (i > 0) { d = dp[-hp->np].r; if (dp[0].r > d) d = dp[0].r; /* sin(t)*cos(t)^2 */ d *= lastsine * (1.0 - (double)i/hp->nt); mag0 += d*(b - bright(dp[-hp->np].v)); } nextsine = sqrt((double)(i+1)/hp->nt); if (j > 0) { d = dp[-1].r; if (dp[0].r > d) d = dp[0].r; mag1 += d * (nextsine - lastsine) * (b - bright(dp[-1].v)); } else { d = dp[hp->np-1].r; if (dp[0].r > d) d = dp[0].r; mag1 += d * (nextsine - lastsine) * (b - bright(dp[hp->np-1].v)); } dp += hp->np; lastsine = nextsine; } mag0 *= 2.0*PI / hp->np; phi = 2.0*PI * (double)j/hp->np; cosp = tcos(phi); sinp = tsin(phi); xd += mag0*cosp - mag1*sinp; yd += mag0*sinp + mag1*cosp; } for (i = 0; i < 3; i++) gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI; } void dirgradient( /* compute direction gradient */ FVECT gv, AMBSAMP *da, /* assumes standard ordering */ AMBHEMI *hp ) { int i, j; double mag; double phi, xd, yd; AMBSAMP *dp; xd = yd = 0.0; for (j = 0; j < hp->np; j++) { dp = da + j; mag = 0.0; for (i = 0; i < hp->nt; i++) { #ifdef DEBUG if (dp->t != i || dp->p != j) error(CONSISTENCY, "division order in dirgradient"); #endif /* tan(t) */ mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0); dp += hp->np; } phi = 2.0*PI * (j+.5)/hp->np + PI/2.0; xd += mag * tcos(phi); yd += mag * tsin(phi); } for (i = 0; i < 3; i++) gv[i] = xd*hp->ux[i] + yd*hp->uy[i]; } #endif /* ! NEWAMB */