ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.4
Committed: Fri Oct 2 16:14:38 1992 UTC (31 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.3: +0 -2 lines
Log Message:
Removed problematic math function declarations

File Contents

# Content
1 /* Copyright (c) 1991 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Routines to compute "ambient" values using Monte Carlo
9 */
10
11 #include "ray.h"
12
13 #include "ambient.h"
14
15 #include "random.h"
16
17 typedef struct {
18 short t, p; /* theta, phi indices */
19 COLOR v; /* value sum */
20 float r; /* 1/distance sum */
21 float k; /* variance for this division */
22 int n; /* number of subsamples */
23 } AMBSAMP; /* ambient sample division */
24
25 typedef struct {
26 FVECT ux, uy, uz; /* x, y and z axis directions */
27 short nt, np; /* number of theta and phi directions */
28 } AMBHEMI; /* ambient sample hemisphere */
29
30
31 static int
32 ambcmp(d1, d2) /* decreasing order */
33 AMBSAMP *d1, *d2;
34 {
35 if (d1->k < d2->k)
36 return(1);
37 if (d1->k > d2->k)
38 return(-1);
39 return(0);
40 }
41
42
43 static int
44 ambnorm(d1, d2) /* standard order */
45 AMBSAMP *d1, *d2;
46 {
47 register int c;
48
49 if (c = d1->t - d2->t)
50 return(c);
51 return(d1->p - d2->p);
52 }
53
54
55 divsample(dp, h, r) /* sample a division */
56 register AMBSAMP *dp;
57 AMBHEMI *h;
58 RAY *r;
59 {
60 RAY ar;
61 int hlist[3];
62 double spt[2];
63 double xd, yd, zd;
64 double b2;
65 double phi;
66 register int i;
67
68 if (rayorigin(&ar, r, AMBIENT, AVGREFL) < 0)
69 return(-1);
70 hlist[0] = r->rno;
71 hlist[1] = dp->t;
72 hlist[2] = dp->p;
73 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
74 zd = sqrt((dp->t + spt[0])/h->nt);
75 phi = 2.0*PI * (dp->p + spt[1])/h->np;
76 xd = cos(phi) * zd;
77 yd = sin(phi) * zd;
78 zd = sqrt(1.0 - zd*zd);
79 for (i = 0; i < 3; i++)
80 ar.rdir[i] = xd*h->ux[i] +
81 yd*h->uy[i] +
82 zd*h->uz[i];
83 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
84 rayvalue(&ar);
85 ndims--;
86 addcolor(dp->v, ar.rcol);
87 if (ar.rt > FTINY && ar.rt < FHUGE)
88 dp->r += 1.0/ar.rt;
89 /* (re)initialize error */
90 if (dp->n++) {
91 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
92 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
93 dp->k = b2/(dp->n*dp->n);
94 } else
95 dp->k = 0.0;
96 return(0);
97 }
98
99
100 double
101 doambient(acol, r, wt, pg, dg) /* compute ambient component */
102 COLOR acol;
103 RAY *r;
104 double wt;
105 FVECT pg, dg;
106 {
107 double b, d;
108 AMBHEMI hemi;
109 AMBSAMP *div;
110 AMBSAMP dnew;
111 register AMBSAMP *dp;
112 double arad;
113 int ndivs, ns;
114 register int i, j;
115 /* initialize color */
116 setcolor(acol, 0.0, 0.0, 0.0);
117 /* initialize hemisphere */
118 inithemi(&hemi, r, wt);
119 ndivs = hemi.nt * hemi.np;
120 if (ndivs == 0)
121 return(0.0);
122 /* set number of super-samples */
123 ns = ambssamp * wt + 0.5;
124 if (ns > 0 || pg != NULL || dg != NULL) {
125 div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP));
126 if (div == NULL)
127 error(SYSTEM, "out of memory in doambient");
128 } else
129 div = NULL;
130 /* sample the divisions */
131 arad = 0.0;
132 if ((dp = div) == NULL)
133 dp = &dnew;
134 for (i = 0; i < hemi.nt; i++)
135 for (j = 0; j < hemi.np; j++) {
136 dp->t = i; dp->p = j;
137 setcolor(dp->v, 0.0, 0.0, 0.0);
138 dp->r = 0.0;
139 dp->n = 0;
140 if (divsample(dp, &hemi, r) < 0)
141 goto oopsy;
142 if (div != NULL)
143 dp++;
144 else {
145 addcolor(acol, dp->v);
146 arad += dp->r;
147 }
148 }
149 if (ns > 0) { /* perform super-sampling */
150 comperrs(div, &hemi); /* compute errors */
151 qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */
152 /* super-sample */
153 for (i = ns; i > 0; i--) {
154 copystruct(&dnew, div);
155 if (divsample(&dnew, &hemi, r) < 0)
156 goto oopsy;
157 /* reinsert */
158 dp = div;
159 j = ndivs < i ? ndivs : i;
160 while (--j > 0 && dnew.k < dp[1].k) {
161 copystruct(dp, dp+1);
162 dp++;
163 }
164 copystruct(dp, &dnew);
165 }
166 if (pg != NULL || dg != NULL) /* restore order */
167 qsort(div, ndivs, sizeof(AMBSAMP), ambnorm);
168 }
169 /* compute returned values */
170 if (div != NULL) {
171 for (i = ndivs, dp = div; i-- > 0; dp++) {
172 arad += dp->r;
173 if (dp->n > 1) {
174 b = 1.0/dp->n;
175 scalecolor(dp->v, b);
176 dp->r *= b;
177 dp->n = 1;
178 }
179 addcolor(acol, dp->v);
180 }
181 b = bright(acol);
182 if (b > FTINY) {
183 b = ndivs/b;
184 if (pg != NULL) {
185 posgradient(pg, div, &hemi);
186 for (i = 0; i < 3; i++)
187 pg[i] *= b;
188 }
189 if (dg != NULL) {
190 dirgradient(dg, div, &hemi);
191 for (i = 0; i < 3; i++)
192 dg[i] *= b;
193 }
194 } else {
195 if (pg != NULL)
196 for (i = 0; i < 3; i++)
197 pg[i] = 0.0;
198 if (dg != NULL)
199 for (i = 0; i < 3; i++)
200 dg[i] = 0.0;
201 }
202 free((char *)div);
203 }
204 b = 1.0/ndivs;
205 scalecolor(acol, b);
206 if (arad <= FTINY)
207 arad = maxarad;
208 else
209 arad = (ndivs+ns)/arad;
210 if (pg != NULL) { /* reduce radius if gradient large */
211 d = DOT(pg,pg);
212 if (d*arad*arad > 1.0)
213 arad = 1.0/sqrt(d);
214 }
215 if (arad < minarad) {
216 arad = minarad;
217 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
218 d = 1.0/arad/sqrt(d);
219 for (i = 0; i < 3; i++)
220 pg[i] *= d;
221 }
222 }
223 if ((arad /= sqrt(wt)) > maxarad)
224 arad = maxarad;
225 return(arad);
226 oopsy:
227 if (div != NULL)
228 free((char *)div);
229 return(0.0);
230 }
231
232
233 inithemi(hp, r, wt) /* initialize sampling hemisphere */
234 register AMBHEMI *hp;
235 RAY *r;
236 double wt;
237 {
238 register int i;
239 /* set number of divisions */
240 if (wt < (.25*PI)/ambdiv+FTINY) {
241 hp->nt = hp->np = 0;
242 return; /* zero samples */
243 }
244 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
245 hp->np = PI * hp->nt + 0.5;
246 /* make axes */
247 VCOPY(hp->uz, r->ron);
248 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
249 for (i = 0; i < 3; i++)
250 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
251 break;
252 if (i >= 3)
253 error(CONSISTENCY, "bad ray direction in inithemi");
254 hp->uy[i] = 1.0;
255 fcross(hp->ux, hp->uy, hp->uz);
256 normalize(hp->ux);
257 fcross(hp->uy, hp->uz, hp->ux);
258 }
259
260
261 comperrs(da, hp) /* compute initial error estimates */
262 AMBSAMP *da; /* assumes standard ordering */
263 register AMBHEMI *hp;
264 {
265 double b, b2;
266 int i, j;
267 register AMBSAMP *dp;
268 /* sum differences from neighbors */
269 dp = da;
270 for (i = 0; i < hp->nt; i++)
271 for (j = 0; j < hp->np; j++) {
272 #ifdef DEBUG
273 if (dp->t != i || dp->p != j)
274 error(CONSISTENCY,
275 "division order in comperrs");
276 #endif
277 b = bright(dp[0].v);
278 if (i > 0) { /* from above */
279 b2 = bright(dp[-hp->np].v) - b;
280 b2 *= b2 * 0.25;
281 dp[0].k += b2;
282 dp[-hp->np].k += b2;
283 }
284 if (j > 0) { /* from behind */
285 b2 = bright(dp[-1].v) - b;
286 b2 *= b2 * 0.25;
287 dp[0].k += b2;
288 dp[-1].k += b2;
289 } else { /* around */
290 b2 = bright(dp[hp->np-1].v) - b;
291 b2 *= b2 * 0.25;
292 dp[0].k += b2;
293 dp[hp->np-1].k += b2;
294 }
295 dp++;
296 }
297 /* divide by number of neighbors */
298 dp = da;
299 for (j = 0; j < hp->np; j++) /* top row */
300 (dp++)->k *= 1.0/3.0;
301 if (hp->nt < 2)
302 return;
303 for (i = 1; i < hp->nt-1; i++) /* central region */
304 for (j = 0; j < hp->np; j++)
305 (dp++)->k *= 0.25;
306 for (j = 0; j < hp->np; j++) /* bottom row */
307 (dp++)->k *= 1.0/3.0;
308 }
309
310
311 posgradient(gv, da, hp) /* compute position gradient */
312 FVECT gv;
313 AMBSAMP *da; /* assumes standard ordering */
314 register AMBHEMI *hp;
315 {
316 register int i, j;
317 double nextsine, lastsine, b, d;
318 double mag0, mag1;
319 double phi, cosp, sinp, xd, yd;
320 register AMBSAMP *dp;
321
322 xd = yd = 0.0;
323 for (j = 0; j < hp->np; j++) {
324 dp = da + j;
325 mag0 = mag1 = 0.0;
326 lastsine = 0.0;
327 for (i = 0; i < hp->nt; i++) {
328 #ifdef DEBUG
329 if (dp->t != i || dp->p != j)
330 error(CONSISTENCY,
331 "division order in posgradient");
332 #endif
333 b = bright(dp->v);
334 if (i > 0) {
335 d = dp[-hp->np].r;
336 if (dp[0].r > d) d = dp[0].r;
337 /* sin(t)*cos(t)^2 */
338 d *= lastsine * (1.0 - (double)i/hp->nt);
339 mag0 += d*(b - bright(dp[-hp->np].v));
340 }
341 nextsine = sqrt((double)(i+1)/hp->nt);
342 if (j > 0) {
343 d = dp[-1].r;
344 if (dp[0].r > d) d = dp[0].r;
345 mag1 += d * (nextsine - lastsine) *
346 (b - bright(dp[-1].v));
347 } else {
348 d = dp[hp->np-1].r;
349 if (dp[0].r > d) d = dp[0].r;
350 mag1 += d * (nextsine - lastsine) *
351 (b - bright(dp[hp->np-1].v));
352 }
353 dp += hp->np;
354 lastsine = nextsine;
355 }
356 mag0 *= 2.0*PI / hp->np;
357 phi = 2.0*PI * (double)j/hp->np;
358 cosp = cos(phi); sinp = sin(phi);
359 xd += mag0*cosp - mag1*sinp;
360 yd += mag0*sinp + mag1*cosp;
361 }
362 for (i = 0; i < 3; i++)
363 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/PI;
364 }
365
366
367 dirgradient(gv, da, hp) /* compute direction gradient */
368 FVECT gv;
369 AMBSAMP *da; /* assumes standard ordering */
370 register AMBHEMI *hp;
371 {
372 register int i, j;
373 double mag;
374 double phi, xd, yd;
375 register AMBSAMP *dp;
376
377 xd = yd = 0.0;
378 for (j = 0; j < hp->np; j++) {
379 dp = da + j;
380 mag = 0.0;
381 for (i = 0; i < hp->nt; i++) {
382 #ifdef DEBUG
383 if (dp->t != i || dp->p != j)
384 error(CONSISTENCY,
385 "division order in dirgradient");
386 #endif
387 /* tan(t) */
388 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
389 dp += hp->np;
390 }
391 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
392 xd += mag * cos(phi);
393 yd += mag * sin(phi);
394 }
395 for (i = 0; i < 3; i++)
396 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/(hp->nt*hp->np);
397 }