ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.35
Committed: Fri Apr 25 18:39:22 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.34: +36 -33 lines
Log Message:
Eliminated redundant calcs and put limit on radii based on gradient

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.34 2014/04/24 23:15:10 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Declarations of external symbols in ambient.h
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "random.h"
19
20 #ifdef NEWAMB
21
22 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
23
24 typedef struct {
25 RAY *rp; /* originating ray sample */
26 FVECT ux, uy; /* tangent axis unit vectors */
27 int ns; /* number of samples per axis */
28 COLOR acoef; /* division contribution coefficient */
29 struct s_ambsamp {
30 COLOR v; /* hemisphere sample value */
31 FVECT p; /* intersection point */
32 } sa[1]; /* sample array (extends struct) */
33 } AMBHEMI; /* ambient sample hemisphere */
34
35 #define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)]
36
37 typedef struct {
38 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
39 double I1, I2;
40 } FFTRI; /* vectors and coefficients for Hessian calculation */
41
42
43 static AMBHEMI *
44 inithemi( /* initialize sampling hemisphere */
45 COLOR ac,
46 RAY *r,
47 double wt
48 )
49 {
50 AMBHEMI *hp;
51 double d;
52 int n, i;
53 /* set number of divisions */
54 if (ambacc <= FTINY &&
55 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
56 wt = d; /* avoid ray termination */
57 n = sqrt(ambdiv * wt) + 0.5;
58 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
59 if (n < i)
60 n = i;
61 /* allocate sampling array */
62 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) +
63 sizeof(struct s_ambsamp)*(n*n - 1));
64 if (hp == NULL)
65 return(NULL);
66 hp->rp = r;
67 hp->ns = n;
68 /* assign coefficient */
69 copycolor(hp->acoef, ac);
70 d = 1.0/(n*n);
71 scalecolor(hp->acoef, d);
72 /* make tangent plane axes */
73 hp->uy[0] = 0.1 - 0.2*frandom();
74 hp->uy[1] = 0.1 - 0.2*frandom();
75 hp->uy[2] = 0.1 - 0.2*frandom();
76 for (i = 0; i < 3; i++)
77 if (r->ron[i] < 0.6 && r->ron[i] > -0.6)
78 break;
79 if (i >= 3)
80 error(CONSISTENCY, "bad ray direction in inithemi()");
81 hp->uy[i] = 1.0;
82 VCROSS(hp->ux, hp->uy, r->ron);
83 normalize(hp->ux);
84 VCROSS(hp->uy, r->ron, hp->ux);
85 /* we're ready to sample */
86 return(hp);
87 }
88
89
90 static struct s_ambsamp *
91 ambsample( /* sample an ambient direction */
92 AMBHEMI *hp,
93 int i,
94 int j
95 )
96 {
97 struct s_ambsamp *ap = &ambsamp(hp,i,j);
98 RAY ar;
99 double spt[2], zd;
100 int ii;
101 /* ambient coefficient for weight */
102 if (ambacc > FTINY)
103 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
104 else
105 copycolor(ar.rcoef, hp->acoef);
106 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
107 goto badsample;
108 if (ambacc > FTINY) {
109 multcolor(ar.rcoef, hp->acoef);
110 scalecolor(ar.rcoef, 1./AVGREFL);
111 }
112 /* generate hemispherical sample */
113 SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns,
114 (j+.1+.8*frandom())/hp->ns );
115 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
116 for (ii = 3; ii--; )
117 ar.rdir[ii] = spt[0]*hp->ux[ii] +
118 spt[1]*hp->uy[ii] +
119 zd*hp->rp->ron[ii];
120 checknorm(ar.rdir);
121 dimlist[ndims++] = i*hp->ns + j + 90171;
122 rayvalue(&ar); /* evaluate ray */
123 ndims--;
124 /* limit vertex distance */
125 if (ar.rt > 10.0*thescene.cusize)
126 ar.rt = 10.0*thescene.cusize;
127 else if (ar.rt <= FTINY) /* should never happen! */
128 goto badsample;
129 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
130 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
131 copycolor(ap->v, ar.rcol);
132 return(ap);
133 badsample:
134 setcolor(ap->v, 0., 0., 0.);
135 VCOPY(ap->p, hp->rp->rop);
136 return(NULL);
137 }
138
139
140 /* Compute vectors and coefficients for Hessian/gradient calcs */
141 static void
142 comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop)
143 {
144 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
145 int i;
146
147 VSUB(ftp->r_i, ap0, rop);
148 VSUB(ftp->r_i1, ap1, rop);
149 VSUB(ftp->e_i, ap1, ap0);
150 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
151 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
152 dot_e = DOT(ftp->e_i,ftp->e_i);
153 dot_er = DOT(ftp->e_i, ftp->r_i);
154 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
155 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
156 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
157 sqrt( rdot_cp );
158 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
159 dot_e*ftp->I1 )*0.5*rdot_cp;
160 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
161 for (i = 3; i--; )
162 ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i];
163 }
164
165
166 /* Compose 3x3 matrix from two vectors */
167 static void
168 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
169 {
170 mat[0][0] = 2.0*va[0]*vb[0];
171 mat[1][1] = 2.0*va[1]*vb[1];
172 mat[2][2] = 2.0*va[2]*vb[2];
173 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
174 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
175 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
176 }
177
178
179 /* Compute partial 3x3 Hessian matrix for edge */
180 static void
181 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
182 {
183 FVECT ncp;
184 FVECT m1[3], m2[3], m3[3], m4[3];
185 double d1, d2, d3, d4;
186 double I3, J3, K3;
187 int i, j;
188 /* compute intermediate coefficients */
189 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
190 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
191 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
192 d4 = DOT(ftp->e_i, ftp->r_i);
193 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
194 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
195 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
196 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
197 /* intermediate matrices */
198 VCROSS(ncp, nrm, ftp->e_i);
199 compose_matrix(m1, ncp, ftp->rI2_eJ2);
200 compose_matrix(m2, ftp->r_i, ftp->r_i);
201 compose_matrix(m3, ftp->e_i, ftp->e_i);
202 compose_matrix(m4, ftp->r_i, ftp->e_i);
203 d1 = DOT(nrm, ftp->rcp);
204 d2 = -d1*ftp->I2;
205 d1 *= 2.0;
206 for (i = 3; i--; ) /* final matrix sum */
207 for (j = 3; j--; ) {
208 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
209 2.0*J3*m4[i][j] );
210 hess[i][j] += d2*(i==j);
211 hess[i][j] *= 1.0/PI;
212 }
213 }
214
215
216 /* Reverse hessian calculation result for edge in other direction */
217 static void
218 rev_hessian(FVECT hess[3])
219 {
220 int i;
221
222 for (i = 3; i--; ) {
223 hess[i][0] = -hess[i][0];
224 hess[i][1] = -hess[i][1];
225 hess[i][2] = -hess[i][2];
226 }
227 }
228
229
230 /* Add to radiometric Hessian from the given triangle */
231 static void
232 add2hessian(FVECT hess[3], FVECT ehess1[3],
233 FVECT ehess2[3], FVECT ehess3[3], COLORV v)
234 {
235 int i, j;
236
237 for (i = 3; i--; )
238 for (j = 3; j--; )
239 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
240 }
241
242
243 /* Compute partial displacement form factor gradient for edge */
244 static void
245 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
246 {
247 FVECT ncp;
248 double f1;
249 int i;
250
251 f1 = 2.0*DOT(nrm, ftp->rcp);
252 VCROSS(ncp, nrm, ftp->e_i);
253 for (i = 3; i--; )
254 grad[i] = (-0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
255 }
256
257
258 /* Reverse gradient calculation result for edge in other direction */
259 static void
260 rev_gradient(FVECT grad)
261 {
262 grad[0] = -grad[0];
263 grad[1] = -grad[1];
264 grad[2] = -grad[2];
265 }
266
267
268 /* Add to displacement gradient from the given triangle */
269 static void
270 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v)
271 {
272 int i;
273
274 for (i = 3; i--; )
275 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
276 }
277
278
279 /* Return brightness of furthest ambient sample */
280 static COLORV
281 back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2,
282 struct s_ambsamp *ap3, FVECT orig)
283 {
284 COLORV vback;
285 FVECT vec;
286 double d2, d2best;
287
288 VSUB(vec, ap1->p, orig);
289 d2best = DOT(vec,vec);
290 vback = colval(ap1->v,CIEY);
291 VSUB(vec, ap2->p, orig);
292 d2 = DOT(vec,vec);
293 if (d2 > d2best) {
294 d2best = d2;
295 vback = colval(ap2->v,CIEY);
296 }
297 VSUB(vec, ap3->p, orig);
298 d2 = DOT(vec,vec);
299 if (d2 > d2best)
300 return(colval(ap3->v,CIEY));
301 return(vback);
302 }
303
304
305 /* Compute anisotropic radii and eigenvector directions */
306 static int
307 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
308 {
309 double hess2[2][2];
310 FVECT a, b;
311 double evalue[2], slope1, xmag1;
312 int i;
313 /* project Hessian to sample plane */
314 for (i = 3; i--; ) {
315 a[i] = DOT(hessian[i], uv[0]);
316 b[i] = DOT(hessian[i], uv[1]);
317 }
318 hess2[0][0] = DOT(uv[0], a);
319 hess2[0][1] = DOT(uv[0], b);
320 hess2[1][0] = DOT(uv[1], a);
321 hess2[1][1] = DOT(uv[1], b);
322 /* compute eigenvalues */
323 if ( quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
324 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 ||
325 ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
326 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) )
327 error(INTERNAL, "bad eigenvalue calculation");
328
329 if (evalue[0] > evalue[1]) {
330 ra[0] = sqrt(sqrt(4.0/evalue[0]));
331 ra[1] = sqrt(sqrt(4.0/evalue[1]));
332 slope1 = evalue[1];
333 } else {
334 ra[0] = sqrt(sqrt(4.0/evalue[1]));
335 ra[1] = sqrt(sqrt(4.0/evalue[0]));
336 slope1 = evalue[0];
337 }
338 /* compute unit eigenvectors */
339 if (fabs(hess2[0][1]) <= FTINY)
340 return; /* uv OK as is */
341 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
342 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
343 for (i = 3; i--; ) {
344 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
345 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
346 }
347 VCOPY(uv[0], a);
348 VCOPY(uv[1], b);
349 }
350
351
352 static void
353 ambHessian( /* anisotropic radii & pos. gradient */
354 AMBHEMI *hp,
355 FVECT uv[2], /* returned */
356 float ra[2], /* returned (optional) */
357 float pg[2] /* returned (optional) */
358 )
359 {
360 static char memerrmsg[] = "out of memory in ambHessian()";
361 FVECT (*hessrow)[3] = NULL;
362 FVECT *gradrow = NULL;
363 FVECT hessian[3];
364 FVECT gradient;
365 FFTRI fftr;
366 int i, j;
367 /* be sure to assign unit vectors */
368 VCOPY(uv[0], hp->ux);
369 VCOPY(uv[1], hp->uy);
370 /* clock-wise vertex traversal from sample POV */
371 if (ra != NULL) { /* initialize Hessian row buffer */
372 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
373 if (hessrow == NULL)
374 error(SYSTEM, memerrmsg);
375 memset(hessian, 0, sizeof(hessian));
376 } else if (pg == NULL) /* bogus call? */
377 return;
378 if (pg != NULL) { /* initialize form factor row buffer */
379 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
380 if (gradrow == NULL)
381 error(SYSTEM, memerrmsg);
382 memset(gradient, 0, sizeof(gradient));
383 }
384 /* compute first row of edges */
385 for (j = 0; j < hp->ns-1; j++) {
386 comp_fftri(&fftr, ambsamp(hp,0,j).p,
387 ambsamp(hp,0,j+1).p, hp->rp->rop);
388 if (hessrow != NULL)
389 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
390 if (gradrow != NULL)
391 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
392 }
393 /* sum each row of triangles */
394 for (i = 0; i < hp->ns-1; i++) {
395 FVECT hesscol[3]; /* compute first vertical edge */
396 FVECT gradcol;
397 comp_fftri(&fftr, ambsamp(hp,i,0).p,
398 ambsamp(hp,i+1,0).p, hp->rp->rop);
399 if (hessrow != NULL)
400 comp_hessian(hesscol, &fftr, hp->rp->ron);
401 if (gradrow != NULL)
402 comp_gradient(gradcol, &fftr, hp->rp->ron);
403 for (j = 0; j < hp->ns-1; j++) {
404 FVECT hessdia[3]; /* compute triangle contributions */
405 FVECT graddia;
406 COLORV backg;
407 backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1),
408 &ambsamp(hp,i+1,j), hp->rp->rop);
409 /* diagonal (inner) edge */
410 comp_fftri(&fftr, ambsamp(hp,i,j+1).p,
411 ambsamp(hp,i+1,j).p, hp->rp->rop);
412 if (hessrow != NULL) {
413 comp_hessian(hessdia, &fftr, hp->rp->ron);
414 rev_hessian(hesscol);
415 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
416 }
417 if (gradient != NULL) {
418 comp_gradient(graddia, &fftr, hp->rp->ron);
419 rev_gradient(gradcol);
420 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
421 }
422 /* initialize edge in next row */
423 comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p,
424 ambsamp(hp,i+1,j).p, hp->rp->rop);
425 if (hessrow != NULL)
426 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
427 if (gradrow != NULL)
428 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
429 /* new column edge & paired triangle */
430 backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1),
431 &ambsamp(hp,i+1,j), hp->rp->rop);
432 comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p,
433 hp->rp->rop);
434 if (hessrow != NULL) {
435 comp_hessian(hesscol, &fftr, hp->rp->ron);
436 rev_hessian(hessdia);
437 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
438 if (i < hp->ns-2)
439 rev_hessian(hessrow[j]);
440 }
441 if (gradrow != NULL) {
442 comp_gradient(gradcol, &fftr, hp->rp->ron);
443 rev_gradient(graddia);
444 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
445 if (i < hp->ns-2)
446 rev_gradient(gradrow[j]);
447 }
448 }
449 }
450 /* release row buffers */
451 if (hessrow != NULL) free(hessrow);
452 if (gradrow != NULL) free(gradrow);
453
454 if (ra != NULL) /* extract eigenvectors & radii */
455 eigenvectors(uv, ra, hessian);
456 if (pg != NULL) { /* tangential position gradient */
457 pg[0] = DOT(gradient, uv[0]);
458 pg[1] = DOT(gradient, uv[1]);
459 }
460 }
461
462
463 /* Compute direction gradient from a hemispherical sampling */
464 static void
465 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
466 {
467 struct s_ambsamp *ap;
468 double dgsum[2];
469 int n;
470 FVECT vd;
471 double gfact;
472
473 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
474 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
475 /* use vector for azimuth + 90deg */
476 VSUB(vd, ap->p, hp->rp->rop);
477 /* brightness over cosine factor */
478 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
479 /* -sine = -proj_radius/vd_length */
480 dgsum[0] += DOT(uv[1], vd) * gfact;
481 dgsum[1] -= DOT(uv[0], vd) * gfact;
482 }
483 dg[0] = dgsum[0] / (hp->ns*hp->ns);
484 dg[1] = dgsum[1] / (hp->ns*hp->ns);
485 }
486
487
488 int
489 doambient( /* compute ambient component */
490 COLOR rcol, /* input/output color */
491 RAY *r,
492 double wt,
493 FVECT uv[2], /* returned (optional) */
494 float ra[2], /* returned (optional) */
495 float pg[2], /* returned (optional) */
496 float dg[2] /* returned (optional) */
497 )
498 {
499 AMBHEMI *hp = inithemi(rcol, r, wt);
500 int cnt = 0;
501 FVECT my_uv[2];
502 double d, acol[3];
503 struct s_ambsamp *ap;
504 int i, j;
505 /* check/initialize */
506 if (hp == NULL)
507 return(0);
508 if (uv != NULL)
509 memset(uv, 0, sizeof(FVECT)*2);
510 if (ra != NULL)
511 ra[0] = ra[1] = 0.0;
512 if (pg != NULL)
513 pg[0] = pg[1] = 0.0;
514 if (dg != NULL)
515 dg[0] = dg[1] = 0.0;
516 /* sample the hemisphere */
517 acol[0] = acol[1] = acol[2] = 0.0;
518 for (i = hp->ns; i--; )
519 for (j = hp->ns; j--; )
520 if ((ap = ambsample(hp, i, j)) != NULL) {
521 addcolor(acol, ap->v);
522 ++cnt;
523 }
524 if (!cnt) {
525 setcolor(rcol, 0.0, 0.0, 0.0);
526 free(hp);
527 return(0); /* no valid samples */
528 }
529 copycolor(rcol, acol); /* final indirect irradiance/PI */
530 if (cnt < hp->ns*hp->ns || /* incomplete sampling? */
531 (ra == NULL) & (pg == NULL) & (dg == NULL)) {
532 free(hp);
533 return(-1); /* no radius or gradient calc. */
534 }
535 if (bright(acol) > FTINY) /* normalize Y values */
536 d = cnt/bright(acol);
537 else
538 d = 0.0;
539 ap = hp->sa; /* relative Y channel from here on... */
540 for (i = hp->ns*hp->ns; i--; ap++)
541 colval(ap->v,CIEY) = bright(ap->v)*d + 0.01;
542
543 if (uv == NULL) /* make sure we have axis pointers */
544 uv = my_uv;
545 /* compute radii & pos. gradient */
546 ambHessian(hp, uv, ra, pg);
547
548 if (dg != NULL) /* compute direction gradient */
549 ambdirgrad(hp, uv, dg);
550
551 if (ra != NULL) { /* scale/clamp radii */
552 if (pg != NULL) {
553 if (ra[0]*(d = fabs(pg[0])) > 1.0)
554 ra[0] = 1.0/d;
555 if (ra[1]*(d = fabs(pg[1])) > 1.0)
556 ra[1] = 1.0/d;
557 if (ra[0] > ra[1])
558 ra[0] = ra[1];
559 }
560 if (ra[0] < minarad) {
561 ra[0] = minarad;
562 if (ra[1] < minarad)
563 ra[1] = minarad;
564 }
565 ra[0] *= d = 1.0/sqrt(sqrt(wt));
566 if ((ra[1] *= d) > 2.0*ra[0])
567 ra[1] = 2.0*ra[0];
568 if (ra[1] > maxarad) {
569 ra[1] = maxarad;
570 if (ra[0] > maxarad)
571 ra[0] = maxarad;
572 }
573 if (pg != NULL) { /* cap gradient if necessary */
574 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
575 if (d > 1.0) {
576 d = 1.0/sqrt(d);
577 pg[0] *= d;
578 pg[1] *= d;
579 }
580 }
581 }
582 free(hp); /* clean up and return */
583 return(1);
584 }
585
586
587 #else /* ! NEWAMB */
588
589
590 void
591 inithemi( /* initialize sampling hemisphere */
592 AMBHEMI *hp,
593 COLOR ac,
594 RAY *r,
595 double wt
596 )
597 {
598 double d;
599 int i;
600 /* set number of divisions */
601 if (ambacc <= FTINY &&
602 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
603 wt = d; /* avoid ray termination */
604 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
605 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
606 if (hp->nt < i)
607 hp->nt = i;
608 hp->np = PI * hp->nt + 0.5;
609 /* set number of super-samples */
610 hp->ns = ambssamp * wt + 0.5;
611 /* assign coefficient */
612 copycolor(hp->acoef, ac);
613 d = 1.0/(hp->nt*hp->np);
614 scalecolor(hp->acoef, d);
615 /* make axes */
616 VCOPY(hp->uz, r->ron);
617 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
618 for (i = 0; i < 3; i++)
619 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
620 break;
621 if (i >= 3)
622 error(CONSISTENCY, "bad ray direction in inithemi");
623 hp->uy[i] = 1.0;
624 fcross(hp->ux, hp->uy, hp->uz);
625 normalize(hp->ux);
626 fcross(hp->uy, hp->uz, hp->ux);
627 }
628
629
630 int
631 divsample( /* sample a division */
632 AMBSAMP *dp,
633 AMBHEMI *h,
634 RAY *r
635 )
636 {
637 RAY ar;
638 int hlist[3];
639 double spt[2];
640 double xd, yd, zd;
641 double b2;
642 double phi;
643 int i;
644 /* ambient coefficient for weight */
645 if (ambacc > FTINY)
646 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
647 else
648 copycolor(ar.rcoef, h->acoef);
649 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
650 return(-1);
651 if (ambacc > FTINY) {
652 multcolor(ar.rcoef, h->acoef);
653 scalecolor(ar.rcoef, 1./AVGREFL);
654 }
655 hlist[0] = r->rno;
656 hlist[1] = dp->t;
657 hlist[2] = dp->p;
658 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
659 zd = sqrt((dp->t + spt[0])/h->nt);
660 phi = 2.0*PI * (dp->p + spt[1])/h->np;
661 xd = tcos(phi) * zd;
662 yd = tsin(phi) * zd;
663 zd = sqrt(1.0 - zd*zd);
664 for (i = 0; i < 3; i++)
665 ar.rdir[i] = xd*h->ux[i] +
666 yd*h->uy[i] +
667 zd*h->uz[i];
668 checknorm(ar.rdir);
669 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
670 rayvalue(&ar);
671 ndims--;
672 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
673 addcolor(dp->v, ar.rcol);
674 /* use rt to improve gradient calc */
675 if (ar.rt > FTINY && ar.rt < FHUGE)
676 dp->r += 1.0/ar.rt;
677 /* (re)initialize error */
678 if (dp->n++) {
679 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
680 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
681 dp->k = b2/(dp->n*dp->n);
682 } else
683 dp->k = 0.0;
684 return(0);
685 }
686
687
688 static int
689 ambcmp( /* decreasing order */
690 const void *p1,
691 const void *p2
692 )
693 {
694 const AMBSAMP *d1 = (const AMBSAMP *)p1;
695 const AMBSAMP *d2 = (const AMBSAMP *)p2;
696
697 if (d1->k < d2->k)
698 return(1);
699 if (d1->k > d2->k)
700 return(-1);
701 return(0);
702 }
703
704
705 static int
706 ambnorm( /* standard order */
707 const void *p1,
708 const void *p2
709 )
710 {
711 const AMBSAMP *d1 = (const AMBSAMP *)p1;
712 const AMBSAMP *d2 = (const AMBSAMP *)p2;
713 int c;
714
715 if ( (c = d1->t - d2->t) )
716 return(c);
717 return(d1->p - d2->p);
718 }
719
720
721 double
722 doambient( /* compute ambient component */
723 COLOR rcol,
724 RAY *r,
725 double wt,
726 FVECT pg,
727 FVECT dg
728 )
729 {
730 double b, d=0;
731 AMBHEMI hemi;
732 AMBSAMP *div;
733 AMBSAMP dnew;
734 double acol[3];
735 AMBSAMP *dp;
736 double arad;
737 int divcnt;
738 int i, j;
739 /* initialize hemisphere */
740 inithemi(&hemi, rcol, r, wt);
741 divcnt = hemi.nt * hemi.np;
742 /* initialize */
743 if (pg != NULL)
744 pg[0] = pg[1] = pg[2] = 0.0;
745 if (dg != NULL)
746 dg[0] = dg[1] = dg[2] = 0.0;
747 setcolor(rcol, 0.0, 0.0, 0.0);
748 if (divcnt == 0)
749 return(0.0);
750 /* allocate super-samples */
751 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
752 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
753 if (div == NULL)
754 error(SYSTEM, "out of memory in doambient");
755 } else
756 div = NULL;
757 /* sample the divisions */
758 arad = 0.0;
759 acol[0] = acol[1] = acol[2] = 0.0;
760 if ((dp = div) == NULL)
761 dp = &dnew;
762 divcnt = 0;
763 for (i = 0; i < hemi.nt; i++)
764 for (j = 0; j < hemi.np; j++) {
765 dp->t = i; dp->p = j;
766 setcolor(dp->v, 0.0, 0.0, 0.0);
767 dp->r = 0.0;
768 dp->n = 0;
769 if (divsample(dp, &hemi, r) < 0) {
770 if (div != NULL)
771 dp++;
772 continue;
773 }
774 arad += dp->r;
775 divcnt++;
776 if (div != NULL)
777 dp++;
778 else
779 addcolor(acol, dp->v);
780 }
781 if (!divcnt) {
782 if (div != NULL)
783 free((void *)div);
784 return(0.0); /* no samples taken */
785 }
786 if (divcnt < hemi.nt*hemi.np) {
787 pg = dg = NULL; /* incomplete sampling */
788 hemi.ns = 0;
789 } else if (arad > FTINY && divcnt/arad < minarad) {
790 hemi.ns = 0; /* close enough */
791 } else if (hemi.ns > 0) { /* else perform super-sampling? */
792 comperrs(div, &hemi); /* compute errors */
793 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
794 /* super-sample */
795 for (i = hemi.ns; i > 0; i--) {
796 dnew = *div;
797 if (divsample(&dnew, &hemi, r) < 0) {
798 dp++;
799 continue;
800 }
801 dp = div; /* reinsert */
802 j = divcnt < i ? divcnt : i;
803 while (--j > 0 && dnew.k < dp[1].k) {
804 *dp = *(dp+1);
805 dp++;
806 }
807 *dp = dnew;
808 }
809 if (pg != NULL || dg != NULL) /* restore order */
810 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
811 }
812 /* compute returned values */
813 if (div != NULL) {
814 arad = 0.0; /* note: divcnt may be < nt*np */
815 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
816 arad += dp->r;
817 if (dp->n > 1) {
818 b = 1.0/dp->n;
819 scalecolor(dp->v, b);
820 dp->r *= b;
821 dp->n = 1;
822 }
823 addcolor(acol, dp->v);
824 }
825 b = bright(acol);
826 if (b > FTINY) {
827 b = 1.0/b; /* compute & normalize gradient(s) */
828 if (pg != NULL) {
829 posgradient(pg, div, &hemi);
830 for (i = 0; i < 3; i++)
831 pg[i] *= b;
832 }
833 if (dg != NULL) {
834 dirgradient(dg, div, &hemi);
835 for (i = 0; i < 3; i++)
836 dg[i] *= b;
837 }
838 }
839 free((void *)div);
840 }
841 copycolor(rcol, acol);
842 if (arad <= FTINY)
843 arad = maxarad;
844 else
845 arad = (divcnt+hemi.ns)/arad;
846 if (pg != NULL) { /* reduce radius if gradient large */
847 d = DOT(pg,pg);
848 if (d*arad*arad > 1.0)
849 arad = 1.0/sqrt(d);
850 }
851 if (arad < minarad) {
852 arad = minarad;
853 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
854 d = 1.0/arad/sqrt(d);
855 for (i = 0; i < 3; i++)
856 pg[i] *= d;
857 }
858 }
859 if ((arad /= sqrt(wt)) > maxarad)
860 arad = maxarad;
861 return(arad);
862 }
863
864
865 void
866 comperrs( /* compute initial error estimates */
867 AMBSAMP *da, /* assumes standard ordering */
868 AMBHEMI *hp
869 )
870 {
871 double b, b2;
872 int i, j;
873 AMBSAMP *dp;
874 /* sum differences from neighbors */
875 dp = da;
876 for (i = 0; i < hp->nt; i++)
877 for (j = 0; j < hp->np; j++) {
878 #ifdef DEBUG
879 if (dp->t != i || dp->p != j)
880 error(CONSISTENCY,
881 "division order in comperrs");
882 #endif
883 b = bright(dp[0].v);
884 if (i > 0) { /* from above */
885 b2 = bright(dp[-hp->np].v) - b;
886 b2 *= b2 * 0.25;
887 dp[0].k += b2;
888 dp[-hp->np].k += b2;
889 }
890 if (j > 0) { /* from behind */
891 b2 = bright(dp[-1].v) - b;
892 b2 *= b2 * 0.25;
893 dp[0].k += b2;
894 dp[-1].k += b2;
895 } else { /* around */
896 b2 = bright(dp[hp->np-1].v) - b;
897 b2 *= b2 * 0.25;
898 dp[0].k += b2;
899 dp[hp->np-1].k += b2;
900 }
901 dp++;
902 }
903 /* divide by number of neighbors */
904 dp = da;
905 for (j = 0; j < hp->np; j++) /* top row */
906 (dp++)->k *= 1.0/3.0;
907 if (hp->nt < 2)
908 return;
909 for (i = 1; i < hp->nt-1; i++) /* central region */
910 for (j = 0; j < hp->np; j++)
911 (dp++)->k *= 0.25;
912 for (j = 0; j < hp->np; j++) /* bottom row */
913 (dp++)->k *= 1.0/3.0;
914 }
915
916
917 void
918 posgradient( /* compute position gradient */
919 FVECT gv,
920 AMBSAMP *da, /* assumes standard ordering */
921 AMBHEMI *hp
922 )
923 {
924 int i, j;
925 double nextsine, lastsine, b, d;
926 double mag0, mag1;
927 double phi, cosp, sinp, xd, yd;
928 AMBSAMP *dp;
929
930 xd = yd = 0.0;
931 for (j = 0; j < hp->np; j++) {
932 dp = da + j;
933 mag0 = mag1 = 0.0;
934 lastsine = 0.0;
935 for (i = 0; i < hp->nt; i++) {
936 #ifdef DEBUG
937 if (dp->t != i || dp->p != j)
938 error(CONSISTENCY,
939 "division order in posgradient");
940 #endif
941 b = bright(dp->v);
942 if (i > 0) {
943 d = dp[-hp->np].r;
944 if (dp[0].r > d) d = dp[0].r;
945 /* sin(t)*cos(t)^2 */
946 d *= lastsine * (1.0 - (double)i/hp->nt);
947 mag0 += d*(b - bright(dp[-hp->np].v));
948 }
949 nextsine = sqrt((double)(i+1)/hp->nt);
950 if (j > 0) {
951 d = dp[-1].r;
952 if (dp[0].r > d) d = dp[0].r;
953 mag1 += d * (nextsine - lastsine) *
954 (b - bright(dp[-1].v));
955 } else {
956 d = dp[hp->np-1].r;
957 if (dp[0].r > d) d = dp[0].r;
958 mag1 += d * (nextsine - lastsine) *
959 (b - bright(dp[hp->np-1].v));
960 }
961 dp += hp->np;
962 lastsine = nextsine;
963 }
964 mag0 *= 2.0*PI / hp->np;
965 phi = 2.0*PI * (double)j/hp->np;
966 cosp = tcos(phi); sinp = tsin(phi);
967 xd += mag0*cosp - mag1*sinp;
968 yd += mag0*sinp + mag1*cosp;
969 }
970 for (i = 0; i < 3; i++)
971 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
972 }
973
974
975 void
976 dirgradient( /* compute direction gradient */
977 FVECT gv,
978 AMBSAMP *da, /* assumes standard ordering */
979 AMBHEMI *hp
980 )
981 {
982 int i, j;
983 double mag;
984 double phi, xd, yd;
985 AMBSAMP *dp;
986
987 xd = yd = 0.0;
988 for (j = 0; j < hp->np; j++) {
989 dp = da + j;
990 mag = 0.0;
991 for (i = 0; i < hp->nt; i++) {
992 #ifdef DEBUG
993 if (dp->t != i || dp->p != j)
994 error(CONSISTENCY,
995 "division order in dirgradient");
996 #endif
997 /* tan(t) */
998 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
999 dp += hp->np;
1000 }
1001 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1002 xd += mag * tcos(phi);
1003 yd += mag * tsin(phi);
1004 }
1005 for (i = 0; i < 3; i++)
1006 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1007 }
1008
1009 #endif /* ! NEWAMB */