ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.36
Committed: Sat Apr 26 04:37:48 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.35: +6 -9 lines
Log Message:
Randomize hemisphere orientation for better sampling

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.35 2014/04/25 18:39:22 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Declarations of external symbols in ambient.h
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "random.h"
19
20 #ifdef NEWAMB
21
22 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
23
24 typedef struct {
25 RAY *rp; /* originating ray sample */
26 FVECT ux, uy; /* tangent axis unit vectors */
27 int ns; /* number of samples per axis */
28 COLOR acoef; /* division contribution coefficient */
29 struct s_ambsamp {
30 COLOR v; /* hemisphere sample value */
31 FVECT p; /* intersection point */
32 } sa[1]; /* sample array (extends struct) */
33 } AMBHEMI; /* ambient sample hemisphere */
34
35 #define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)]
36
37 typedef struct {
38 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
39 double I1, I2;
40 } FFTRI; /* vectors and coefficients for Hessian calculation */
41
42
43 static AMBHEMI *
44 inithemi( /* initialize sampling hemisphere */
45 COLOR ac,
46 RAY *r,
47 double wt
48 )
49 {
50 AMBHEMI *hp;
51 double d;
52 int n, i;
53 /* set number of divisions */
54 if (ambacc <= FTINY &&
55 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
56 wt = d; /* avoid ray termination */
57 n = sqrt(ambdiv * wt) + 0.5;
58 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
59 if (n < i)
60 n = i;
61 /* allocate sampling array */
62 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) +
63 sizeof(struct s_ambsamp)*(n*n - 1));
64 if (hp == NULL)
65 return(NULL);
66 hp->rp = r;
67 hp->ns = n;
68 /* assign coefficient */
69 copycolor(hp->acoef, ac);
70 d = 1.0/(n*n);
71 scalecolor(hp->acoef, d);
72 /* make tangent plane axes */
73 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0;
74 for (i = 3; i--; )
75 if ((0.6 < r->ron[i]) & (r->ron[i] < 0.6))
76 hp->uy[i] = 0.1+frandom();
77 if (DOT(hp->uy,hp->uy) <= FTINY)
78 error(CONSISTENCY, "bad ray direction in inithemi()");
79 VCROSS(hp->ux, hp->uy, r->ron);
80 normalize(hp->ux);
81 VCROSS(hp->uy, r->ron, hp->ux);
82 /* we're ready to sample */
83 return(hp);
84 }
85
86
87 static struct s_ambsamp *
88 ambsample( /* sample an ambient direction */
89 AMBHEMI *hp,
90 int i,
91 int j
92 )
93 {
94 struct s_ambsamp *ap = &ambsamp(hp,i,j);
95 RAY ar;
96 double spt[2], zd;
97 int ii;
98 /* ambient coefficient for weight */
99 if (ambacc > FTINY)
100 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
101 else
102 copycolor(ar.rcoef, hp->acoef);
103 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
104 goto badsample;
105 if (ambacc > FTINY) {
106 multcolor(ar.rcoef, hp->acoef);
107 scalecolor(ar.rcoef, 1./AVGREFL);
108 }
109 /* generate hemispherical sample */
110 SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns,
111 (j+.1+.8*frandom())/hp->ns );
112 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
113 for (ii = 3; ii--; )
114 ar.rdir[ii] = spt[0]*hp->ux[ii] +
115 spt[1]*hp->uy[ii] +
116 zd*hp->rp->ron[ii];
117 checknorm(ar.rdir);
118 dimlist[ndims++] = i*hp->ns + j + 90171;
119 rayvalue(&ar); /* evaluate ray */
120 ndims--;
121 /* limit vertex distance */
122 if (ar.rt > 10.0*thescene.cusize)
123 ar.rt = 10.0*thescene.cusize;
124 else if (ar.rt <= FTINY) /* should never happen! */
125 goto badsample;
126 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
127 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
128 copycolor(ap->v, ar.rcol);
129 return(ap);
130 badsample:
131 setcolor(ap->v, 0., 0., 0.);
132 VCOPY(ap->p, hp->rp->rop);
133 return(NULL);
134 }
135
136
137 /* Compute vectors and coefficients for Hessian/gradient calcs */
138 static void
139 comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop)
140 {
141 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
142 int i;
143
144 VSUB(ftp->r_i, ap0, rop);
145 VSUB(ftp->r_i1, ap1, rop);
146 VSUB(ftp->e_i, ap1, ap0);
147 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
148 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
149 dot_e = DOT(ftp->e_i,ftp->e_i);
150 dot_er = DOT(ftp->e_i, ftp->r_i);
151 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
152 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
153 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
154 sqrt( rdot_cp );
155 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
156 dot_e*ftp->I1 )*0.5*rdot_cp;
157 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
158 for (i = 3; i--; )
159 ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i];
160 }
161
162
163 /* Compose 3x3 matrix from two vectors */
164 static void
165 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
166 {
167 mat[0][0] = 2.0*va[0]*vb[0];
168 mat[1][1] = 2.0*va[1]*vb[1];
169 mat[2][2] = 2.0*va[2]*vb[2];
170 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
171 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
172 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
173 }
174
175
176 /* Compute partial 3x3 Hessian matrix for edge */
177 static void
178 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
179 {
180 FVECT ncp;
181 FVECT m1[3], m2[3], m3[3], m4[3];
182 double d1, d2, d3, d4;
183 double I3, J3, K3;
184 int i, j;
185 /* compute intermediate coefficients */
186 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
187 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
188 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
189 d4 = DOT(ftp->e_i, ftp->r_i);
190 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
191 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
192 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
193 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
194 /* intermediate matrices */
195 VCROSS(ncp, nrm, ftp->e_i);
196 compose_matrix(m1, ncp, ftp->rI2_eJ2);
197 compose_matrix(m2, ftp->r_i, ftp->r_i);
198 compose_matrix(m3, ftp->e_i, ftp->e_i);
199 compose_matrix(m4, ftp->r_i, ftp->e_i);
200 d1 = DOT(nrm, ftp->rcp);
201 d2 = -d1*ftp->I2;
202 d1 *= 2.0;
203 for (i = 3; i--; ) /* final matrix sum */
204 for (j = 3; j--; ) {
205 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
206 2.0*J3*m4[i][j] );
207 hess[i][j] += d2*(i==j);
208 hess[i][j] *= 1.0/PI;
209 }
210 }
211
212
213 /* Reverse hessian calculation result for edge in other direction */
214 static void
215 rev_hessian(FVECT hess[3])
216 {
217 int i;
218
219 for (i = 3; i--; ) {
220 hess[i][0] = -hess[i][0];
221 hess[i][1] = -hess[i][1];
222 hess[i][2] = -hess[i][2];
223 }
224 }
225
226
227 /* Add to radiometric Hessian from the given triangle */
228 static void
229 add2hessian(FVECT hess[3], FVECT ehess1[3],
230 FVECT ehess2[3], FVECT ehess3[3], COLORV v)
231 {
232 int i, j;
233
234 for (i = 3; i--; )
235 for (j = 3; j--; )
236 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
237 }
238
239
240 /* Compute partial displacement form factor gradient for edge */
241 static void
242 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
243 {
244 FVECT ncp;
245 double f1;
246 int i;
247
248 f1 = 2.0*DOT(nrm, ftp->rcp);
249 VCROSS(ncp, nrm, ftp->e_i);
250 for (i = 3; i--; )
251 grad[i] = (-0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
252 }
253
254
255 /* Reverse gradient calculation result for edge in other direction */
256 static void
257 rev_gradient(FVECT grad)
258 {
259 grad[0] = -grad[0];
260 grad[1] = -grad[1];
261 grad[2] = -grad[2];
262 }
263
264
265 /* Add to displacement gradient from the given triangle */
266 static void
267 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v)
268 {
269 int i;
270
271 for (i = 3; i--; )
272 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
273 }
274
275
276 /* Return brightness of furthest ambient sample */
277 static COLORV
278 back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2,
279 struct s_ambsamp *ap3, FVECT orig)
280 {
281 COLORV vback;
282 FVECT vec;
283 double d2, d2best;
284
285 VSUB(vec, ap1->p, orig);
286 d2best = DOT(vec,vec);
287 vback = colval(ap1->v,CIEY);
288 VSUB(vec, ap2->p, orig);
289 d2 = DOT(vec,vec);
290 if (d2 > d2best) {
291 d2best = d2;
292 vback = colval(ap2->v,CIEY);
293 }
294 VSUB(vec, ap3->p, orig);
295 d2 = DOT(vec,vec);
296 if (d2 > d2best)
297 return(colval(ap3->v,CIEY));
298 return(vback);
299 }
300
301
302 /* Compute anisotropic radii and eigenvector directions */
303 static int
304 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
305 {
306 double hess2[2][2];
307 FVECT a, b;
308 double evalue[2], slope1, xmag1;
309 int i;
310 /* project Hessian to sample plane */
311 for (i = 3; i--; ) {
312 a[i] = DOT(hessian[i], uv[0]);
313 b[i] = DOT(hessian[i], uv[1]);
314 }
315 hess2[0][0] = DOT(uv[0], a);
316 hess2[0][1] = DOT(uv[0], b);
317 hess2[1][0] = DOT(uv[1], a);
318 hess2[1][1] = DOT(uv[1], b);
319 /* compute eigenvalues */
320 if ( quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
321 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 ||
322 ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
323 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) )
324 error(INTERNAL, "bad eigenvalue calculation");
325
326 if (evalue[0] > evalue[1]) {
327 ra[0] = sqrt(sqrt(4.0/evalue[0]));
328 ra[1] = sqrt(sqrt(4.0/evalue[1]));
329 slope1 = evalue[1];
330 } else {
331 ra[0] = sqrt(sqrt(4.0/evalue[1]));
332 ra[1] = sqrt(sqrt(4.0/evalue[0]));
333 slope1 = evalue[0];
334 }
335 /* compute unit eigenvectors */
336 if (fabs(hess2[0][1]) <= FTINY)
337 return; /* uv OK as is */
338 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
339 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
340 for (i = 3; i--; ) {
341 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
342 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
343 }
344 VCOPY(uv[0], a);
345 VCOPY(uv[1], b);
346 }
347
348
349 static void
350 ambHessian( /* anisotropic radii & pos. gradient */
351 AMBHEMI *hp,
352 FVECT uv[2], /* returned */
353 float ra[2], /* returned (optional) */
354 float pg[2] /* returned (optional) */
355 )
356 {
357 static char memerrmsg[] = "out of memory in ambHessian()";
358 FVECT (*hessrow)[3] = NULL;
359 FVECT *gradrow = NULL;
360 FVECT hessian[3];
361 FVECT gradient;
362 FFTRI fftr;
363 int i, j;
364 /* be sure to assign unit vectors */
365 VCOPY(uv[0], hp->ux);
366 VCOPY(uv[1], hp->uy);
367 /* clock-wise vertex traversal from sample POV */
368 if (ra != NULL) { /* initialize Hessian row buffer */
369 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
370 if (hessrow == NULL)
371 error(SYSTEM, memerrmsg);
372 memset(hessian, 0, sizeof(hessian));
373 } else if (pg == NULL) /* bogus call? */
374 return;
375 if (pg != NULL) { /* initialize form factor row buffer */
376 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
377 if (gradrow == NULL)
378 error(SYSTEM, memerrmsg);
379 memset(gradient, 0, sizeof(gradient));
380 }
381 /* compute first row of edges */
382 for (j = 0; j < hp->ns-1; j++) {
383 comp_fftri(&fftr, ambsamp(hp,0,j).p,
384 ambsamp(hp,0,j+1).p, hp->rp->rop);
385 if (hessrow != NULL)
386 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
387 if (gradrow != NULL)
388 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
389 }
390 /* sum each row of triangles */
391 for (i = 0; i < hp->ns-1; i++) {
392 FVECT hesscol[3]; /* compute first vertical edge */
393 FVECT gradcol;
394 comp_fftri(&fftr, ambsamp(hp,i,0).p,
395 ambsamp(hp,i+1,0).p, hp->rp->rop);
396 if (hessrow != NULL)
397 comp_hessian(hesscol, &fftr, hp->rp->ron);
398 if (gradrow != NULL)
399 comp_gradient(gradcol, &fftr, hp->rp->ron);
400 for (j = 0; j < hp->ns-1; j++) {
401 FVECT hessdia[3]; /* compute triangle contributions */
402 FVECT graddia;
403 COLORV backg;
404 backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1),
405 &ambsamp(hp,i+1,j), hp->rp->rop);
406 /* diagonal (inner) edge */
407 comp_fftri(&fftr, ambsamp(hp,i,j+1).p,
408 ambsamp(hp,i+1,j).p, hp->rp->rop);
409 if (hessrow != NULL) {
410 comp_hessian(hessdia, &fftr, hp->rp->ron);
411 rev_hessian(hesscol);
412 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
413 }
414 if (gradient != NULL) {
415 comp_gradient(graddia, &fftr, hp->rp->ron);
416 rev_gradient(gradcol);
417 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
418 }
419 /* initialize edge in next row */
420 comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p,
421 ambsamp(hp,i+1,j).p, hp->rp->rop);
422 if (hessrow != NULL)
423 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
424 if (gradrow != NULL)
425 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
426 /* new column edge & paired triangle */
427 backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1),
428 &ambsamp(hp,i+1,j), hp->rp->rop);
429 comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p,
430 hp->rp->rop);
431 if (hessrow != NULL) {
432 comp_hessian(hesscol, &fftr, hp->rp->ron);
433 rev_hessian(hessdia);
434 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
435 if (i < hp->ns-2)
436 rev_hessian(hessrow[j]);
437 }
438 if (gradrow != NULL) {
439 comp_gradient(gradcol, &fftr, hp->rp->ron);
440 rev_gradient(graddia);
441 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
442 if (i < hp->ns-2)
443 rev_gradient(gradrow[j]);
444 }
445 }
446 }
447 /* release row buffers */
448 if (hessrow != NULL) free(hessrow);
449 if (gradrow != NULL) free(gradrow);
450
451 if (ra != NULL) /* extract eigenvectors & radii */
452 eigenvectors(uv, ra, hessian);
453 if (pg != NULL) { /* tangential position gradient */
454 pg[0] = DOT(gradient, uv[0]);
455 pg[1] = DOT(gradient, uv[1]);
456 }
457 }
458
459
460 /* Compute direction gradient from a hemispherical sampling */
461 static void
462 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
463 {
464 struct s_ambsamp *ap;
465 double dgsum[2];
466 int n;
467 FVECT vd;
468 double gfact;
469
470 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
471 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
472 /* use vector for azimuth + 90deg */
473 VSUB(vd, ap->p, hp->rp->rop);
474 /* brightness over cosine factor */
475 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
476 /* -sine = -proj_radius/vd_length */
477 dgsum[0] += DOT(uv[1], vd) * gfact;
478 dgsum[1] -= DOT(uv[0], vd) * gfact;
479 }
480 dg[0] = dgsum[0] / (hp->ns*hp->ns);
481 dg[1] = dgsum[1] / (hp->ns*hp->ns);
482 }
483
484
485 int
486 doambient( /* compute ambient component */
487 COLOR rcol, /* input/output color */
488 RAY *r,
489 double wt,
490 FVECT uv[2], /* returned (optional) */
491 float ra[2], /* returned (optional) */
492 float pg[2], /* returned (optional) */
493 float dg[2] /* returned (optional) */
494 )
495 {
496 AMBHEMI *hp = inithemi(rcol, r, wt);
497 int cnt = 0;
498 FVECT my_uv[2];
499 double d, acol[3];
500 struct s_ambsamp *ap;
501 int i, j;
502 /* check/initialize */
503 if (hp == NULL)
504 return(0);
505 if (uv != NULL)
506 memset(uv, 0, sizeof(FVECT)*2);
507 if (ra != NULL)
508 ra[0] = ra[1] = 0.0;
509 if (pg != NULL)
510 pg[0] = pg[1] = 0.0;
511 if (dg != NULL)
512 dg[0] = dg[1] = 0.0;
513 /* sample the hemisphere */
514 acol[0] = acol[1] = acol[2] = 0.0;
515 for (i = hp->ns; i--; )
516 for (j = hp->ns; j--; )
517 if ((ap = ambsample(hp, i, j)) != NULL) {
518 addcolor(acol, ap->v);
519 ++cnt;
520 }
521 if (!cnt) {
522 setcolor(rcol, 0.0, 0.0, 0.0);
523 free(hp);
524 return(0); /* no valid samples */
525 }
526 copycolor(rcol, acol); /* final indirect irradiance/PI */
527 if (cnt < hp->ns*hp->ns || /* incomplete sampling? */
528 (ra == NULL) & (pg == NULL) & (dg == NULL)) {
529 free(hp);
530 return(-1); /* no radius or gradient calc. */
531 }
532 if (bright(acol) > FTINY) /* normalize Y values */
533 d = cnt/bright(acol);
534 else
535 d = 0.0;
536 ap = hp->sa; /* relative Y channel from here on... */
537 for (i = hp->ns*hp->ns; i--; ap++)
538 colval(ap->v,CIEY) = bright(ap->v)*d + 0.01;
539
540 if (uv == NULL) /* make sure we have axis pointers */
541 uv = my_uv;
542 /* compute radii & pos. gradient */
543 ambHessian(hp, uv, ra, pg);
544
545 if (dg != NULL) /* compute direction gradient */
546 ambdirgrad(hp, uv, dg);
547
548 if (ra != NULL) { /* scale/clamp radii */
549 if (pg != NULL) {
550 if (ra[0]*(d = fabs(pg[0])) > 1.0)
551 ra[0] = 1.0/d;
552 if (ra[1]*(d = fabs(pg[1])) > 1.0)
553 ra[1] = 1.0/d;
554 if (ra[0] > ra[1])
555 ra[0] = ra[1];
556 }
557 if (ra[0] < minarad) {
558 ra[0] = minarad;
559 if (ra[1] < minarad)
560 ra[1] = minarad;
561 }
562 ra[0] *= d = 1.0/sqrt(sqrt(wt));
563 if ((ra[1] *= d) > 2.0*ra[0])
564 ra[1] = 2.0*ra[0];
565 if (ra[1] > maxarad) {
566 ra[1] = maxarad;
567 if (ra[0] > maxarad)
568 ra[0] = maxarad;
569 }
570 if (pg != NULL) { /* cap gradient if necessary */
571 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
572 if (d > 1.0) {
573 d = 1.0/sqrt(d);
574 pg[0] *= d;
575 pg[1] *= d;
576 }
577 }
578 }
579 free(hp); /* clean up and return */
580 return(1);
581 }
582
583
584 #else /* ! NEWAMB */
585
586
587 void
588 inithemi( /* initialize sampling hemisphere */
589 AMBHEMI *hp,
590 COLOR ac,
591 RAY *r,
592 double wt
593 )
594 {
595 double d;
596 int i;
597 /* set number of divisions */
598 if (ambacc <= FTINY &&
599 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
600 wt = d; /* avoid ray termination */
601 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
602 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
603 if (hp->nt < i)
604 hp->nt = i;
605 hp->np = PI * hp->nt + 0.5;
606 /* set number of super-samples */
607 hp->ns = ambssamp * wt + 0.5;
608 /* assign coefficient */
609 copycolor(hp->acoef, ac);
610 d = 1.0/(hp->nt*hp->np);
611 scalecolor(hp->acoef, d);
612 /* make axes */
613 VCOPY(hp->uz, r->ron);
614 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
615 for (i = 0; i < 3; i++)
616 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
617 break;
618 if (i >= 3)
619 error(CONSISTENCY, "bad ray direction in inithemi");
620 hp->uy[i] = 1.0;
621 fcross(hp->ux, hp->uy, hp->uz);
622 normalize(hp->ux);
623 fcross(hp->uy, hp->uz, hp->ux);
624 }
625
626
627 int
628 divsample( /* sample a division */
629 AMBSAMP *dp,
630 AMBHEMI *h,
631 RAY *r
632 )
633 {
634 RAY ar;
635 int hlist[3];
636 double spt[2];
637 double xd, yd, zd;
638 double b2;
639 double phi;
640 int i;
641 /* ambient coefficient for weight */
642 if (ambacc > FTINY)
643 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
644 else
645 copycolor(ar.rcoef, h->acoef);
646 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
647 return(-1);
648 if (ambacc > FTINY) {
649 multcolor(ar.rcoef, h->acoef);
650 scalecolor(ar.rcoef, 1./AVGREFL);
651 }
652 hlist[0] = r->rno;
653 hlist[1] = dp->t;
654 hlist[2] = dp->p;
655 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
656 zd = sqrt((dp->t + spt[0])/h->nt);
657 phi = 2.0*PI * (dp->p + spt[1])/h->np;
658 xd = tcos(phi) * zd;
659 yd = tsin(phi) * zd;
660 zd = sqrt(1.0 - zd*zd);
661 for (i = 0; i < 3; i++)
662 ar.rdir[i] = xd*h->ux[i] +
663 yd*h->uy[i] +
664 zd*h->uz[i];
665 checknorm(ar.rdir);
666 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
667 rayvalue(&ar);
668 ndims--;
669 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
670 addcolor(dp->v, ar.rcol);
671 /* use rt to improve gradient calc */
672 if (ar.rt > FTINY && ar.rt < FHUGE)
673 dp->r += 1.0/ar.rt;
674 /* (re)initialize error */
675 if (dp->n++) {
676 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
677 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
678 dp->k = b2/(dp->n*dp->n);
679 } else
680 dp->k = 0.0;
681 return(0);
682 }
683
684
685 static int
686 ambcmp( /* decreasing order */
687 const void *p1,
688 const void *p2
689 )
690 {
691 const AMBSAMP *d1 = (const AMBSAMP *)p1;
692 const AMBSAMP *d2 = (const AMBSAMP *)p2;
693
694 if (d1->k < d2->k)
695 return(1);
696 if (d1->k > d2->k)
697 return(-1);
698 return(0);
699 }
700
701
702 static int
703 ambnorm( /* standard order */
704 const void *p1,
705 const void *p2
706 )
707 {
708 const AMBSAMP *d1 = (const AMBSAMP *)p1;
709 const AMBSAMP *d2 = (const AMBSAMP *)p2;
710 int c;
711
712 if ( (c = d1->t - d2->t) )
713 return(c);
714 return(d1->p - d2->p);
715 }
716
717
718 double
719 doambient( /* compute ambient component */
720 COLOR rcol,
721 RAY *r,
722 double wt,
723 FVECT pg,
724 FVECT dg
725 )
726 {
727 double b, d=0;
728 AMBHEMI hemi;
729 AMBSAMP *div;
730 AMBSAMP dnew;
731 double acol[3];
732 AMBSAMP *dp;
733 double arad;
734 int divcnt;
735 int i, j;
736 /* initialize hemisphere */
737 inithemi(&hemi, rcol, r, wt);
738 divcnt = hemi.nt * hemi.np;
739 /* initialize */
740 if (pg != NULL)
741 pg[0] = pg[1] = pg[2] = 0.0;
742 if (dg != NULL)
743 dg[0] = dg[1] = dg[2] = 0.0;
744 setcolor(rcol, 0.0, 0.0, 0.0);
745 if (divcnt == 0)
746 return(0.0);
747 /* allocate super-samples */
748 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
749 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
750 if (div == NULL)
751 error(SYSTEM, "out of memory in doambient");
752 } else
753 div = NULL;
754 /* sample the divisions */
755 arad = 0.0;
756 acol[0] = acol[1] = acol[2] = 0.0;
757 if ((dp = div) == NULL)
758 dp = &dnew;
759 divcnt = 0;
760 for (i = 0; i < hemi.nt; i++)
761 for (j = 0; j < hemi.np; j++) {
762 dp->t = i; dp->p = j;
763 setcolor(dp->v, 0.0, 0.0, 0.0);
764 dp->r = 0.0;
765 dp->n = 0;
766 if (divsample(dp, &hemi, r) < 0) {
767 if (div != NULL)
768 dp++;
769 continue;
770 }
771 arad += dp->r;
772 divcnt++;
773 if (div != NULL)
774 dp++;
775 else
776 addcolor(acol, dp->v);
777 }
778 if (!divcnt) {
779 if (div != NULL)
780 free((void *)div);
781 return(0.0); /* no samples taken */
782 }
783 if (divcnt < hemi.nt*hemi.np) {
784 pg = dg = NULL; /* incomplete sampling */
785 hemi.ns = 0;
786 } else if (arad > FTINY && divcnt/arad < minarad) {
787 hemi.ns = 0; /* close enough */
788 } else if (hemi.ns > 0) { /* else perform super-sampling? */
789 comperrs(div, &hemi); /* compute errors */
790 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
791 /* super-sample */
792 for (i = hemi.ns; i > 0; i--) {
793 dnew = *div;
794 if (divsample(&dnew, &hemi, r) < 0) {
795 dp++;
796 continue;
797 }
798 dp = div; /* reinsert */
799 j = divcnt < i ? divcnt : i;
800 while (--j > 0 && dnew.k < dp[1].k) {
801 *dp = *(dp+1);
802 dp++;
803 }
804 *dp = dnew;
805 }
806 if (pg != NULL || dg != NULL) /* restore order */
807 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
808 }
809 /* compute returned values */
810 if (div != NULL) {
811 arad = 0.0; /* note: divcnt may be < nt*np */
812 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
813 arad += dp->r;
814 if (dp->n > 1) {
815 b = 1.0/dp->n;
816 scalecolor(dp->v, b);
817 dp->r *= b;
818 dp->n = 1;
819 }
820 addcolor(acol, dp->v);
821 }
822 b = bright(acol);
823 if (b > FTINY) {
824 b = 1.0/b; /* compute & normalize gradient(s) */
825 if (pg != NULL) {
826 posgradient(pg, div, &hemi);
827 for (i = 0; i < 3; i++)
828 pg[i] *= b;
829 }
830 if (dg != NULL) {
831 dirgradient(dg, div, &hemi);
832 for (i = 0; i < 3; i++)
833 dg[i] *= b;
834 }
835 }
836 free((void *)div);
837 }
838 copycolor(rcol, acol);
839 if (arad <= FTINY)
840 arad = maxarad;
841 else
842 arad = (divcnt+hemi.ns)/arad;
843 if (pg != NULL) { /* reduce radius if gradient large */
844 d = DOT(pg,pg);
845 if (d*arad*arad > 1.0)
846 arad = 1.0/sqrt(d);
847 }
848 if (arad < minarad) {
849 arad = minarad;
850 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
851 d = 1.0/arad/sqrt(d);
852 for (i = 0; i < 3; i++)
853 pg[i] *= d;
854 }
855 }
856 if ((arad /= sqrt(wt)) > maxarad)
857 arad = maxarad;
858 return(arad);
859 }
860
861
862 void
863 comperrs( /* compute initial error estimates */
864 AMBSAMP *da, /* assumes standard ordering */
865 AMBHEMI *hp
866 )
867 {
868 double b, b2;
869 int i, j;
870 AMBSAMP *dp;
871 /* sum differences from neighbors */
872 dp = da;
873 for (i = 0; i < hp->nt; i++)
874 for (j = 0; j < hp->np; j++) {
875 #ifdef DEBUG
876 if (dp->t != i || dp->p != j)
877 error(CONSISTENCY,
878 "division order in comperrs");
879 #endif
880 b = bright(dp[0].v);
881 if (i > 0) { /* from above */
882 b2 = bright(dp[-hp->np].v) - b;
883 b2 *= b2 * 0.25;
884 dp[0].k += b2;
885 dp[-hp->np].k += b2;
886 }
887 if (j > 0) { /* from behind */
888 b2 = bright(dp[-1].v) - b;
889 b2 *= b2 * 0.25;
890 dp[0].k += b2;
891 dp[-1].k += b2;
892 } else { /* around */
893 b2 = bright(dp[hp->np-1].v) - b;
894 b2 *= b2 * 0.25;
895 dp[0].k += b2;
896 dp[hp->np-1].k += b2;
897 }
898 dp++;
899 }
900 /* divide by number of neighbors */
901 dp = da;
902 for (j = 0; j < hp->np; j++) /* top row */
903 (dp++)->k *= 1.0/3.0;
904 if (hp->nt < 2)
905 return;
906 for (i = 1; i < hp->nt-1; i++) /* central region */
907 for (j = 0; j < hp->np; j++)
908 (dp++)->k *= 0.25;
909 for (j = 0; j < hp->np; j++) /* bottom row */
910 (dp++)->k *= 1.0/3.0;
911 }
912
913
914 void
915 posgradient( /* compute position gradient */
916 FVECT gv,
917 AMBSAMP *da, /* assumes standard ordering */
918 AMBHEMI *hp
919 )
920 {
921 int i, j;
922 double nextsine, lastsine, b, d;
923 double mag0, mag1;
924 double phi, cosp, sinp, xd, yd;
925 AMBSAMP *dp;
926
927 xd = yd = 0.0;
928 for (j = 0; j < hp->np; j++) {
929 dp = da + j;
930 mag0 = mag1 = 0.0;
931 lastsine = 0.0;
932 for (i = 0; i < hp->nt; i++) {
933 #ifdef DEBUG
934 if (dp->t != i || dp->p != j)
935 error(CONSISTENCY,
936 "division order in posgradient");
937 #endif
938 b = bright(dp->v);
939 if (i > 0) {
940 d = dp[-hp->np].r;
941 if (dp[0].r > d) d = dp[0].r;
942 /* sin(t)*cos(t)^2 */
943 d *= lastsine * (1.0 - (double)i/hp->nt);
944 mag0 += d*(b - bright(dp[-hp->np].v));
945 }
946 nextsine = sqrt((double)(i+1)/hp->nt);
947 if (j > 0) {
948 d = dp[-1].r;
949 if (dp[0].r > d) d = dp[0].r;
950 mag1 += d * (nextsine - lastsine) *
951 (b - bright(dp[-1].v));
952 } else {
953 d = dp[hp->np-1].r;
954 if (dp[0].r > d) d = dp[0].r;
955 mag1 += d * (nextsine - lastsine) *
956 (b - bright(dp[hp->np-1].v));
957 }
958 dp += hp->np;
959 lastsine = nextsine;
960 }
961 mag0 *= 2.0*PI / hp->np;
962 phi = 2.0*PI * (double)j/hp->np;
963 cosp = tcos(phi); sinp = tsin(phi);
964 xd += mag0*cosp - mag1*sinp;
965 yd += mag0*sinp + mag1*cosp;
966 }
967 for (i = 0; i < 3; i++)
968 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
969 }
970
971
972 void
973 dirgradient( /* compute direction gradient */
974 FVECT gv,
975 AMBSAMP *da, /* assumes standard ordering */
976 AMBHEMI *hp
977 )
978 {
979 int i, j;
980 double mag;
981 double phi, xd, yd;
982 AMBSAMP *dp;
983
984 xd = yd = 0.0;
985 for (j = 0; j < hp->np; j++) {
986 dp = da + j;
987 mag = 0.0;
988 for (i = 0; i < hp->nt; i++) {
989 #ifdef DEBUG
990 if (dp->t != i || dp->p != j)
991 error(CONSISTENCY,
992 "division order in dirgradient");
993 #endif
994 /* tan(t) */
995 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
996 dp += hp->np;
997 }
998 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
999 xd += mag * tcos(phi);
1000 yd += mag * tsin(phi);
1001 }
1002 for (i = 0; i < 3; i++)
1003 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1004 }
1005
1006 #endif /* ! NEWAMB */