ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.38
Committed: Sat Apr 26 15:54:17 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.37: +20 -11 lines
Log Message:
Fixed eigenvalue calculation for double-root and randomization of axes

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.37 2014/04/26 05:09:54 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Declarations of external symbols in ambient.h
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "random.h"
19
20 #ifdef NEWAMB
21
22 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
23
24 typedef struct {
25 RAY *rp; /* originating ray sample */
26 FVECT ux, uy; /* tangent axis unit vectors */
27 int ns; /* number of samples per axis */
28 COLOR acoef; /* division contribution coefficient */
29 struct s_ambsamp {
30 COLOR v; /* hemisphere sample value */
31 FVECT p; /* intersection point */
32 } sa[1]; /* sample array (extends struct) */
33 } AMBHEMI; /* ambient sample hemisphere */
34
35 #define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)]
36
37 typedef struct {
38 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
39 double I1, I2;
40 } FFTRI; /* vectors and coefficients for Hessian calculation */
41
42
43 static AMBHEMI *
44 inithemi( /* initialize sampling hemisphere */
45 COLOR ac,
46 RAY *r,
47 double wt
48 )
49 {
50 AMBHEMI *hp;
51 double d;
52 int n, i;
53 /* set number of divisions */
54 if (ambacc <= FTINY &&
55 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
56 wt = d; /* avoid ray termination */
57 n = sqrt(ambdiv * wt) + 0.5;
58 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
59 if (n < i)
60 n = i;
61 /* allocate sampling array */
62 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) +
63 sizeof(struct s_ambsamp)*(n*n - 1));
64 if (hp == NULL)
65 return(NULL);
66 hp->rp = r;
67 hp->ns = n;
68 /* assign coefficient */
69 copycolor(hp->acoef, ac);
70 d = 1.0/(n*n);
71 scalecolor(hp->acoef, d);
72 /* make tangent plane axes */
73 hp->uy[0] = 0.5 - frandom();
74 hp->uy[1] = 0.5 - frandom();
75 hp->uy[2] = 0.5 - frandom();
76 for (i = 3; i--; )
77 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
78 break;
79 if (i < 0)
80 error(CONSISTENCY, "bad ray direction in inithemi");
81 hp->uy[i] = 1.0;
82 VCROSS(hp->ux, hp->uy, r->ron);
83 normalize(hp->ux);
84 VCROSS(hp->uy, r->ron, hp->ux);
85 /* we're ready to sample */
86 return(hp);
87 }
88
89
90 static struct s_ambsamp *
91 ambsample( /* sample an ambient direction */
92 AMBHEMI *hp,
93 int i,
94 int j
95 )
96 {
97 struct s_ambsamp *ap = &ambsamp(hp,i,j);
98 RAY ar;
99 double spt[2], zd;
100 int ii;
101 /* ambient coefficient for weight */
102 if (ambacc > FTINY)
103 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
104 else
105 copycolor(ar.rcoef, hp->acoef);
106 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
107 goto badsample;
108 if (ambacc > FTINY) {
109 multcolor(ar.rcoef, hp->acoef);
110 scalecolor(ar.rcoef, 1./AVGREFL);
111 }
112 /* generate hemispherical sample */
113 SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns,
114 (j+.1+.8*frandom())/hp->ns );
115 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
116 for (ii = 3; ii--; )
117 ar.rdir[ii] = spt[0]*hp->ux[ii] +
118 spt[1]*hp->uy[ii] +
119 zd*hp->rp->ron[ii];
120 checknorm(ar.rdir);
121 dimlist[ndims++] = i*hp->ns + j + 90171;
122 rayvalue(&ar); /* evaluate ray */
123 ndims--;
124 /* limit vertex distance */
125 if (ar.rt > 10.0*thescene.cusize)
126 ar.rt = 10.0*thescene.cusize;
127 else if (ar.rt <= FTINY) /* should never happen! */
128 goto badsample;
129 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
130 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
131 copycolor(ap->v, ar.rcol);
132 return(ap);
133 badsample:
134 setcolor(ap->v, 0., 0., 0.);
135 VCOPY(ap->p, hp->rp->rop);
136 return(NULL);
137 }
138
139
140 /* Compute vectors and coefficients for Hessian/gradient calcs */
141 static void
142 comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop)
143 {
144 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
145 int i;
146
147 VSUB(ftp->r_i, ap0, rop);
148 VSUB(ftp->r_i1, ap1, rop);
149 VSUB(ftp->e_i, ap1, ap0);
150 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
151 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
152 dot_e = DOT(ftp->e_i,ftp->e_i);
153 dot_er = DOT(ftp->e_i, ftp->r_i);
154 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
155 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
156 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
157 sqrt( rdot_cp );
158 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
159 dot_e*ftp->I1 )*0.5*rdot_cp;
160 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
161 for (i = 3; i--; )
162 ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i];
163 }
164
165
166 /* Compose 3x3 matrix from two vectors */
167 static void
168 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
169 {
170 mat[0][0] = 2.0*va[0]*vb[0];
171 mat[1][1] = 2.0*va[1]*vb[1];
172 mat[2][2] = 2.0*va[2]*vb[2];
173 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
174 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
175 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
176 }
177
178
179 /* Compute partial 3x3 Hessian matrix for edge */
180 static void
181 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
182 {
183 FVECT ncp;
184 FVECT m1[3], m2[3], m3[3], m4[3];
185 double d1, d2, d3, d4;
186 double I3, J3, K3;
187 int i, j;
188 /* compute intermediate coefficients */
189 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
190 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
191 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
192 d4 = DOT(ftp->e_i, ftp->r_i);
193 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
194 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
195 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
196 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
197 /* intermediate matrices */
198 VCROSS(ncp, nrm, ftp->e_i);
199 compose_matrix(m1, ncp, ftp->rI2_eJ2);
200 compose_matrix(m2, ftp->r_i, ftp->r_i);
201 compose_matrix(m3, ftp->e_i, ftp->e_i);
202 compose_matrix(m4, ftp->r_i, ftp->e_i);
203 d1 = DOT(nrm, ftp->rcp);
204 d2 = -d1*ftp->I2;
205 d1 *= 2.0;
206 for (i = 3; i--; ) /* final matrix sum */
207 for (j = 3; j--; ) {
208 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
209 2.0*J3*m4[i][j] );
210 hess[i][j] += d2*(i==j);
211 hess[i][j] *= 1.0/PI;
212 }
213 }
214
215
216 /* Reverse hessian calculation result for edge in other direction */
217 static void
218 rev_hessian(FVECT hess[3])
219 {
220 int i;
221
222 for (i = 3; i--; ) {
223 hess[i][0] = -hess[i][0];
224 hess[i][1] = -hess[i][1];
225 hess[i][2] = -hess[i][2];
226 }
227 }
228
229
230 /* Add to radiometric Hessian from the given triangle */
231 static void
232 add2hessian(FVECT hess[3], FVECT ehess1[3],
233 FVECT ehess2[3], FVECT ehess3[3], COLORV v)
234 {
235 int i, j;
236
237 for (i = 3; i--; )
238 for (j = 3; j--; )
239 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
240 }
241
242
243 /* Compute partial displacement form factor gradient for edge */
244 static void
245 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
246 {
247 FVECT ncp;
248 double f1;
249 int i;
250
251 f1 = 2.0*DOT(nrm, ftp->rcp);
252 VCROSS(ncp, nrm, ftp->e_i);
253 for (i = 3; i--; )
254 grad[i] = (-0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
255 }
256
257
258 /* Reverse gradient calculation result for edge in other direction */
259 static void
260 rev_gradient(FVECT grad)
261 {
262 grad[0] = -grad[0];
263 grad[1] = -grad[1];
264 grad[2] = -grad[2];
265 }
266
267
268 /* Add to displacement gradient from the given triangle */
269 static void
270 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v)
271 {
272 int i;
273
274 for (i = 3; i--; )
275 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
276 }
277
278
279 /* Return brightness of furthest ambient sample */
280 static COLORV
281 back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2,
282 struct s_ambsamp *ap3, FVECT orig)
283 {
284 COLORV vback;
285 FVECT vec;
286 double d2, d2best;
287
288 VSUB(vec, ap1->p, orig);
289 d2best = DOT(vec,vec);
290 vback = colval(ap1->v,CIEY);
291 VSUB(vec, ap2->p, orig);
292 d2 = DOT(vec,vec);
293 if (d2 > d2best) {
294 d2best = d2;
295 vback = colval(ap2->v,CIEY);
296 }
297 VSUB(vec, ap3->p, orig);
298 d2 = DOT(vec,vec);
299 if (d2 > d2best)
300 return(colval(ap3->v,CIEY));
301 return(vback);
302 }
303
304
305 /* Compute anisotropic radii and eigenvector directions */
306 static int
307 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
308 {
309 double hess2[2][2];
310 FVECT a, b;
311 double evalue[2], slope1, xmag1;
312 int i;
313 /* project Hessian to sample plane */
314 for (i = 3; i--; ) {
315 a[i] = DOT(hessian[i], uv[0]);
316 b[i] = DOT(hessian[i], uv[1]);
317 }
318 hess2[0][0] = DOT(uv[0], a);
319 hess2[0][1] = DOT(uv[0], b);
320 hess2[1][0] = DOT(uv[1], a);
321 hess2[1][1] = DOT(uv[1], b);
322 /* compute eigenvalue(s) */
323 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
324 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
325 if (i == 1) /* double-root (circle) */
326 evalue[1] = evalue[0];
327 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
328 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) )
329 error(INTERNAL, "bad eigenvalue calculation");
330
331 if (evalue[0] > evalue[1]) {
332 ra[0] = sqrt(sqrt(4.0/evalue[0]));
333 ra[1] = sqrt(sqrt(4.0/evalue[1]));
334 slope1 = evalue[1];
335 } else {
336 ra[0] = sqrt(sqrt(4.0/evalue[1]));
337 ra[1] = sqrt(sqrt(4.0/evalue[0]));
338 slope1 = evalue[0];
339 }
340 /* compute unit eigenvectors */
341 if (fabs(hess2[0][1]) <= FTINY)
342 return; /* uv OK as is */
343 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
344 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
345 for (i = 3; i--; ) {
346 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
347 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
348 }
349 VCOPY(uv[0], a);
350 VCOPY(uv[1], b);
351 }
352
353
354 static void
355 ambHessian( /* anisotropic radii & pos. gradient */
356 AMBHEMI *hp,
357 FVECT uv[2], /* returned */
358 float ra[2], /* returned (optional) */
359 float pg[2] /* returned (optional) */
360 )
361 {
362 static char memerrmsg[] = "out of memory in ambHessian()";
363 FVECT (*hessrow)[3] = NULL;
364 FVECT *gradrow = NULL;
365 FVECT hessian[3];
366 FVECT gradient;
367 FFTRI fftr;
368 int i, j;
369 /* be sure to assign unit vectors */
370 VCOPY(uv[0], hp->ux);
371 VCOPY(uv[1], hp->uy);
372 /* clock-wise vertex traversal from sample POV */
373 if (ra != NULL) { /* initialize Hessian row buffer */
374 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
375 if (hessrow == NULL)
376 error(SYSTEM, memerrmsg);
377 memset(hessian, 0, sizeof(hessian));
378 } else if (pg == NULL) /* bogus call? */
379 return;
380 if (pg != NULL) { /* initialize form factor row buffer */
381 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
382 if (gradrow == NULL)
383 error(SYSTEM, memerrmsg);
384 memset(gradient, 0, sizeof(gradient));
385 }
386 /* compute first row of edges */
387 for (j = 0; j < hp->ns-1; j++) {
388 comp_fftri(&fftr, ambsamp(hp,0,j).p,
389 ambsamp(hp,0,j+1).p, hp->rp->rop);
390 if (hessrow != NULL)
391 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
392 if (gradrow != NULL)
393 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
394 }
395 /* sum each row of triangles */
396 for (i = 0; i < hp->ns-1; i++) {
397 FVECT hesscol[3]; /* compute first vertical edge */
398 FVECT gradcol;
399 comp_fftri(&fftr, ambsamp(hp,i,0).p,
400 ambsamp(hp,i+1,0).p, hp->rp->rop);
401 if (hessrow != NULL)
402 comp_hessian(hesscol, &fftr, hp->rp->ron);
403 if (gradrow != NULL)
404 comp_gradient(gradcol, &fftr, hp->rp->ron);
405 for (j = 0; j < hp->ns-1; j++) {
406 FVECT hessdia[3]; /* compute triangle contributions */
407 FVECT graddia;
408 COLORV backg;
409 backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1),
410 &ambsamp(hp,i+1,j), hp->rp->rop);
411 /* diagonal (inner) edge */
412 comp_fftri(&fftr, ambsamp(hp,i,j+1).p,
413 ambsamp(hp,i+1,j).p, hp->rp->rop);
414 if (hessrow != NULL) {
415 comp_hessian(hessdia, &fftr, hp->rp->ron);
416 rev_hessian(hesscol);
417 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
418 }
419 if (gradient != NULL) {
420 comp_gradient(graddia, &fftr, hp->rp->ron);
421 rev_gradient(gradcol);
422 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
423 }
424 /* initialize edge in next row */
425 comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p,
426 ambsamp(hp,i+1,j).p, hp->rp->rop);
427 if (hessrow != NULL)
428 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
429 if (gradrow != NULL)
430 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
431 /* new column edge & paired triangle */
432 backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1),
433 &ambsamp(hp,i+1,j), hp->rp->rop);
434 comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p,
435 hp->rp->rop);
436 if (hessrow != NULL) {
437 comp_hessian(hesscol, &fftr, hp->rp->ron);
438 rev_hessian(hessdia);
439 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
440 if (i < hp->ns-2)
441 rev_hessian(hessrow[j]);
442 }
443 if (gradrow != NULL) {
444 comp_gradient(gradcol, &fftr, hp->rp->ron);
445 rev_gradient(graddia);
446 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
447 if (i < hp->ns-2)
448 rev_gradient(gradrow[j]);
449 }
450 }
451 }
452 /* release row buffers */
453 if (hessrow != NULL) free(hessrow);
454 if (gradrow != NULL) free(gradrow);
455
456 if (ra != NULL) /* extract eigenvectors & radii */
457 eigenvectors(uv, ra, hessian);
458 if (pg != NULL) { /* tangential position gradient */
459 pg[0] = DOT(gradient, uv[0]);
460 pg[1] = DOT(gradient, uv[1]);
461 }
462 }
463
464
465 /* Compute direction gradient from a hemispherical sampling */
466 static void
467 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
468 {
469 struct s_ambsamp *ap;
470 double dgsum[2];
471 int n;
472 FVECT vd;
473 double gfact;
474
475 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
476 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
477 /* use vector for azimuth + 90deg */
478 VSUB(vd, ap->p, hp->rp->rop);
479 /* brightness over cosine factor */
480 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
481 /* -sine = -proj_radius/vd_length */
482 dgsum[0] += DOT(uv[1], vd) * gfact;
483 dgsum[1] -= DOT(uv[0], vd) * gfact;
484 }
485 dg[0] = dgsum[0] / (hp->ns*hp->ns);
486 dg[1] = dgsum[1] / (hp->ns*hp->ns);
487 }
488
489
490 int
491 doambient( /* compute ambient component */
492 COLOR rcol, /* input/output color */
493 RAY *r,
494 double wt,
495 FVECT uv[2], /* returned (optional) */
496 float ra[2], /* returned (optional) */
497 float pg[2], /* returned (optional) */
498 float dg[2] /* returned (optional) */
499 )
500 {
501 AMBHEMI *hp = inithemi(rcol, r, wt);
502 int cnt = 0;
503 FVECT my_uv[2];
504 double d, K, acol[3];
505 struct s_ambsamp *ap;
506 int i, j;
507 /* check/initialize */
508 if (hp == NULL)
509 return(0);
510 if (uv != NULL)
511 memset(uv, 0, sizeof(FVECT)*2);
512 if (ra != NULL)
513 ra[0] = ra[1] = 0.0;
514 if (pg != NULL)
515 pg[0] = pg[1] = 0.0;
516 if (dg != NULL)
517 dg[0] = dg[1] = 0.0;
518 /* sample the hemisphere */
519 acol[0] = acol[1] = acol[2] = 0.0;
520 for (i = hp->ns; i--; )
521 for (j = hp->ns; j--; )
522 if ((ap = ambsample(hp, i, j)) != NULL) {
523 addcolor(acol, ap->v);
524 ++cnt;
525 }
526 if (!cnt) {
527 setcolor(rcol, 0.0, 0.0, 0.0);
528 free(hp);
529 return(0); /* no valid samples */
530 }
531 copycolor(rcol, acol); /* final indirect irradiance/PI */
532 if (cnt < hp->ns*hp->ns || /* incomplete sampling? */
533 (ra == NULL) & (pg == NULL) & (dg == NULL)) {
534 free(hp);
535 return(-1); /* no radius or gradient calc. */
536 }
537 if (bright(acol) > FTINY) { /* normalize Y values */
538 d = 0.99*cnt/bright(acol);
539 K = 0.01;
540 } else { /* geometric Hessian fall-back */
541 d = 0.0;
542 K = 1.0;
543 pg = NULL;
544 dg = NULL;
545 }
546 ap = hp->sa; /* relative Y channel from here on... */
547 for (i = hp->ns*hp->ns; i--; ap++)
548 colval(ap->v,CIEY) = bright(ap->v)*d + K;
549
550 if (uv == NULL) /* make sure we have axis pointers */
551 uv = my_uv;
552 /* compute radii & pos. gradient */
553 ambHessian(hp, uv, ra, pg);
554
555 if (dg != NULL) /* compute direction gradient */
556 ambdirgrad(hp, uv, dg);
557
558 if (ra != NULL) { /* scale/clamp radii */
559 if (pg != NULL) {
560 if (ra[0]*(d = fabs(pg[0])) > 1.0)
561 ra[0] = 1.0/d;
562 if (ra[1]*(d = fabs(pg[1])) > 1.0)
563 ra[1] = 1.0/d;
564 if (ra[0] > ra[1])
565 ra[0] = ra[1];
566 }
567 if (ra[0] < minarad) {
568 ra[0] = minarad;
569 if (ra[1] < minarad)
570 ra[1] = minarad;
571 }
572 ra[0] *= d = 1.0/sqrt(sqrt(wt));
573 if ((ra[1] *= d) > 2.0*ra[0])
574 ra[1] = 2.0*ra[0];
575 if (ra[1] > maxarad) {
576 ra[1] = maxarad;
577 if (ra[0] > maxarad)
578 ra[0] = maxarad;
579 }
580 if (pg != NULL) { /* cap gradient if necessary */
581 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
582 if (d > 1.0) {
583 d = 1.0/sqrt(d);
584 pg[0] *= d;
585 pg[1] *= d;
586 }
587 }
588 }
589 free(hp); /* clean up and return */
590 return(1);
591 }
592
593
594 #else /* ! NEWAMB */
595
596
597 void
598 inithemi( /* initialize sampling hemisphere */
599 AMBHEMI *hp,
600 COLOR ac,
601 RAY *r,
602 double wt
603 )
604 {
605 double d;
606 int i;
607 /* set number of divisions */
608 if (ambacc <= FTINY &&
609 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
610 wt = d; /* avoid ray termination */
611 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
612 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
613 if (hp->nt < i)
614 hp->nt = i;
615 hp->np = PI * hp->nt + 0.5;
616 /* set number of super-samples */
617 hp->ns = ambssamp * wt + 0.5;
618 /* assign coefficient */
619 copycolor(hp->acoef, ac);
620 d = 1.0/(hp->nt*hp->np);
621 scalecolor(hp->acoef, d);
622 /* make axes */
623 VCOPY(hp->uz, r->ron);
624 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
625 for (i = 0; i < 3; i++)
626 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
627 break;
628 if (i >= 3)
629 error(CONSISTENCY, "bad ray direction in inithemi");
630 hp->uy[i] = 1.0;
631 fcross(hp->ux, hp->uy, hp->uz);
632 normalize(hp->ux);
633 fcross(hp->uy, hp->uz, hp->ux);
634 }
635
636
637 int
638 divsample( /* sample a division */
639 AMBSAMP *dp,
640 AMBHEMI *h,
641 RAY *r
642 )
643 {
644 RAY ar;
645 int hlist[3];
646 double spt[2];
647 double xd, yd, zd;
648 double b2;
649 double phi;
650 int i;
651 /* ambient coefficient for weight */
652 if (ambacc > FTINY)
653 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
654 else
655 copycolor(ar.rcoef, h->acoef);
656 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
657 return(-1);
658 if (ambacc > FTINY) {
659 multcolor(ar.rcoef, h->acoef);
660 scalecolor(ar.rcoef, 1./AVGREFL);
661 }
662 hlist[0] = r->rno;
663 hlist[1] = dp->t;
664 hlist[2] = dp->p;
665 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
666 zd = sqrt((dp->t + spt[0])/h->nt);
667 phi = 2.0*PI * (dp->p + spt[1])/h->np;
668 xd = tcos(phi) * zd;
669 yd = tsin(phi) * zd;
670 zd = sqrt(1.0 - zd*zd);
671 for (i = 0; i < 3; i++)
672 ar.rdir[i] = xd*h->ux[i] +
673 yd*h->uy[i] +
674 zd*h->uz[i];
675 checknorm(ar.rdir);
676 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
677 rayvalue(&ar);
678 ndims--;
679 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
680 addcolor(dp->v, ar.rcol);
681 /* use rt to improve gradient calc */
682 if (ar.rt > FTINY && ar.rt < FHUGE)
683 dp->r += 1.0/ar.rt;
684 /* (re)initialize error */
685 if (dp->n++) {
686 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
687 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
688 dp->k = b2/(dp->n*dp->n);
689 } else
690 dp->k = 0.0;
691 return(0);
692 }
693
694
695 static int
696 ambcmp( /* decreasing order */
697 const void *p1,
698 const void *p2
699 )
700 {
701 const AMBSAMP *d1 = (const AMBSAMP *)p1;
702 const AMBSAMP *d2 = (const AMBSAMP *)p2;
703
704 if (d1->k < d2->k)
705 return(1);
706 if (d1->k > d2->k)
707 return(-1);
708 return(0);
709 }
710
711
712 static int
713 ambnorm( /* standard order */
714 const void *p1,
715 const void *p2
716 )
717 {
718 const AMBSAMP *d1 = (const AMBSAMP *)p1;
719 const AMBSAMP *d2 = (const AMBSAMP *)p2;
720 int c;
721
722 if ( (c = d1->t - d2->t) )
723 return(c);
724 return(d1->p - d2->p);
725 }
726
727
728 double
729 doambient( /* compute ambient component */
730 COLOR rcol,
731 RAY *r,
732 double wt,
733 FVECT pg,
734 FVECT dg
735 )
736 {
737 double b, d=0;
738 AMBHEMI hemi;
739 AMBSAMP *div;
740 AMBSAMP dnew;
741 double acol[3];
742 AMBSAMP *dp;
743 double arad;
744 int divcnt;
745 int i, j;
746 /* initialize hemisphere */
747 inithemi(&hemi, rcol, r, wt);
748 divcnt = hemi.nt * hemi.np;
749 /* initialize */
750 if (pg != NULL)
751 pg[0] = pg[1] = pg[2] = 0.0;
752 if (dg != NULL)
753 dg[0] = dg[1] = dg[2] = 0.0;
754 setcolor(rcol, 0.0, 0.0, 0.0);
755 if (divcnt == 0)
756 return(0.0);
757 /* allocate super-samples */
758 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
759 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
760 if (div == NULL)
761 error(SYSTEM, "out of memory in doambient");
762 } else
763 div = NULL;
764 /* sample the divisions */
765 arad = 0.0;
766 acol[0] = acol[1] = acol[2] = 0.0;
767 if ((dp = div) == NULL)
768 dp = &dnew;
769 divcnt = 0;
770 for (i = 0; i < hemi.nt; i++)
771 for (j = 0; j < hemi.np; j++) {
772 dp->t = i; dp->p = j;
773 setcolor(dp->v, 0.0, 0.0, 0.0);
774 dp->r = 0.0;
775 dp->n = 0;
776 if (divsample(dp, &hemi, r) < 0) {
777 if (div != NULL)
778 dp++;
779 continue;
780 }
781 arad += dp->r;
782 divcnt++;
783 if (div != NULL)
784 dp++;
785 else
786 addcolor(acol, dp->v);
787 }
788 if (!divcnt) {
789 if (div != NULL)
790 free((void *)div);
791 return(0.0); /* no samples taken */
792 }
793 if (divcnt < hemi.nt*hemi.np) {
794 pg = dg = NULL; /* incomplete sampling */
795 hemi.ns = 0;
796 } else if (arad > FTINY && divcnt/arad < minarad) {
797 hemi.ns = 0; /* close enough */
798 } else if (hemi.ns > 0) { /* else perform super-sampling? */
799 comperrs(div, &hemi); /* compute errors */
800 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
801 /* super-sample */
802 for (i = hemi.ns; i > 0; i--) {
803 dnew = *div;
804 if (divsample(&dnew, &hemi, r) < 0) {
805 dp++;
806 continue;
807 }
808 dp = div; /* reinsert */
809 j = divcnt < i ? divcnt : i;
810 while (--j > 0 && dnew.k < dp[1].k) {
811 *dp = *(dp+1);
812 dp++;
813 }
814 *dp = dnew;
815 }
816 if (pg != NULL || dg != NULL) /* restore order */
817 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
818 }
819 /* compute returned values */
820 if (div != NULL) {
821 arad = 0.0; /* note: divcnt may be < nt*np */
822 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
823 arad += dp->r;
824 if (dp->n > 1) {
825 b = 1.0/dp->n;
826 scalecolor(dp->v, b);
827 dp->r *= b;
828 dp->n = 1;
829 }
830 addcolor(acol, dp->v);
831 }
832 b = bright(acol);
833 if (b > FTINY) {
834 b = 1.0/b; /* compute & normalize gradient(s) */
835 if (pg != NULL) {
836 posgradient(pg, div, &hemi);
837 for (i = 0; i < 3; i++)
838 pg[i] *= b;
839 }
840 if (dg != NULL) {
841 dirgradient(dg, div, &hemi);
842 for (i = 0; i < 3; i++)
843 dg[i] *= b;
844 }
845 }
846 free((void *)div);
847 }
848 copycolor(rcol, acol);
849 if (arad <= FTINY)
850 arad = maxarad;
851 else
852 arad = (divcnt+hemi.ns)/arad;
853 if (pg != NULL) { /* reduce radius if gradient large */
854 d = DOT(pg,pg);
855 if (d*arad*arad > 1.0)
856 arad = 1.0/sqrt(d);
857 }
858 if (arad < minarad) {
859 arad = minarad;
860 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
861 d = 1.0/arad/sqrt(d);
862 for (i = 0; i < 3; i++)
863 pg[i] *= d;
864 }
865 }
866 if ((arad /= sqrt(wt)) > maxarad)
867 arad = maxarad;
868 return(arad);
869 }
870
871
872 void
873 comperrs( /* compute initial error estimates */
874 AMBSAMP *da, /* assumes standard ordering */
875 AMBHEMI *hp
876 )
877 {
878 double b, b2;
879 int i, j;
880 AMBSAMP *dp;
881 /* sum differences from neighbors */
882 dp = da;
883 for (i = 0; i < hp->nt; i++)
884 for (j = 0; j < hp->np; j++) {
885 #ifdef DEBUG
886 if (dp->t != i || dp->p != j)
887 error(CONSISTENCY,
888 "division order in comperrs");
889 #endif
890 b = bright(dp[0].v);
891 if (i > 0) { /* from above */
892 b2 = bright(dp[-hp->np].v) - b;
893 b2 *= b2 * 0.25;
894 dp[0].k += b2;
895 dp[-hp->np].k += b2;
896 }
897 if (j > 0) { /* from behind */
898 b2 = bright(dp[-1].v) - b;
899 b2 *= b2 * 0.25;
900 dp[0].k += b2;
901 dp[-1].k += b2;
902 } else { /* around */
903 b2 = bright(dp[hp->np-1].v) - b;
904 b2 *= b2 * 0.25;
905 dp[0].k += b2;
906 dp[hp->np-1].k += b2;
907 }
908 dp++;
909 }
910 /* divide by number of neighbors */
911 dp = da;
912 for (j = 0; j < hp->np; j++) /* top row */
913 (dp++)->k *= 1.0/3.0;
914 if (hp->nt < 2)
915 return;
916 for (i = 1; i < hp->nt-1; i++) /* central region */
917 for (j = 0; j < hp->np; j++)
918 (dp++)->k *= 0.25;
919 for (j = 0; j < hp->np; j++) /* bottom row */
920 (dp++)->k *= 1.0/3.0;
921 }
922
923
924 void
925 posgradient( /* compute position gradient */
926 FVECT gv,
927 AMBSAMP *da, /* assumes standard ordering */
928 AMBHEMI *hp
929 )
930 {
931 int i, j;
932 double nextsine, lastsine, b, d;
933 double mag0, mag1;
934 double phi, cosp, sinp, xd, yd;
935 AMBSAMP *dp;
936
937 xd = yd = 0.0;
938 for (j = 0; j < hp->np; j++) {
939 dp = da + j;
940 mag0 = mag1 = 0.0;
941 lastsine = 0.0;
942 for (i = 0; i < hp->nt; i++) {
943 #ifdef DEBUG
944 if (dp->t != i || dp->p != j)
945 error(CONSISTENCY,
946 "division order in posgradient");
947 #endif
948 b = bright(dp->v);
949 if (i > 0) {
950 d = dp[-hp->np].r;
951 if (dp[0].r > d) d = dp[0].r;
952 /* sin(t)*cos(t)^2 */
953 d *= lastsine * (1.0 - (double)i/hp->nt);
954 mag0 += d*(b - bright(dp[-hp->np].v));
955 }
956 nextsine = sqrt((double)(i+1)/hp->nt);
957 if (j > 0) {
958 d = dp[-1].r;
959 if (dp[0].r > d) d = dp[0].r;
960 mag1 += d * (nextsine - lastsine) *
961 (b - bright(dp[-1].v));
962 } else {
963 d = dp[hp->np-1].r;
964 if (dp[0].r > d) d = dp[0].r;
965 mag1 += d * (nextsine - lastsine) *
966 (b - bright(dp[hp->np-1].v));
967 }
968 dp += hp->np;
969 lastsine = nextsine;
970 }
971 mag0 *= 2.0*PI / hp->np;
972 phi = 2.0*PI * (double)j/hp->np;
973 cosp = tcos(phi); sinp = tsin(phi);
974 xd += mag0*cosp - mag1*sinp;
975 yd += mag0*sinp + mag1*cosp;
976 }
977 for (i = 0; i < 3; i++)
978 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
979 }
980
981
982 void
983 dirgradient( /* compute direction gradient */
984 FVECT gv,
985 AMBSAMP *da, /* assumes standard ordering */
986 AMBHEMI *hp
987 )
988 {
989 int i, j;
990 double mag;
991 double phi, xd, yd;
992 AMBSAMP *dp;
993
994 xd = yd = 0.0;
995 for (j = 0; j < hp->np; j++) {
996 dp = da + j;
997 mag = 0.0;
998 for (i = 0; i < hp->nt; i++) {
999 #ifdef DEBUG
1000 if (dp->t != i || dp->p != j)
1001 error(CONSISTENCY,
1002 "division order in dirgradient");
1003 #endif
1004 /* tan(t) */
1005 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1006 dp += hp->np;
1007 }
1008 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1009 xd += mag * tcos(phi);
1010 yd += mag * tsin(phi);
1011 }
1012 for (i = 0; i < 3; i++)
1013 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1014 }
1015
1016 #endif /* ! NEWAMB */