ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.37
Committed: Sat Apr 26 05:09:54 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.36: +7 -6 lines
Log Message:
Went back to old axis initialization method

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.36 2014/04/26 04:37:48 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Declarations of external symbols in ambient.h
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "random.h"
19
20 #ifdef NEWAMB
21
22 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
23
24 typedef struct {
25 RAY *rp; /* originating ray sample */
26 FVECT ux, uy; /* tangent axis unit vectors */
27 int ns; /* number of samples per axis */
28 COLOR acoef; /* division contribution coefficient */
29 struct s_ambsamp {
30 COLOR v; /* hemisphere sample value */
31 FVECT p; /* intersection point */
32 } sa[1]; /* sample array (extends struct) */
33 } AMBHEMI; /* ambient sample hemisphere */
34
35 #define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)]
36
37 typedef struct {
38 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
39 double I1, I2;
40 } FFTRI; /* vectors and coefficients for Hessian calculation */
41
42
43 static AMBHEMI *
44 inithemi( /* initialize sampling hemisphere */
45 COLOR ac,
46 RAY *r,
47 double wt
48 )
49 {
50 AMBHEMI *hp;
51 double d;
52 int n, i;
53 /* set number of divisions */
54 if (ambacc <= FTINY &&
55 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
56 wt = d; /* avoid ray termination */
57 n = sqrt(ambdiv * wt) + 0.5;
58 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
59 if (n < i)
60 n = i;
61 /* allocate sampling array */
62 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) +
63 sizeof(struct s_ambsamp)*(n*n - 1));
64 if (hp == NULL)
65 return(NULL);
66 hp->rp = r;
67 hp->ns = n;
68 /* assign coefficient */
69 copycolor(hp->acoef, ac);
70 d = 1.0/(n*n);
71 scalecolor(hp->acoef, d);
72 /* make tangent plane axes */
73 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
74 for (i = 3; i--; )
75 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
76 break;
77 if (i < 0)
78 error(CONSISTENCY, "bad ray direction in inithemi");
79 hp->uy[i] = 1.0;
80 VCROSS(hp->ux, hp->uy, r->ron);
81 normalize(hp->ux);
82 VCROSS(hp->uy, r->ron, hp->ux);
83 /* we're ready to sample */
84 return(hp);
85 }
86
87
88 static struct s_ambsamp *
89 ambsample( /* sample an ambient direction */
90 AMBHEMI *hp,
91 int i,
92 int j
93 )
94 {
95 struct s_ambsamp *ap = &ambsamp(hp,i,j);
96 RAY ar;
97 double spt[2], zd;
98 int ii;
99 /* ambient coefficient for weight */
100 if (ambacc > FTINY)
101 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
102 else
103 copycolor(ar.rcoef, hp->acoef);
104 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
105 goto badsample;
106 if (ambacc > FTINY) {
107 multcolor(ar.rcoef, hp->acoef);
108 scalecolor(ar.rcoef, 1./AVGREFL);
109 }
110 /* generate hemispherical sample */
111 SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns,
112 (j+.1+.8*frandom())/hp->ns );
113 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
114 for (ii = 3; ii--; )
115 ar.rdir[ii] = spt[0]*hp->ux[ii] +
116 spt[1]*hp->uy[ii] +
117 zd*hp->rp->ron[ii];
118 checknorm(ar.rdir);
119 dimlist[ndims++] = i*hp->ns + j + 90171;
120 rayvalue(&ar); /* evaluate ray */
121 ndims--;
122 /* limit vertex distance */
123 if (ar.rt > 10.0*thescene.cusize)
124 ar.rt = 10.0*thescene.cusize;
125 else if (ar.rt <= FTINY) /* should never happen! */
126 goto badsample;
127 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
128 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
129 copycolor(ap->v, ar.rcol);
130 return(ap);
131 badsample:
132 setcolor(ap->v, 0., 0., 0.);
133 VCOPY(ap->p, hp->rp->rop);
134 return(NULL);
135 }
136
137
138 /* Compute vectors and coefficients for Hessian/gradient calcs */
139 static void
140 comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop)
141 {
142 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
143 int i;
144
145 VSUB(ftp->r_i, ap0, rop);
146 VSUB(ftp->r_i1, ap1, rop);
147 VSUB(ftp->e_i, ap1, ap0);
148 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
149 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
150 dot_e = DOT(ftp->e_i,ftp->e_i);
151 dot_er = DOT(ftp->e_i, ftp->r_i);
152 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
153 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
154 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
155 sqrt( rdot_cp );
156 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
157 dot_e*ftp->I1 )*0.5*rdot_cp;
158 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
159 for (i = 3; i--; )
160 ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i];
161 }
162
163
164 /* Compose 3x3 matrix from two vectors */
165 static void
166 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
167 {
168 mat[0][0] = 2.0*va[0]*vb[0];
169 mat[1][1] = 2.0*va[1]*vb[1];
170 mat[2][2] = 2.0*va[2]*vb[2];
171 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
172 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
173 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
174 }
175
176
177 /* Compute partial 3x3 Hessian matrix for edge */
178 static void
179 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
180 {
181 FVECT ncp;
182 FVECT m1[3], m2[3], m3[3], m4[3];
183 double d1, d2, d3, d4;
184 double I3, J3, K3;
185 int i, j;
186 /* compute intermediate coefficients */
187 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
188 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
189 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
190 d4 = DOT(ftp->e_i, ftp->r_i);
191 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
192 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
193 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
194 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
195 /* intermediate matrices */
196 VCROSS(ncp, nrm, ftp->e_i);
197 compose_matrix(m1, ncp, ftp->rI2_eJ2);
198 compose_matrix(m2, ftp->r_i, ftp->r_i);
199 compose_matrix(m3, ftp->e_i, ftp->e_i);
200 compose_matrix(m4, ftp->r_i, ftp->e_i);
201 d1 = DOT(nrm, ftp->rcp);
202 d2 = -d1*ftp->I2;
203 d1 *= 2.0;
204 for (i = 3; i--; ) /* final matrix sum */
205 for (j = 3; j--; ) {
206 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
207 2.0*J3*m4[i][j] );
208 hess[i][j] += d2*(i==j);
209 hess[i][j] *= 1.0/PI;
210 }
211 }
212
213
214 /* Reverse hessian calculation result for edge in other direction */
215 static void
216 rev_hessian(FVECT hess[3])
217 {
218 int i;
219
220 for (i = 3; i--; ) {
221 hess[i][0] = -hess[i][0];
222 hess[i][1] = -hess[i][1];
223 hess[i][2] = -hess[i][2];
224 }
225 }
226
227
228 /* Add to radiometric Hessian from the given triangle */
229 static void
230 add2hessian(FVECT hess[3], FVECT ehess1[3],
231 FVECT ehess2[3], FVECT ehess3[3], COLORV v)
232 {
233 int i, j;
234
235 for (i = 3; i--; )
236 for (j = 3; j--; )
237 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
238 }
239
240
241 /* Compute partial displacement form factor gradient for edge */
242 static void
243 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
244 {
245 FVECT ncp;
246 double f1;
247 int i;
248
249 f1 = 2.0*DOT(nrm, ftp->rcp);
250 VCROSS(ncp, nrm, ftp->e_i);
251 for (i = 3; i--; )
252 grad[i] = (-0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
253 }
254
255
256 /* Reverse gradient calculation result for edge in other direction */
257 static void
258 rev_gradient(FVECT grad)
259 {
260 grad[0] = -grad[0];
261 grad[1] = -grad[1];
262 grad[2] = -grad[2];
263 }
264
265
266 /* Add to displacement gradient from the given triangle */
267 static void
268 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v)
269 {
270 int i;
271
272 for (i = 3; i--; )
273 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
274 }
275
276
277 /* Return brightness of furthest ambient sample */
278 static COLORV
279 back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2,
280 struct s_ambsamp *ap3, FVECT orig)
281 {
282 COLORV vback;
283 FVECT vec;
284 double d2, d2best;
285
286 VSUB(vec, ap1->p, orig);
287 d2best = DOT(vec,vec);
288 vback = colval(ap1->v,CIEY);
289 VSUB(vec, ap2->p, orig);
290 d2 = DOT(vec,vec);
291 if (d2 > d2best) {
292 d2best = d2;
293 vback = colval(ap2->v,CIEY);
294 }
295 VSUB(vec, ap3->p, orig);
296 d2 = DOT(vec,vec);
297 if (d2 > d2best)
298 return(colval(ap3->v,CIEY));
299 return(vback);
300 }
301
302
303 /* Compute anisotropic radii and eigenvector directions */
304 static int
305 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
306 {
307 double hess2[2][2];
308 FVECT a, b;
309 double evalue[2], slope1, xmag1;
310 int i;
311 /* project Hessian to sample plane */
312 for (i = 3; i--; ) {
313 a[i] = DOT(hessian[i], uv[0]);
314 b[i] = DOT(hessian[i], uv[1]);
315 }
316 hess2[0][0] = DOT(uv[0], a);
317 hess2[0][1] = DOT(uv[0], b);
318 hess2[1][0] = DOT(uv[1], a);
319 hess2[1][1] = DOT(uv[1], b);
320 /* compute eigenvalues */
321 if ( quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
322 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 ||
323 ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
324 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) )
325 error(INTERNAL, "bad eigenvalue calculation");
326
327 if (evalue[0] > evalue[1]) {
328 ra[0] = sqrt(sqrt(4.0/evalue[0]));
329 ra[1] = sqrt(sqrt(4.0/evalue[1]));
330 slope1 = evalue[1];
331 } else {
332 ra[0] = sqrt(sqrt(4.0/evalue[1]));
333 ra[1] = sqrt(sqrt(4.0/evalue[0]));
334 slope1 = evalue[0];
335 }
336 /* compute unit eigenvectors */
337 if (fabs(hess2[0][1]) <= FTINY)
338 return; /* uv OK as is */
339 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
340 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
341 for (i = 3; i--; ) {
342 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
343 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
344 }
345 VCOPY(uv[0], a);
346 VCOPY(uv[1], b);
347 }
348
349
350 static void
351 ambHessian( /* anisotropic radii & pos. gradient */
352 AMBHEMI *hp,
353 FVECT uv[2], /* returned */
354 float ra[2], /* returned (optional) */
355 float pg[2] /* returned (optional) */
356 )
357 {
358 static char memerrmsg[] = "out of memory in ambHessian()";
359 FVECT (*hessrow)[3] = NULL;
360 FVECT *gradrow = NULL;
361 FVECT hessian[3];
362 FVECT gradient;
363 FFTRI fftr;
364 int i, j;
365 /* be sure to assign unit vectors */
366 VCOPY(uv[0], hp->ux);
367 VCOPY(uv[1], hp->uy);
368 /* clock-wise vertex traversal from sample POV */
369 if (ra != NULL) { /* initialize Hessian row buffer */
370 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
371 if (hessrow == NULL)
372 error(SYSTEM, memerrmsg);
373 memset(hessian, 0, sizeof(hessian));
374 } else if (pg == NULL) /* bogus call? */
375 return;
376 if (pg != NULL) { /* initialize form factor row buffer */
377 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
378 if (gradrow == NULL)
379 error(SYSTEM, memerrmsg);
380 memset(gradient, 0, sizeof(gradient));
381 }
382 /* compute first row of edges */
383 for (j = 0; j < hp->ns-1; j++) {
384 comp_fftri(&fftr, ambsamp(hp,0,j).p,
385 ambsamp(hp,0,j+1).p, hp->rp->rop);
386 if (hessrow != NULL)
387 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
388 if (gradrow != NULL)
389 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
390 }
391 /* sum each row of triangles */
392 for (i = 0; i < hp->ns-1; i++) {
393 FVECT hesscol[3]; /* compute first vertical edge */
394 FVECT gradcol;
395 comp_fftri(&fftr, ambsamp(hp,i,0).p,
396 ambsamp(hp,i+1,0).p, hp->rp->rop);
397 if (hessrow != NULL)
398 comp_hessian(hesscol, &fftr, hp->rp->ron);
399 if (gradrow != NULL)
400 comp_gradient(gradcol, &fftr, hp->rp->ron);
401 for (j = 0; j < hp->ns-1; j++) {
402 FVECT hessdia[3]; /* compute triangle contributions */
403 FVECT graddia;
404 COLORV backg;
405 backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1),
406 &ambsamp(hp,i+1,j), hp->rp->rop);
407 /* diagonal (inner) edge */
408 comp_fftri(&fftr, ambsamp(hp,i,j+1).p,
409 ambsamp(hp,i+1,j).p, hp->rp->rop);
410 if (hessrow != NULL) {
411 comp_hessian(hessdia, &fftr, hp->rp->ron);
412 rev_hessian(hesscol);
413 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
414 }
415 if (gradient != NULL) {
416 comp_gradient(graddia, &fftr, hp->rp->ron);
417 rev_gradient(gradcol);
418 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
419 }
420 /* initialize edge in next row */
421 comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p,
422 ambsamp(hp,i+1,j).p, hp->rp->rop);
423 if (hessrow != NULL)
424 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
425 if (gradrow != NULL)
426 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
427 /* new column edge & paired triangle */
428 backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1),
429 &ambsamp(hp,i+1,j), hp->rp->rop);
430 comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p,
431 hp->rp->rop);
432 if (hessrow != NULL) {
433 comp_hessian(hesscol, &fftr, hp->rp->ron);
434 rev_hessian(hessdia);
435 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
436 if (i < hp->ns-2)
437 rev_hessian(hessrow[j]);
438 }
439 if (gradrow != NULL) {
440 comp_gradient(gradcol, &fftr, hp->rp->ron);
441 rev_gradient(graddia);
442 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
443 if (i < hp->ns-2)
444 rev_gradient(gradrow[j]);
445 }
446 }
447 }
448 /* release row buffers */
449 if (hessrow != NULL) free(hessrow);
450 if (gradrow != NULL) free(gradrow);
451
452 if (ra != NULL) /* extract eigenvectors & radii */
453 eigenvectors(uv, ra, hessian);
454 if (pg != NULL) { /* tangential position gradient */
455 pg[0] = DOT(gradient, uv[0]);
456 pg[1] = DOT(gradient, uv[1]);
457 }
458 }
459
460
461 /* Compute direction gradient from a hemispherical sampling */
462 static void
463 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
464 {
465 struct s_ambsamp *ap;
466 double dgsum[2];
467 int n;
468 FVECT vd;
469 double gfact;
470
471 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
472 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
473 /* use vector for azimuth + 90deg */
474 VSUB(vd, ap->p, hp->rp->rop);
475 /* brightness over cosine factor */
476 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
477 /* -sine = -proj_radius/vd_length */
478 dgsum[0] += DOT(uv[1], vd) * gfact;
479 dgsum[1] -= DOT(uv[0], vd) * gfact;
480 }
481 dg[0] = dgsum[0] / (hp->ns*hp->ns);
482 dg[1] = dgsum[1] / (hp->ns*hp->ns);
483 }
484
485
486 int
487 doambient( /* compute ambient component */
488 COLOR rcol, /* input/output color */
489 RAY *r,
490 double wt,
491 FVECT uv[2], /* returned (optional) */
492 float ra[2], /* returned (optional) */
493 float pg[2], /* returned (optional) */
494 float dg[2] /* returned (optional) */
495 )
496 {
497 AMBHEMI *hp = inithemi(rcol, r, wt);
498 int cnt = 0;
499 FVECT my_uv[2];
500 double d, acol[3];
501 struct s_ambsamp *ap;
502 int i, j;
503 /* check/initialize */
504 if (hp == NULL)
505 return(0);
506 if (uv != NULL)
507 memset(uv, 0, sizeof(FVECT)*2);
508 if (ra != NULL)
509 ra[0] = ra[1] = 0.0;
510 if (pg != NULL)
511 pg[0] = pg[1] = 0.0;
512 if (dg != NULL)
513 dg[0] = dg[1] = 0.0;
514 /* sample the hemisphere */
515 acol[0] = acol[1] = acol[2] = 0.0;
516 for (i = hp->ns; i--; )
517 for (j = hp->ns; j--; )
518 if ((ap = ambsample(hp, i, j)) != NULL) {
519 addcolor(acol, ap->v);
520 ++cnt;
521 }
522 if (!cnt) {
523 setcolor(rcol, 0.0, 0.0, 0.0);
524 free(hp);
525 return(0); /* no valid samples */
526 }
527 copycolor(rcol, acol); /* final indirect irradiance/PI */
528 if (cnt < hp->ns*hp->ns || /* incomplete sampling? */
529 (ra == NULL) & (pg == NULL) & (dg == NULL)) {
530 free(hp);
531 return(-1); /* no radius or gradient calc. */
532 }
533 if (bright(acol) > FTINY) /* normalize Y values */
534 d = cnt/bright(acol);
535 else
536 d = 0.0;
537 ap = hp->sa; /* relative Y channel from here on... */
538 for (i = hp->ns*hp->ns; i--; ap++)
539 colval(ap->v,CIEY) = bright(ap->v)*d + 0.01;
540
541 if (uv == NULL) /* make sure we have axis pointers */
542 uv = my_uv;
543 /* compute radii & pos. gradient */
544 ambHessian(hp, uv, ra, pg);
545
546 if (dg != NULL) /* compute direction gradient */
547 ambdirgrad(hp, uv, dg);
548
549 if (ra != NULL) { /* scale/clamp radii */
550 if (pg != NULL) {
551 if (ra[0]*(d = fabs(pg[0])) > 1.0)
552 ra[0] = 1.0/d;
553 if (ra[1]*(d = fabs(pg[1])) > 1.0)
554 ra[1] = 1.0/d;
555 if (ra[0] > ra[1])
556 ra[0] = ra[1];
557 }
558 if (ra[0] < minarad) {
559 ra[0] = minarad;
560 if (ra[1] < minarad)
561 ra[1] = minarad;
562 }
563 ra[0] *= d = 1.0/sqrt(sqrt(wt));
564 if ((ra[1] *= d) > 2.0*ra[0])
565 ra[1] = 2.0*ra[0];
566 if (ra[1] > maxarad) {
567 ra[1] = maxarad;
568 if (ra[0] > maxarad)
569 ra[0] = maxarad;
570 }
571 if (pg != NULL) { /* cap gradient if necessary */
572 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
573 if (d > 1.0) {
574 d = 1.0/sqrt(d);
575 pg[0] *= d;
576 pg[1] *= d;
577 }
578 }
579 }
580 free(hp); /* clean up and return */
581 return(1);
582 }
583
584
585 #else /* ! NEWAMB */
586
587
588 void
589 inithemi( /* initialize sampling hemisphere */
590 AMBHEMI *hp,
591 COLOR ac,
592 RAY *r,
593 double wt
594 )
595 {
596 double d;
597 int i;
598 /* set number of divisions */
599 if (ambacc <= FTINY &&
600 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
601 wt = d; /* avoid ray termination */
602 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
603 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
604 if (hp->nt < i)
605 hp->nt = i;
606 hp->np = PI * hp->nt + 0.5;
607 /* set number of super-samples */
608 hp->ns = ambssamp * wt + 0.5;
609 /* assign coefficient */
610 copycolor(hp->acoef, ac);
611 d = 1.0/(hp->nt*hp->np);
612 scalecolor(hp->acoef, d);
613 /* make axes */
614 VCOPY(hp->uz, r->ron);
615 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
616 for (i = 0; i < 3; i++)
617 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
618 break;
619 if (i >= 3)
620 error(CONSISTENCY, "bad ray direction in inithemi");
621 hp->uy[i] = 1.0;
622 fcross(hp->ux, hp->uy, hp->uz);
623 normalize(hp->ux);
624 fcross(hp->uy, hp->uz, hp->ux);
625 }
626
627
628 int
629 divsample( /* sample a division */
630 AMBSAMP *dp,
631 AMBHEMI *h,
632 RAY *r
633 )
634 {
635 RAY ar;
636 int hlist[3];
637 double spt[2];
638 double xd, yd, zd;
639 double b2;
640 double phi;
641 int i;
642 /* ambient coefficient for weight */
643 if (ambacc > FTINY)
644 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
645 else
646 copycolor(ar.rcoef, h->acoef);
647 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
648 return(-1);
649 if (ambacc > FTINY) {
650 multcolor(ar.rcoef, h->acoef);
651 scalecolor(ar.rcoef, 1./AVGREFL);
652 }
653 hlist[0] = r->rno;
654 hlist[1] = dp->t;
655 hlist[2] = dp->p;
656 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
657 zd = sqrt((dp->t + spt[0])/h->nt);
658 phi = 2.0*PI * (dp->p + spt[1])/h->np;
659 xd = tcos(phi) * zd;
660 yd = tsin(phi) * zd;
661 zd = sqrt(1.0 - zd*zd);
662 for (i = 0; i < 3; i++)
663 ar.rdir[i] = xd*h->ux[i] +
664 yd*h->uy[i] +
665 zd*h->uz[i];
666 checknorm(ar.rdir);
667 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
668 rayvalue(&ar);
669 ndims--;
670 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
671 addcolor(dp->v, ar.rcol);
672 /* use rt to improve gradient calc */
673 if (ar.rt > FTINY && ar.rt < FHUGE)
674 dp->r += 1.0/ar.rt;
675 /* (re)initialize error */
676 if (dp->n++) {
677 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
678 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
679 dp->k = b2/(dp->n*dp->n);
680 } else
681 dp->k = 0.0;
682 return(0);
683 }
684
685
686 static int
687 ambcmp( /* decreasing order */
688 const void *p1,
689 const void *p2
690 )
691 {
692 const AMBSAMP *d1 = (const AMBSAMP *)p1;
693 const AMBSAMP *d2 = (const AMBSAMP *)p2;
694
695 if (d1->k < d2->k)
696 return(1);
697 if (d1->k > d2->k)
698 return(-1);
699 return(0);
700 }
701
702
703 static int
704 ambnorm( /* standard order */
705 const void *p1,
706 const void *p2
707 )
708 {
709 const AMBSAMP *d1 = (const AMBSAMP *)p1;
710 const AMBSAMP *d2 = (const AMBSAMP *)p2;
711 int c;
712
713 if ( (c = d1->t - d2->t) )
714 return(c);
715 return(d1->p - d2->p);
716 }
717
718
719 double
720 doambient( /* compute ambient component */
721 COLOR rcol,
722 RAY *r,
723 double wt,
724 FVECT pg,
725 FVECT dg
726 )
727 {
728 double b, d=0;
729 AMBHEMI hemi;
730 AMBSAMP *div;
731 AMBSAMP dnew;
732 double acol[3];
733 AMBSAMP *dp;
734 double arad;
735 int divcnt;
736 int i, j;
737 /* initialize hemisphere */
738 inithemi(&hemi, rcol, r, wt);
739 divcnt = hemi.nt * hemi.np;
740 /* initialize */
741 if (pg != NULL)
742 pg[0] = pg[1] = pg[2] = 0.0;
743 if (dg != NULL)
744 dg[0] = dg[1] = dg[2] = 0.0;
745 setcolor(rcol, 0.0, 0.0, 0.0);
746 if (divcnt == 0)
747 return(0.0);
748 /* allocate super-samples */
749 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
750 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
751 if (div == NULL)
752 error(SYSTEM, "out of memory in doambient");
753 } else
754 div = NULL;
755 /* sample the divisions */
756 arad = 0.0;
757 acol[0] = acol[1] = acol[2] = 0.0;
758 if ((dp = div) == NULL)
759 dp = &dnew;
760 divcnt = 0;
761 for (i = 0; i < hemi.nt; i++)
762 for (j = 0; j < hemi.np; j++) {
763 dp->t = i; dp->p = j;
764 setcolor(dp->v, 0.0, 0.0, 0.0);
765 dp->r = 0.0;
766 dp->n = 0;
767 if (divsample(dp, &hemi, r) < 0) {
768 if (div != NULL)
769 dp++;
770 continue;
771 }
772 arad += dp->r;
773 divcnt++;
774 if (div != NULL)
775 dp++;
776 else
777 addcolor(acol, dp->v);
778 }
779 if (!divcnt) {
780 if (div != NULL)
781 free((void *)div);
782 return(0.0); /* no samples taken */
783 }
784 if (divcnt < hemi.nt*hemi.np) {
785 pg = dg = NULL; /* incomplete sampling */
786 hemi.ns = 0;
787 } else if (arad > FTINY && divcnt/arad < minarad) {
788 hemi.ns = 0; /* close enough */
789 } else if (hemi.ns > 0) { /* else perform super-sampling? */
790 comperrs(div, &hemi); /* compute errors */
791 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
792 /* super-sample */
793 for (i = hemi.ns; i > 0; i--) {
794 dnew = *div;
795 if (divsample(&dnew, &hemi, r) < 0) {
796 dp++;
797 continue;
798 }
799 dp = div; /* reinsert */
800 j = divcnt < i ? divcnt : i;
801 while (--j > 0 && dnew.k < dp[1].k) {
802 *dp = *(dp+1);
803 dp++;
804 }
805 *dp = dnew;
806 }
807 if (pg != NULL || dg != NULL) /* restore order */
808 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
809 }
810 /* compute returned values */
811 if (div != NULL) {
812 arad = 0.0; /* note: divcnt may be < nt*np */
813 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
814 arad += dp->r;
815 if (dp->n > 1) {
816 b = 1.0/dp->n;
817 scalecolor(dp->v, b);
818 dp->r *= b;
819 dp->n = 1;
820 }
821 addcolor(acol, dp->v);
822 }
823 b = bright(acol);
824 if (b > FTINY) {
825 b = 1.0/b; /* compute & normalize gradient(s) */
826 if (pg != NULL) {
827 posgradient(pg, div, &hemi);
828 for (i = 0; i < 3; i++)
829 pg[i] *= b;
830 }
831 if (dg != NULL) {
832 dirgradient(dg, div, &hemi);
833 for (i = 0; i < 3; i++)
834 dg[i] *= b;
835 }
836 }
837 free((void *)div);
838 }
839 copycolor(rcol, acol);
840 if (arad <= FTINY)
841 arad = maxarad;
842 else
843 arad = (divcnt+hemi.ns)/arad;
844 if (pg != NULL) { /* reduce radius if gradient large */
845 d = DOT(pg,pg);
846 if (d*arad*arad > 1.0)
847 arad = 1.0/sqrt(d);
848 }
849 if (arad < minarad) {
850 arad = minarad;
851 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
852 d = 1.0/arad/sqrt(d);
853 for (i = 0; i < 3; i++)
854 pg[i] *= d;
855 }
856 }
857 if ((arad /= sqrt(wt)) > maxarad)
858 arad = maxarad;
859 return(arad);
860 }
861
862
863 void
864 comperrs( /* compute initial error estimates */
865 AMBSAMP *da, /* assumes standard ordering */
866 AMBHEMI *hp
867 )
868 {
869 double b, b2;
870 int i, j;
871 AMBSAMP *dp;
872 /* sum differences from neighbors */
873 dp = da;
874 for (i = 0; i < hp->nt; i++)
875 for (j = 0; j < hp->np; j++) {
876 #ifdef DEBUG
877 if (dp->t != i || dp->p != j)
878 error(CONSISTENCY,
879 "division order in comperrs");
880 #endif
881 b = bright(dp[0].v);
882 if (i > 0) { /* from above */
883 b2 = bright(dp[-hp->np].v) - b;
884 b2 *= b2 * 0.25;
885 dp[0].k += b2;
886 dp[-hp->np].k += b2;
887 }
888 if (j > 0) { /* from behind */
889 b2 = bright(dp[-1].v) - b;
890 b2 *= b2 * 0.25;
891 dp[0].k += b2;
892 dp[-1].k += b2;
893 } else { /* around */
894 b2 = bright(dp[hp->np-1].v) - b;
895 b2 *= b2 * 0.25;
896 dp[0].k += b2;
897 dp[hp->np-1].k += b2;
898 }
899 dp++;
900 }
901 /* divide by number of neighbors */
902 dp = da;
903 for (j = 0; j < hp->np; j++) /* top row */
904 (dp++)->k *= 1.0/3.0;
905 if (hp->nt < 2)
906 return;
907 for (i = 1; i < hp->nt-1; i++) /* central region */
908 for (j = 0; j < hp->np; j++)
909 (dp++)->k *= 0.25;
910 for (j = 0; j < hp->np; j++) /* bottom row */
911 (dp++)->k *= 1.0/3.0;
912 }
913
914
915 void
916 posgradient( /* compute position gradient */
917 FVECT gv,
918 AMBSAMP *da, /* assumes standard ordering */
919 AMBHEMI *hp
920 )
921 {
922 int i, j;
923 double nextsine, lastsine, b, d;
924 double mag0, mag1;
925 double phi, cosp, sinp, xd, yd;
926 AMBSAMP *dp;
927
928 xd = yd = 0.0;
929 for (j = 0; j < hp->np; j++) {
930 dp = da + j;
931 mag0 = mag1 = 0.0;
932 lastsine = 0.0;
933 for (i = 0; i < hp->nt; i++) {
934 #ifdef DEBUG
935 if (dp->t != i || dp->p != j)
936 error(CONSISTENCY,
937 "division order in posgradient");
938 #endif
939 b = bright(dp->v);
940 if (i > 0) {
941 d = dp[-hp->np].r;
942 if (dp[0].r > d) d = dp[0].r;
943 /* sin(t)*cos(t)^2 */
944 d *= lastsine * (1.0 - (double)i/hp->nt);
945 mag0 += d*(b - bright(dp[-hp->np].v));
946 }
947 nextsine = sqrt((double)(i+1)/hp->nt);
948 if (j > 0) {
949 d = dp[-1].r;
950 if (dp[0].r > d) d = dp[0].r;
951 mag1 += d * (nextsine - lastsine) *
952 (b - bright(dp[-1].v));
953 } else {
954 d = dp[hp->np-1].r;
955 if (dp[0].r > d) d = dp[0].r;
956 mag1 += d * (nextsine - lastsine) *
957 (b - bright(dp[hp->np-1].v));
958 }
959 dp += hp->np;
960 lastsine = nextsine;
961 }
962 mag0 *= 2.0*PI / hp->np;
963 phi = 2.0*PI * (double)j/hp->np;
964 cosp = tcos(phi); sinp = tsin(phi);
965 xd += mag0*cosp - mag1*sinp;
966 yd += mag0*sinp + mag1*cosp;
967 }
968 for (i = 0; i < 3; i++)
969 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
970 }
971
972
973 void
974 dirgradient( /* compute direction gradient */
975 FVECT gv,
976 AMBSAMP *da, /* assumes standard ordering */
977 AMBHEMI *hp
978 )
979 {
980 int i, j;
981 double mag;
982 double phi, xd, yd;
983 AMBSAMP *dp;
984
985 xd = yd = 0.0;
986 for (j = 0; j < hp->np; j++) {
987 dp = da + j;
988 mag = 0.0;
989 for (i = 0; i < hp->nt; i++) {
990 #ifdef DEBUG
991 if (dp->t != i || dp->p != j)
992 error(CONSISTENCY,
993 "division order in dirgradient");
994 #endif
995 /* tan(t) */
996 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
997 dp += hp->np;
998 }
999 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1000 xd += mag * tcos(phi);
1001 yd += mag * tsin(phi);
1002 }
1003 for (i = 0; i < 3; i++)
1004 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1005 }
1006
1007 #endif /* ! NEWAMB */