ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.33
Committed: Thu Apr 24 19:16:52 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.32: +10 -1 lines
Log Message:
Reinstated clamping of translation gradient when increasing radius to minimum

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.32 2014/04/24 17:36:43 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Declarations of external symbols in ambient.h
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "random.h"
19
20 #ifdef NEWAMB
21
22 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
23
24 typedef struct {
25 RAY *rp; /* originating ray sample */
26 FVECT ux, uy; /* tangent axis unit vectors */
27 int ns; /* number of samples per axis */
28 COLOR acoef; /* division contribution coefficient */
29 struct s_ambsamp {
30 COLOR v; /* hemisphere sample value */
31 FVECT p; /* intersection point */
32 } sa[1]; /* sample array (extends struct) */
33 } AMBHEMI; /* ambient sample hemisphere */
34
35 #define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)]
36
37 typedef struct {
38 FVECT r_i, r_i1, e_i, rI2_eJ2;
39 double nf, I1, I2;
40 } FFTRI; /* vectors and coefficients for Hessian calculation */
41
42
43 static AMBHEMI *
44 inithemi( /* initialize sampling hemisphere */
45 COLOR ac,
46 RAY *r,
47 double wt
48 )
49 {
50 AMBHEMI *hp;
51 double d;
52 int n, i;
53 /* set number of divisions */
54 if (ambacc <= FTINY &&
55 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
56 wt = d; /* avoid ray termination */
57 n = sqrt(ambdiv * wt) + 0.5;
58 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
59 if (n < i)
60 n = i;
61 /* allocate sampling array */
62 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) +
63 sizeof(struct s_ambsamp)*(n*n - 1));
64 if (hp == NULL)
65 return(NULL);
66 hp->rp = r;
67 hp->ns = n;
68 /* assign coefficient */
69 copycolor(hp->acoef, ac);
70 d = 1.0/(n*n);
71 scalecolor(hp->acoef, d);
72 /* make tangent plane axes */
73 hp->uy[0] = 0.1 - 0.2*frandom();
74 hp->uy[1] = 0.1 - 0.2*frandom();
75 hp->uy[2] = 0.1 - 0.2*frandom();
76 for (i = 0; i < 3; i++)
77 if (r->ron[i] < 0.6 && r->ron[i] > -0.6)
78 break;
79 if (i >= 3)
80 error(CONSISTENCY, "bad ray direction in inithemi()");
81 hp->uy[i] = 1.0;
82 VCROSS(hp->ux, hp->uy, r->ron);
83 normalize(hp->ux);
84 VCROSS(hp->uy, r->ron, hp->ux);
85 /* we're ready to sample */
86 return(hp);
87 }
88
89
90 static struct s_ambsamp *
91 ambsample( /* sample an ambient direction */
92 AMBHEMI *hp,
93 int i,
94 int j
95 )
96 {
97 struct s_ambsamp *ap = &ambsamp(hp,i,j);
98 RAY ar;
99 double spt[2], zd;
100 int ii;
101 /* ambient coefficient for weight */
102 if (ambacc > FTINY)
103 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
104 else
105 copycolor(ar.rcoef, hp->acoef);
106 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
107 goto badsample;
108 if (ambacc > FTINY) {
109 multcolor(ar.rcoef, hp->acoef);
110 scalecolor(ar.rcoef, 1./AVGREFL);
111 }
112 /* generate hemispherical sample */
113 SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns,
114 (j+.1+.8*frandom())/hp->ns );
115 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
116 for (ii = 3; ii--; )
117 ar.rdir[ii] = spt[0]*hp->ux[ii] +
118 spt[1]*hp->uy[ii] +
119 zd*hp->rp->ron[ii];
120 checknorm(ar.rdir);
121 dimlist[ndims++] = i*hp->ns + j + 90171;
122 rayvalue(&ar); /* evaluate ray */
123 ndims--;
124 if (ar.rt > 20.0*maxarad) /* limit vertex distance */
125 ar.rt = 20.0*maxarad;
126 else if (ar.rt <= FTINY) /* should never happen! */
127 goto badsample;
128 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
129 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
130 copycolor(ap->v, ar.rcol);
131 return(ap);
132 badsample:
133 setcolor(ap->v, 0., 0., 0.);
134 VCOPY(ap->p, hp->rp->rop);
135 return(NULL);
136 }
137
138
139 /* Compute vectors and coefficients for Hessian/gradient calcs */
140 static void
141 comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop)
142 {
143 FVECT vcp;
144 double dot_e, dot_er, rdot_r, rdot_r1, J2;
145 int i;
146
147 VSUB(ftp->r_i, ap0, rop);
148 VSUB(ftp->r_i1, ap1, rop);
149 VSUB(ftp->e_i, ap1, ap0);
150 VCROSS(vcp, ftp->e_i, ftp->r_i);
151 ftp->nf = 1.0/DOT(vcp,vcp);
152 dot_e = DOT(ftp->e_i,ftp->e_i);
153 dot_er = DOT(ftp->e_i, ftp->r_i);
154 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
155 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
156 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
157 sqrt( ftp->nf );
158 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
159 dot_e*ftp->I1 )*0.5*ftp->nf;
160 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
161 for (i = 3; i--; )
162 ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i];
163 }
164
165
166 /* Compose 3x3 matrix from two vectors */
167 static void
168 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
169 {
170 mat[0][0] = 2.0*va[0]*vb[0];
171 mat[1][1] = 2.0*va[1]*vb[1];
172 mat[2][2] = 2.0*va[2]*vb[2];
173 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
174 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
175 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
176 }
177
178
179 /* Compute partial 3x3 Hessian matrix for edge */
180 static void
181 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
182 {
183 FVECT vcp;
184 FVECT m1[3], m2[3], m3[3], m4[3];
185 double d1, d2, d3, d4;
186 double I3, J3, K3;
187 int i, j;
188 /* compute intermediate coefficients */
189 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
190 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
191 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
192 d4 = DOT(ftp->e_i, ftp->r_i);
193 I3 = 0.25*ftp->nf*( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 +
194 3.0/d3*ftp->I2 );
195 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
196 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
197 /* intermediate matrices */
198 VCROSS(vcp, nrm, ftp->e_i);
199 compose_matrix(m1, vcp, ftp->rI2_eJ2);
200 compose_matrix(m2, ftp->r_i, ftp->r_i);
201 compose_matrix(m3, ftp->e_i, ftp->e_i);
202 compose_matrix(m4, ftp->r_i, ftp->e_i);
203 VCROSS(vcp, ftp->r_i, ftp->e_i);
204 d1 = DOT(nrm, vcp);
205 d2 = -d1*ftp->I2;
206 d1 *= 2.0;
207 for (i = 3; i--; ) /* final matrix sum */
208 for (j = 3; j--; ) {
209 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
210 2.0*J3*m4[i][j] );
211 hess[i][j] += d2*(i==j);
212 hess[i][j] *= 1.0/PI;
213 }
214 }
215
216
217 /* Reverse hessian calculation result for edge in other direction */
218 static void
219 rev_hessian(FVECT hess[3])
220 {
221 int i;
222
223 for (i = 3; i--; ) {
224 hess[i][0] = -hess[i][0];
225 hess[i][1] = -hess[i][1];
226 hess[i][2] = -hess[i][2];
227 }
228 }
229
230
231 /* Add to radiometric Hessian from the given triangle */
232 static void
233 add2hessian(FVECT hess[3], FVECT ehess1[3],
234 FVECT ehess2[3], FVECT ehess3[3], COLORV v)
235 {
236 int i, j;
237
238 for (i = 3; i--; )
239 for (j = 3; j--; )
240 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
241 }
242
243
244 /* Compute partial displacement form factor gradient for edge */
245 static void
246 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
247 {
248 FVECT vcp;
249 double f1;
250 int i;
251
252 VCROSS(vcp, ftp->r_i, ftp->r_i1);
253 f1 = 2.0*DOT(nrm, vcp);
254 VCROSS(vcp, nrm, ftp->e_i);
255 for (i = 3; i--; )
256 grad[i] = (-0.5/PI)*( ftp->I1*vcp[i] + f1*ftp->rI2_eJ2[i] );
257 }
258
259
260 /* Reverse gradient calculation result for edge in other direction */
261 static void
262 rev_gradient(FVECT grad)
263 {
264 grad[0] = -grad[0];
265 grad[1] = -grad[1];
266 grad[2] = -grad[2];
267 }
268
269
270 /* Add to displacement gradient from the given triangle */
271 static void
272 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v)
273 {
274 int i;
275
276 for (i = 3; i--; )
277 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
278 }
279
280
281 /* Return brightness of furthest ambient sample */
282 static COLORV
283 back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2,
284 struct s_ambsamp *ap3, FVECT orig)
285 {
286 COLORV vback;
287 FVECT vec;
288 double d2, d2best;
289
290 VSUB(vec, ap1->p, orig);
291 d2best = DOT(vec,vec);
292 vback = colval(ap1->v,CIEY);
293 VSUB(vec, ap2->p, orig);
294 d2 = DOT(vec,vec);
295 if (d2 > d2best) {
296 d2best = d2;
297 vback = colval(ap2->v,CIEY);
298 }
299 VSUB(vec, ap3->p, orig);
300 d2 = DOT(vec,vec);
301 if (d2 > d2best)
302 return(colval(ap3->v,CIEY));
303 return(vback);
304 }
305
306
307 /* Compute anisotropic radii and eigenvector directions */
308 static int
309 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
310 {
311 double hess2[2][2];
312 FVECT a, b;
313 double evalue[2], slope1, xmag1;
314 int i;
315 /* project Hessian to sample plane */
316 for (i = 3; i--; ) {
317 a[i] = DOT(hessian[i], uv[0]);
318 b[i] = DOT(hessian[i], uv[1]);
319 }
320 hess2[0][0] = DOT(uv[0], a);
321 hess2[0][1] = DOT(uv[0], b);
322 hess2[1][0] = DOT(uv[1], a);
323 hess2[1][1] = DOT(uv[1], b);
324 /* compute eigenvalues */
325 if ( quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
326 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 ||
327 (evalue[0] = fabs(evalue[0])) <= FTINY*FTINY ||
328 (evalue[1] = fabs(evalue[1])) <= FTINY*FTINY )
329 error(INTERNAL, "bad eigenvalue calculation");
330
331 if (evalue[0] > evalue[1]) {
332 ra[0] = sqrt(sqrt(4.0/evalue[0]));
333 ra[1] = sqrt(sqrt(4.0/evalue[1]));
334 slope1 = evalue[1];
335 } else {
336 ra[0] = sqrt(sqrt(4.0/evalue[1]));
337 ra[1] = sqrt(sqrt(4.0/evalue[0]));
338 slope1 = evalue[0];
339 }
340 /* compute unit eigenvectors */
341 if (fabs(hess2[0][1]) <= FTINY)
342 return; /* uv OK as is */
343 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
344 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
345 for (i = 3; i--; ) {
346 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
347 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
348 }
349 VCOPY(uv[0], a);
350 VCOPY(uv[1], b);
351 }
352
353
354 static void
355 ambHessian( /* anisotropic radii & pos. gradient */
356 AMBHEMI *hp,
357 FVECT uv[2], /* returned */
358 float ra[2], /* returned (optional) */
359 float pg[2] /* returned (optional) */
360 )
361 {
362 static char memerrmsg[] = "out of memory in ambHessian()";
363 FVECT (*hessrow)[3] = NULL;
364 FVECT *gradrow = NULL;
365 FVECT hessian[3];
366 FVECT gradient;
367 FFTRI fftr;
368 int i, j;
369 /* be sure to assign unit vectors */
370 VCOPY(uv[0], hp->ux);
371 VCOPY(uv[1], hp->uy);
372 /* clock-wise vertex traversal from sample POV */
373 if (ra != NULL) { /* initialize Hessian row buffer */
374 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
375 if (hessrow == NULL)
376 error(SYSTEM, memerrmsg);
377 memset(hessian, 0, sizeof(hessian));
378 } else if (pg == NULL) /* bogus call? */
379 return;
380 if (pg != NULL) { /* initialize form factor row buffer */
381 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
382 if (gradrow == NULL)
383 error(SYSTEM, memerrmsg);
384 memset(gradient, 0, sizeof(gradient));
385 }
386 /* compute first row of edges */
387 for (j = 0; j < hp->ns-1; j++) {
388 comp_fftri(&fftr, ambsamp(hp,0,j).p,
389 ambsamp(hp,0,j+1).p, hp->rp->rop);
390 if (hessrow != NULL)
391 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
392 if (gradrow != NULL)
393 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
394 }
395 /* sum each row of triangles */
396 for (i = 0; i < hp->ns-1; i++) {
397 FVECT hesscol[3]; /* compute first vertical edge */
398 FVECT gradcol;
399 comp_fftri(&fftr, ambsamp(hp,i,0).p,
400 ambsamp(hp,i+1,0).p, hp->rp->rop);
401 if (hessrow != NULL)
402 comp_hessian(hesscol, &fftr, hp->rp->ron);
403 if (gradrow != NULL)
404 comp_gradient(gradcol, &fftr, hp->rp->ron);
405 for (j = 0; j < hp->ns-1; j++) {
406 FVECT hessdia[3]; /* compute triangle contributions */
407 FVECT graddia;
408 COLORV backg;
409 backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1),
410 &ambsamp(hp,i+1,j), hp->rp->rop);
411 /* diagonal (inner) edge */
412 comp_fftri(&fftr, ambsamp(hp,i,j+1).p,
413 ambsamp(hp,i+1,j).p, hp->rp->rop);
414 if (hessrow != NULL) {
415 comp_hessian(hessdia, &fftr, hp->rp->ron);
416 rev_hessian(hesscol);
417 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
418 }
419 if (gradient != NULL) {
420 comp_gradient(graddia, &fftr, hp->rp->ron);
421 rev_gradient(gradcol);
422 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
423 }
424 /* initialize edge in next row */
425 comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p,
426 ambsamp(hp,i+1,j).p, hp->rp->rop);
427 if (hessrow != NULL)
428 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
429 if (gradrow != NULL)
430 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
431 /* new column edge & paired triangle */
432 backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1),
433 &ambsamp(hp,i+1,j), hp->rp->rop);
434 comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p,
435 hp->rp->rop);
436 if (hessrow != NULL) {
437 comp_hessian(hesscol, &fftr, hp->rp->ron);
438 rev_hessian(hessdia);
439 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
440 if (i < hp->ns-2)
441 rev_hessian(hessrow[j]);
442 }
443 if (gradrow != NULL) {
444 comp_gradient(gradcol, &fftr, hp->rp->ron);
445 rev_gradient(graddia);
446 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
447 if (i < hp->ns-2)
448 rev_gradient(gradrow[j]);
449 }
450 }
451 }
452 /* release row buffers */
453 if (hessrow != NULL) free(hessrow);
454 if (gradrow != NULL) free(gradrow);
455
456 if (ra != NULL) /* extract eigenvectors & radii */
457 eigenvectors(uv, ra, hessian);
458 if (pg != NULL) { /* tangential position gradient */
459 pg[0] = DOT(gradient, uv[0]);
460 pg[1] = DOT(gradient, uv[1]);
461 }
462 }
463
464
465 /* Compute direction gradient from a hemispherical sampling */
466 static void
467 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
468 {
469 struct s_ambsamp *ap;
470 double dgsum[2];
471 int n;
472 FVECT vd;
473 double gfact;
474
475 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
476 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
477 /* use vector for azimuth + 90deg */
478 VSUB(vd, ap->p, hp->rp->rop);
479 /* brightness over cosine factor */
480 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
481 /* -sine = -proj_radius/vd_length */
482 dgsum[0] += DOT(uv[1], vd) * gfact;
483 dgsum[1] -= DOT(uv[0], vd) * gfact;
484 }
485 dg[0] = dgsum[0] / (hp->ns*hp->ns);
486 dg[1] = dgsum[1] / (hp->ns*hp->ns);
487 }
488
489
490 int
491 doambient( /* compute ambient component */
492 COLOR rcol, /* input/output color */
493 RAY *r,
494 double wt,
495 FVECT uv[2], /* returned (optional) */
496 float ra[2], /* returned (optional) */
497 float pg[2], /* returned (optional) */
498 float dg[2] /* returned (optional) */
499 )
500 {
501 AMBHEMI *hp = inithemi(rcol, r, wt);
502 int cnt = 0;
503 FVECT my_uv[2];
504 double d, acol[3];
505 struct s_ambsamp *ap;
506 int i, j;
507 /* check/initialize */
508 if (hp == NULL)
509 return(0);
510 if (uv != NULL)
511 memset(uv, 0, sizeof(FVECT)*2);
512 if (ra != NULL)
513 ra[0] = ra[1] = 0.0;
514 if (pg != NULL)
515 pg[0] = pg[1] = 0.0;
516 if (dg != NULL)
517 dg[0] = dg[1] = 0.0;
518 /* sample the hemisphere */
519 acol[0] = acol[1] = acol[2] = 0.0;
520 for (i = hp->ns; i--; )
521 for (j = hp->ns; j--; )
522 if ((ap = ambsample(hp, i, j)) != NULL) {
523 addcolor(acol, ap->v);
524 ++cnt;
525 }
526 if (!cnt) {
527 setcolor(rcol, 0.0, 0.0, 0.0);
528 free(hp);
529 return(0); /* no valid samples */
530 }
531 copycolor(rcol, acol); /* final indirect irradiance/PI */
532 if (cnt < hp->ns*hp->ns || /* incomplete sampling? */
533 (ra == NULL) & (pg == NULL) & (dg == NULL)) {
534 free(hp);
535 return(-1); /* no radius or gradient calc. */
536 }
537 if (bright(acol) > FTINY) /* normalize Y values */
538 d = cnt/bright(acol);
539 else
540 d = 0.0;
541 ap = hp->sa; /* relative Y channel from here on... */
542 for (i = hp->ns*hp->ns; i--; ap++)
543 colval(ap->v,CIEY) = bright(ap->v)*d + 0.01;
544
545 if (uv == NULL) /* make sure we have axis pointers */
546 uv = my_uv;
547 /* compute radii & pos. gradient */
548 ambHessian(hp, uv, ra, pg);
549
550 if (dg != NULL) /* compute direction gradient */
551 ambdirgrad(hp, uv, dg);
552
553 if (ra != NULL) { /* scale/clamp radii */
554 if (ra[0] < minarad) {
555 ra[0] = minarad;
556 if (ra[1] < minarad)
557 ra[1] = minarad;
558 /* cap gradient if necessary */
559 if (pg != NULL) {
560 d = (pg[0]*pg[0] + pg[1]*pg[1])*ra[0]*ra[0];
561 if (d > 1.0) {
562 d = 1.0/sqrt(d);
563 pg[0] *= d;
564 pg[1] *= d;
565 }
566 }
567 }
568 ra[0] *= d = 1.0/sqrt(sqrt(wt));
569 if ((ra[1] *= d) > 2.0*ra[0])
570 ra[1] = 2.0*ra[0];
571 if (ra[1] > maxarad) {
572 ra[1] = maxarad;
573 if (ra[0] > maxarad)
574 ra[0] = maxarad;
575 }
576 }
577 free(hp); /* clean up and return */
578 return(1);
579 }
580
581
582 #else /* ! NEWAMB */
583
584
585 void
586 inithemi( /* initialize sampling hemisphere */
587 AMBHEMI *hp,
588 COLOR ac,
589 RAY *r,
590 double wt
591 )
592 {
593 double d;
594 int i;
595 /* set number of divisions */
596 if (ambacc <= FTINY &&
597 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
598 wt = d; /* avoid ray termination */
599 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
600 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
601 if (hp->nt < i)
602 hp->nt = i;
603 hp->np = PI * hp->nt + 0.5;
604 /* set number of super-samples */
605 hp->ns = ambssamp * wt + 0.5;
606 /* assign coefficient */
607 copycolor(hp->acoef, ac);
608 d = 1.0/(hp->nt*hp->np);
609 scalecolor(hp->acoef, d);
610 /* make axes */
611 VCOPY(hp->uz, r->ron);
612 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
613 for (i = 0; i < 3; i++)
614 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
615 break;
616 if (i >= 3)
617 error(CONSISTENCY, "bad ray direction in inithemi");
618 hp->uy[i] = 1.0;
619 fcross(hp->ux, hp->uy, hp->uz);
620 normalize(hp->ux);
621 fcross(hp->uy, hp->uz, hp->ux);
622 }
623
624
625 int
626 divsample( /* sample a division */
627 AMBSAMP *dp,
628 AMBHEMI *h,
629 RAY *r
630 )
631 {
632 RAY ar;
633 int hlist[3];
634 double spt[2];
635 double xd, yd, zd;
636 double b2;
637 double phi;
638 int i;
639 /* ambient coefficient for weight */
640 if (ambacc > FTINY)
641 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
642 else
643 copycolor(ar.rcoef, h->acoef);
644 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
645 return(-1);
646 if (ambacc > FTINY) {
647 multcolor(ar.rcoef, h->acoef);
648 scalecolor(ar.rcoef, 1./AVGREFL);
649 }
650 hlist[0] = r->rno;
651 hlist[1] = dp->t;
652 hlist[2] = dp->p;
653 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
654 zd = sqrt((dp->t + spt[0])/h->nt);
655 phi = 2.0*PI * (dp->p + spt[1])/h->np;
656 xd = tcos(phi) * zd;
657 yd = tsin(phi) * zd;
658 zd = sqrt(1.0 - zd*zd);
659 for (i = 0; i < 3; i++)
660 ar.rdir[i] = xd*h->ux[i] +
661 yd*h->uy[i] +
662 zd*h->uz[i];
663 checknorm(ar.rdir);
664 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
665 rayvalue(&ar);
666 ndims--;
667 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
668 addcolor(dp->v, ar.rcol);
669 /* use rt to improve gradient calc */
670 if (ar.rt > FTINY && ar.rt < FHUGE)
671 dp->r += 1.0/ar.rt;
672 /* (re)initialize error */
673 if (dp->n++) {
674 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
675 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
676 dp->k = b2/(dp->n*dp->n);
677 } else
678 dp->k = 0.0;
679 return(0);
680 }
681
682
683 static int
684 ambcmp( /* decreasing order */
685 const void *p1,
686 const void *p2
687 )
688 {
689 const AMBSAMP *d1 = (const AMBSAMP *)p1;
690 const AMBSAMP *d2 = (const AMBSAMP *)p2;
691
692 if (d1->k < d2->k)
693 return(1);
694 if (d1->k > d2->k)
695 return(-1);
696 return(0);
697 }
698
699
700 static int
701 ambnorm( /* standard order */
702 const void *p1,
703 const void *p2
704 )
705 {
706 const AMBSAMP *d1 = (const AMBSAMP *)p1;
707 const AMBSAMP *d2 = (const AMBSAMP *)p2;
708 int c;
709
710 if ( (c = d1->t - d2->t) )
711 return(c);
712 return(d1->p - d2->p);
713 }
714
715
716 double
717 doambient( /* compute ambient component */
718 COLOR rcol,
719 RAY *r,
720 double wt,
721 FVECT pg,
722 FVECT dg
723 )
724 {
725 double b, d=0;
726 AMBHEMI hemi;
727 AMBSAMP *div;
728 AMBSAMP dnew;
729 double acol[3];
730 AMBSAMP *dp;
731 double arad;
732 int divcnt;
733 int i, j;
734 /* initialize hemisphere */
735 inithemi(&hemi, rcol, r, wt);
736 divcnt = hemi.nt * hemi.np;
737 /* initialize */
738 if (pg != NULL)
739 pg[0] = pg[1] = pg[2] = 0.0;
740 if (dg != NULL)
741 dg[0] = dg[1] = dg[2] = 0.0;
742 setcolor(rcol, 0.0, 0.0, 0.0);
743 if (divcnt == 0)
744 return(0.0);
745 /* allocate super-samples */
746 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
747 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
748 if (div == NULL)
749 error(SYSTEM, "out of memory in doambient");
750 } else
751 div = NULL;
752 /* sample the divisions */
753 arad = 0.0;
754 acol[0] = acol[1] = acol[2] = 0.0;
755 if ((dp = div) == NULL)
756 dp = &dnew;
757 divcnt = 0;
758 for (i = 0; i < hemi.nt; i++)
759 for (j = 0; j < hemi.np; j++) {
760 dp->t = i; dp->p = j;
761 setcolor(dp->v, 0.0, 0.0, 0.0);
762 dp->r = 0.0;
763 dp->n = 0;
764 if (divsample(dp, &hemi, r) < 0) {
765 if (div != NULL)
766 dp++;
767 continue;
768 }
769 arad += dp->r;
770 divcnt++;
771 if (div != NULL)
772 dp++;
773 else
774 addcolor(acol, dp->v);
775 }
776 if (!divcnt) {
777 if (div != NULL)
778 free((void *)div);
779 return(0.0); /* no samples taken */
780 }
781 if (divcnt < hemi.nt*hemi.np) {
782 pg = dg = NULL; /* incomplete sampling */
783 hemi.ns = 0;
784 } else if (arad > FTINY && divcnt/arad < minarad) {
785 hemi.ns = 0; /* close enough */
786 } else if (hemi.ns > 0) { /* else perform super-sampling? */
787 comperrs(div, &hemi); /* compute errors */
788 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
789 /* super-sample */
790 for (i = hemi.ns; i > 0; i--) {
791 dnew = *div;
792 if (divsample(&dnew, &hemi, r) < 0) {
793 dp++;
794 continue;
795 }
796 dp = div; /* reinsert */
797 j = divcnt < i ? divcnt : i;
798 while (--j > 0 && dnew.k < dp[1].k) {
799 *dp = *(dp+1);
800 dp++;
801 }
802 *dp = dnew;
803 }
804 if (pg != NULL || dg != NULL) /* restore order */
805 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
806 }
807 /* compute returned values */
808 if (div != NULL) {
809 arad = 0.0; /* note: divcnt may be < nt*np */
810 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
811 arad += dp->r;
812 if (dp->n > 1) {
813 b = 1.0/dp->n;
814 scalecolor(dp->v, b);
815 dp->r *= b;
816 dp->n = 1;
817 }
818 addcolor(acol, dp->v);
819 }
820 b = bright(acol);
821 if (b > FTINY) {
822 b = 1.0/b; /* compute & normalize gradient(s) */
823 if (pg != NULL) {
824 posgradient(pg, div, &hemi);
825 for (i = 0; i < 3; i++)
826 pg[i] *= b;
827 }
828 if (dg != NULL) {
829 dirgradient(dg, div, &hemi);
830 for (i = 0; i < 3; i++)
831 dg[i] *= b;
832 }
833 }
834 free((void *)div);
835 }
836 copycolor(rcol, acol);
837 if (arad <= FTINY)
838 arad = maxarad;
839 else
840 arad = (divcnt+hemi.ns)/arad;
841 if (pg != NULL) { /* reduce radius if gradient large */
842 d = DOT(pg,pg);
843 if (d*arad*arad > 1.0)
844 arad = 1.0/sqrt(d);
845 }
846 if (arad < minarad) {
847 arad = minarad;
848 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
849 d = 1.0/arad/sqrt(d);
850 for (i = 0; i < 3; i++)
851 pg[i] *= d;
852 }
853 }
854 if ((arad /= sqrt(wt)) > maxarad)
855 arad = maxarad;
856 return(arad);
857 }
858
859
860 void
861 comperrs( /* compute initial error estimates */
862 AMBSAMP *da, /* assumes standard ordering */
863 AMBHEMI *hp
864 )
865 {
866 double b, b2;
867 int i, j;
868 AMBSAMP *dp;
869 /* sum differences from neighbors */
870 dp = da;
871 for (i = 0; i < hp->nt; i++)
872 for (j = 0; j < hp->np; j++) {
873 #ifdef DEBUG
874 if (dp->t != i || dp->p != j)
875 error(CONSISTENCY,
876 "division order in comperrs");
877 #endif
878 b = bright(dp[0].v);
879 if (i > 0) { /* from above */
880 b2 = bright(dp[-hp->np].v) - b;
881 b2 *= b2 * 0.25;
882 dp[0].k += b2;
883 dp[-hp->np].k += b2;
884 }
885 if (j > 0) { /* from behind */
886 b2 = bright(dp[-1].v) - b;
887 b2 *= b2 * 0.25;
888 dp[0].k += b2;
889 dp[-1].k += b2;
890 } else { /* around */
891 b2 = bright(dp[hp->np-1].v) - b;
892 b2 *= b2 * 0.25;
893 dp[0].k += b2;
894 dp[hp->np-1].k += b2;
895 }
896 dp++;
897 }
898 /* divide by number of neighbors */
899 dp = da;
900 for (j = 0; j < hp->np; j++) /* top row */
901 (dp++)->k *= 1.0/3.0;
902 if (hp->nt < 2)
903 return;
904 for (i = 1; i < hp->nt-1; i++) /* central region */
905 for (j = 0; j < hp->np; j++)
906 (dp++)->k *= 0.25;
907 for (j = 0; j < hp->np; j++) /* bottom row */
908 (dp++)->k *= 1.0/3.0;
909 }
910
911
912 void
913 posgradient( /* compute position gradient */
914 FVECT gv,
915 AMBSAMP *da, /* assumes standard ordering */
916 AMBHEMI *hp
917 )
918 {
919 int i, j;
920 double nextsine, lastsine, b, d;
921 double mag0, mag1;
922 double phi, cosp, sinp, xd, yd;
923 AMBSAMP *dp;
924
925 xd = yd = 0.0;
926 for (j = 0; j < hp->np; j++) {
927 dp = da + j;
928 mag0 = mag1 = 0.0;
929 lastsine = 0.0;
930 for (i = 0; i < hp->nt; i++) {
931 #ifdef DEBUG
932 if (dp->t != i || dp->p != j)
933 error(CONSISTENCY,
934 "division order in posgradient");
935 #endif
936 b = bright(dp->v);
937 if (i > 0) {
938 d = dp[-hp->np].r;
939 if (dp[0].r > d) d = dp[0].r;
940 /* sin(t)*cos(t)^2 */
941 d *= lastsine * (1.0 - (double)i/hp->nt);
942 mag0 += d*(b - bright(dp[-hp->np].v));
943 }
944 nextsine = sqrt((double)(i+1)/hp->nt);
945 if (j > 0) {
946 d = dp[-1].r;
947 if (dp[0].r > d) d = dp[0].r;
948 mag1 += d * (nextsine - lastsine) *
949 (b - bright(dp[-1].v));
950 } else {
951 d = dp[hp->np-1].r;
952 if (dp[0].r > d) d = dp[0].r;
953 mag1 += d * (nextsine - lastsine) *
954 (b - bright(dp[hp->np-1].v));
955 }
956 dp += hp->np;
957 lastsine = nextsine;
958 }
959 mag0 *= 2.0*PI / hp->np;
960 phi = 2.0*PI * (double)j/hp->np;
961 cosp = tcos(phi); sinp = tsin(phi);
962 xd += mag0*cosp - mag1*sinp;
963 yd += mag0*sinp + mag1*cosp;
964 }
965 for (i = 0; i < 3; i++)
966 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
967 }
968
969
970 void
971 dirgradient( /* compute direction gradient */
972 FVECT gv,
973 AMBSAMP *da, /* assumes standard ordering */
974 AMBHEMI *hp
975 )
976 {
977 int i, j;
978 double mag;
979 double phi, xd, yd;
980 AMBSAMP *dp;
981
982 xd = yd = 0.0;
983 for (j = 0; j < hp->np; j++) {
984 dp = da + j;
985 mag = 0.0;
986 for (i = 0; i < hp->nt; i++) {
987 #ifdef DEBUG
988 if (dp->t != i || dp->p != j)
989 error(CONSISTENCY,
990 "division order in dirgradient");
991 #endif
992 /* tan(t) */
993 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
994 dp += hp->np;
995 }
996 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
997 xd += mag * tcos(phi);
998 yd += mag * tsin(phi);
999 }
1000 for (i = 0; i < 3; i++)
1001 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1002 }
1003
1004 #endif /* ! NEWAMB */