ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.32
Committed: Thu Apr 24 17:36:43 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.31: +15 -16 lines
Log Message:
Corrected some math so the results are starting to look agreeable

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.31 2014/04/24 06:03:15 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Declarations of external symbols in ambient.h
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "random.h"
19
20 #ifdef NEWAMB
21
22 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
23
24 typedef struct {
25 RAY *rp; /* originating ray sample */
26 FVECT ux, uy; /* tangent axis unit vectors */
27 int ns; /* number of samples per axis */
28 COLOR acoef; /* division contribution coefficient */
29 struct s_ambsamp {
30 COLOR v; /* hemisphere sample value */
31 FVECT p; /* intersection point */
32 } sa[1]; /* sample array (extends struct) */
33 } AMBHEMI; /* ambient sample hemisphere */
34
35 #define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)]
36
37 typedef struct {
38 FVECT r_i, r_i1, e_i, rI2_eJ2;
39 double nf, I1, I2;
40 } FFTRI; /* vectors and coefficients for Hessian calculation */
41
42
43 static AMBHEMI *
44 inithemi( /* initialize sampling hemisphere */
45 COLOR ac,
46 RAY *r,
47 double wt
48 )
49 {
50 AMBHEMI *hp;
51 double d;
52 int n, i;
53 /* set number of divisions */
54 if (ambacc <= FTINY &&
55 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
56 wt = d; /* avoid ray termination */
57 n = sqrt(ambdiv * wt) + 0.5;
58 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
59 if (n < i)
60 n = i;
61 /* allocate sampling array */
62 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) +
63 sizeof(struct s_ambsamp)*(n*n - 1));
64 if (hp == NULL)
65 return(NULL);
66 hp->rp = r;
67 hp->ns = n;
68 /* assign coefficient */
69 copycolor(hp->acoef, ac);
70 d = 1.0/(n*n);
71 scalecolor(hp->acoef, d);
72 /* make tangent plane axes */
73 hp->uy[0] = 0.1 - 0.2*frandom();
74 hp->uy[1] = 0.1 - 0.2*frandom();
75 hp->uy[2] = 0.1 - 0.2*frandom();
76 for (i = 0; i < 3; i++)
77 if (r->ron[i] < 0.6 && r->ron[i] > -0.6)
78 break;
79 if (i >= 3)
80 error(CONSISTENCY, "bad ray direction in inithemi()");
81 hp->uy[i] = 1.0;
82 VCROSS(hp->ux, hp->uy, r->ron);
83 normalize(hp->ux);
84 VCROSS(hp->uy, r->ron, hp->ux);
85 /* we're ready to sample */
86 return(hp);
87 }
88
89
90 static struct s_ambsamp *
91 ambsample( /* sample an ambient direction */
92 AMBHEMI *hp,
93 int i,
94 int j
95 )
96 {
97 struct s_ambsamp *ap = &ambsamp(hp,i,j);
98 RAY ar;
99 double spt[2], zd;
100 int ii;
101 /* ambient coefficient for weight */
102 if (ambacc > FTINY)
103 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
104 else
105 copycolor(ar.rcoef, hp->acoef);
106 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
107 goto badsample;
108 if (ambacc > FTINY) {
109 multcolor(ar.rcoef, hp->acoef);
110 scalecolor(ar.rcoef, 1./AVGREFL);
111 }
112 /* generate hemispherical sample */
113 SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns,
114 (j+.1+.8*frandom())/hp->ns );
115 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
116 for (ii = 3; ii--; )
117 ar.rdir[ii] = spt[0]*hp->ux[ii] +
118 spt[1]*hp->uy[ii] +
119 zd*hp->rp->ron[ii];
120 checknorm(ar.rdir);
121 dimlist[ndims++] = i*hp->ns + j + 90171;
122 rayvalue(&ar); /* evaluate ray */
123 ndims--;
124 if (ar.rt > 20.0*maxarad) /* limit vertex distance */
125 ar.rt = 20.0*maxarad;
126 else if (ar.rt <= FTINY) /* should never happen! */
127 goto badsample;
128 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
129 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
130 copycolor(ap->v, ar.rcol);
131 return(ap);
132 badsample:
133 setcolor(ap->v, 0., 0., 0.);
134 VCOPY(ap->p, hp->rp->rop);
135 return(NULL);
136 }
137
138
139 /* Compute vectors and coefficients for Hessian/gradient calcs */
140 static void
141 comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop)
142 {
143 FVECT vcp;
144 double dot_e, dot_er, rdot_r, rdot_r1, J2;
145 int i;
146
147 VSUB(ftp->r_i, ap0, rop);
148 VSUB(ftp->r_i1, ap1, rop);
149 VSUB(ftp->e_i, ap1, ap0);
150 VCROSS(vcp, ftp->e_i, ftp->r_i);
151 ftp->nf = 1.0/DOT(vcp,vcp);
152 dot_e = DOT(ftp->e_i,ftp->e_i);
153 dot_er = DOT(ftp->e_i, ftp->r_i);
154 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
155 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
156 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
157 sqrt( ftp->nf );
158 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
159 dot_e*ftp->I1 )*0.5*ftp->nf;
160 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
161 for (i = 3; i--; )
162 ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i];
163 }
164
165
166 /* Compose 3x3 matrix from two vectors */
167 static void
168 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
169 {
170 mat[0][0] = 2.0*va[0]*vb[0];
171 mat[1][1] = 2.0*va[1]*vb[1];
172 mat[2][2] = 2.0*va[2]*vb[2];
173 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
174 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
175 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
176 }
177
178
179 /* Compute partial 3x3 Hessian matrix for edge */
180 static void
181 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
182 {
183 FVECT vcp;
184 FVECT m1[3], m2[3], m3[3], m4[3];
185 double d1, d2, d3, d4;
186 double I3, J3, K3;
187 int i, j;
188 /* compute intermediate coefficients */
189 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
190 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
191 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
192 d4 = DOT(ftp->e_i, ftp->r_i);
193 I3 = 0.25*ftp->nf*( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 +
194 3.0/d3*ftp->I2 );
195 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
196 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
197 /* intermediate matrices */
198 VCROSS(vcp, nrm, ftp->e_i);
199 compose_matrix(m1, vcp, ftp->rI2_eJ2);
200 compose_matrix(m2, ftp->r_i, ftp->r_i);
201 compose_matrix(m3, ftp->e_i, ftp->e_i);
202 compose_matrix(m4, ftp->r_i, ftp->e_i);
203 VCROSS(vcp, ftp->r_i, ftp->e_i);
204 d1 = DOT(nrm, vcp);
205 d2 = -d1*ftp->I2;
206 d1 *= 2.0;
207 for (i = 3; i--; ) /* final matrix sum */
208 for (j = 3; j--; ) {
209 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
210 2.0*J3*m4[i][j] );
211 hess[i][j] += d2*(i==j);
212 hess[i][j] *= 1.0/PI;
213 }
214 }
215
216
217 /* Reverse hessian calculation result for edge in other direction */
218 static void
219 rev_hessian(FVECT hess[3])
220 {
221 int i;
222
223 for (i = 3; i--; ) {
224 hess[i][0] = -hess[i][0];
225 hess[i][1] = -hess[i][1];
226 hess[i][2] = -hess[i][2];
227 }
228 }
229
230
231 /* Add to radiometric Hessian from the given triangle */
232 static void
233 add2hessian(FVECT hess[3], FVECT ehess1[3],
234 FVECT ehess2[3], FVECT ehess3[3], COLORV v)
235 {
236 int i, j;
237
238 for (i = 3; i--; )
239 for (j = 3; j--; )
240 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
241 }
242
243
244 /* Compute partial displacement form factor gradient for edge */
245 static void
246 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
247 {
248 FVECT vcp;
249 double f1;
250 int i;
251
252 VCROSS(vcp, ftp->r_i, ftp->r_i1);
253 f1 = 2.0*DOT(nrm, vcp);
254 VCROSS(vcp, nrm, ftp->e_i);
255 for (i = 3; i--; )
256 grad[i] = (-0.5/PI)*( ftp->I1*vcp[i] + f1*ftp->rI2_eJ2[i] );
257 }
258
259
260 /* Reverse gradient calculation result for edge in other direction */
261 static void
262 rev_gradient(FVECT grad)
263 {
264 grad[0] = -grad[0];
265 grad[1] = -grad[1];
266 grad[2] = -grad[2];
267 }
268
269
270 /* Add to displacement gradient from the given triangle */
271 static void
272 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v)
273 {
274 int i;
275
276 for (i = 3; i--; )
277 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
278 }
279
280
281 /* Return brightness of furthest ambient sample */
282 static COLORV
283 back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2,
284 struct s_ambsamp *ap3, FVECT orig)
285 {
286 COLORV vback;
287 FVECT vec;
288 double d2, d2best;
289
290 VSUB(vec, ap1->p, orig);
291 d2best = DOT(vec,vec);
292 vback = colval(ap1->v,CIEY);
293 VSUB(vec, ap2->p, orig);
294 d2 = DOT(vec,vec);
295 if (d2 > d2best) {
296 d2best = d2;
297 vback = colval(ap2->v,CIEY);
298 }
299 VSUB(vec, ap3->p, orig);
300 d2 = DOT(vec,vec);
301 if (d2 > d2best)
302 return(colval(ap3->v,CIEY));
303 return(vback);
304 }
305
306
307 /* Compute anisotropic radii and eigenvector directions */
308 static int
309 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
310 {
311 double hess2[2][2];
312 FVECT a, b;
313 double evalue[2], slope1, xmag1;
314 int i;
315 /* project Hessian to sample plane */
316 for (i = 3; i--; ) {
317 a[i] = DOT(hessian[i], uv[0]);
318 b[i] = DOT(hessian[i], uv[1]);
319 }
320 hess2[0][0] = DOT(uv[0], a);
321 hess2[0][1] = DOT(uv[0], b);
322 hess2[1][0] = DOT(uv[1], a);
323 hess2[1][1] = DOT(uv[1], b);
324 /* compute eigenvalues */
325 if ( quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
326 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 ||
327 (evalue[0] = fabs(evalue[0])) <= FTINY*FTINY ||
328 (evalue[1] = fabs(evalue[1])) <= FTINY*FTINY )
329 error(INTERNAL, "bad eigenvalue calculation");
330
331 if (evalue[0] > evalue[1]) {
332 ra[0] = sqrt(sqrt(4.0/evalue[0]));
333 ra[1] = sqrt(sqrt(4.0/evalue[1]));
334 slope1 = evalue[1];
335 } else {
336 ra[0] = sqrt(sqrt(4.0/evalue[1]));
337 ra[1] = sqrt(sqrt(4.0/evalue[0]));
338 slope1 = evalue[0];
339 }
340 /* compute unit eigenvectors */
341 if (fabs(hess2[0][1]) <= FTINY)
342 return; /* uv OK as is */
343 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
344 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
345 for (i = 3; i--; ) {
346 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
347 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
348 }
349 VCOPY(uv[0], a);
350 VCOPY(uv[1], b);
351 }
352
353
354 static void
355 ambHessian( /* anisotropic radii & pos. gradient */
356 AMBHEMI *hp,
357 FVECT uv[2], /* returned */
358 float ra[2], /* returned (optional) */
359 float pg[2] /* returned (optional) */
360 )
361 {
362 static char memerrmsg[] = "out of memory in ambHessian()";
363 FVECT (*hessrow)[3] = NULL;
364 FVECT *gradrow = NULL;
365 FVECT hessian[3];
366 FVECT gradient;
367 FFTRI fftr;
368 int i, j;
369 /* be sure to assign unit vectors */
370 VCOPY(uv[0], hp->ux);
371 VCOPY(uv[1], hp->uy);
372 /* clock-wise vertex traversal from sample POV */
373 if (ra != NULL) { /* initialize Hessian row buffer */
374 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
375 if (hessrow == NULL)
376 error(SYSTEM, memerrmsg);
377 memset(hessian, 0, sizeof(hessian));
378 } else if (pg == NULL) /* bogus call? */
379 return;
380 if (pg != NULL) { /* initialize form factor row buffer */
381 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
382 if (gradrow == NULL)
383 error(SYSTEM, memerrmsg);
384 memset(gradient, 0, sizeof(gradient));
385 }
386 /* compute first row of edges */
387 for (j = 0; j < hp->ns-1; j++) {
388 comp_fftri(&fftr, ambsamp(hp,0,j).p,
389 ambsamp(hp,0,j+1).p, hp->rp->rop);
390 if (hessrow != NULL)
391 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
392 if (gradrow != NULL)
393 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
394 }
395 /* sum each row of triangles */
396 for (i = 0; i < hp->ns-1; i++) {
397 FVECT hesscol[3]; /* compute first vertical edge */
398 FVECT gradcol;
399 comp_fftri(&fftr, ambsamp(hp,i,0).p,
400 ambsamp(hp,i+1,0).p, hp->rp->rop);
401 if (hessrow != NULL)
402 comp_hessian(hesscol, &fftr, hp->rp->ron);
403 if (gradrow != NULL)
404 comp_gradient(gradcol, &fftr, hp->rp->ron);
405 for (j = 0; j < hp->ns-1; j++) {
406 FVECT hessdia[3]; /* compute triangle contributions */
407 FVECT graddia;
408 COLORV backg;
409 backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1),
410 &ambsamp(hp,i+1,j), hp->rp->rop);
411 /* diagonal (inner) edge */
412 comp_fftri(&fftr, ambsamp(hp,i,j+1).p,
413 ambsamp(hp,i+1,j).p, hp->rp->rop);
414 if (hessrow != NULL) {
415 comp_hessian(hessdia, &fftr, hp->rp->ron);
416 rev_hessian(hesscol);
417 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
418 }
419 if (gradient != NULL) {
420 comp_gradient(graddia, &fftr, hp->rp->ron);
421 rev_gradient(gradcol);
422 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
423 }
424 /* initialize edge in next row */
425 comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p,
426 ambsamp(hp,i+1,j).p, hp->rp->rop);
427 if (hessrow != NULL)
428 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
429 if (gradrow != NULL)
430 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
431 /* new column edge & paired triangle */
432 backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1),
433 &ambsamp(hp,i+1,j), hp->rp->rop);
434 comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p,
435 hp->rp->rop);
436 if (hessrow != NULL) {
437 comp_hessian(hesscol, &fftr, hp->rp->ron);
438 rev_hessian(hessdia);
439 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
440 if (i < hp->ns-2)
441 rev_hessian(hessrow[j]);
442 }
443 if (gradrow != NULL) {
444 comp_gradient(gradcol, &fftr, hp->rp->ron);
445 rev_gradient(graddia);
446 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
447 if (i < hp->ns-2)
448 rev_gradient(gradrow[j]);
449 }
450 }
451 }
452 /* release row buffers */
453 if (hessrow != NULL) free(hessrow);
454 if (gradrow != NULL) free(gradrow);
455
456 if (ra != NULL) /* extract eigenvectors & radii */
457 eigenvectors(uv, ra, hessian);
458 if (pg != NULL) { /* tangential position gradient */
459 pg[0] = DOT(gradient, uv[0]);
460 pg[1] = DOT(gradient, uv[1]);
461 }
462 }
463
464
465 /* Compute direction gradient from a hemispherical sampling */
466 static void
467 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
468 {
469 struct s_ambsamp *ap;
470 double dgsum[2];
471 int n;
472 FVECT vd;
473 double gfact;
474
475 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
476 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
477 /* use vector for azimuth + 90deg */
478 VSUB(vd, ap->p, hp->rp->rop);
479 /* brightness over cosine factor */
480 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
481 /* -sine = -proj_radius/vd_length */
482 dgsum[0] += DOT(uv[1], vd) * gfact;
483 dgsum[1] -= DOT(uv[0], vd) * gfact;
484 }
485 dg[0] = dgsum[0] / (hp->ns*hp->ns);
486 dg[1] = dgsum[1] / (hp->ns*hp->ns);
487 }
488
489
490 int
491 doambient( /* compute ambient component */
492 COLOR rcol, /* input/output color */
493 RAY *r,
494 double wt,
495 FVECT uv[2], /* returned (optional) */
496 float ra[2], /* returned (optional) */
497 float pg[2], /* returned (optional) */
498 float dg[2] /* returned (optional) */
499 )
500 {
501 AMBHEMI *hp = inithemi(rcol, r, wt);
502 int cnt = 0;
503 FVECT my_uv[2];
504 double d, acol[3];
505 struct s_ambsamp *ap;
506 int i, j;
507 /* check/initialize */
508 if (hp == NULL)
509 return(0);
510 if (uv != NULL)
511 memset(uv, 0, sizeof(FVECT)*2);
512 if (ra != NULL)
513 ra[0] = ra[1] = 0.0;
514 if (pg != NULL)
515 pg[0] = pg[1] = 0.0;
516 if (dg != NULL)
517 dg[0] = dg[1] = 0.0;
518 /* sample the hemisphere */
519 acol[0] = acol[1] = acol[2] = 0.0;
520 for (i = hp->ns; i--; )
521 for (j = hp->ns; j--; )
522 if ((ap = ambsample(hp, i, j)) != NULL) {
523 addcolor(acol, ap->v);
524 ++cnt;
525 }
526 if (!cnt) {
527 setcolor(rcol, 0.0, 0.0, 0.0);
528 free(hp);
529 return(0); /* no valid samples */
530 }
531 copycolor(rcol, acol); /* final indirect irradiance/PI */
532 if (cnt < hp->ns*hp->ns || /* incomplete sampling? */
533 (ra == NULL) & (pg == NULL) & (dg == NULL)) {
534 free(hp);
535 return(-1); /* no radius or gradient calc. */
536 }
537 if (bright(acol) > FTINY) /* normalize Y values */
538 d = cnt/bright(acol);
539 else
540 d = 0.0;
541 ap = hp->sa; /* relative Y channel from here on... */
542 for (i = hp->ns*hp->ns; i--; ap++)
543 colval(ap->v,CIEY) = bright(ap->v)*d + 0.01;
544
545 if (uv == NULL) /* make sure we have axis pointers */
546 uv = my_uv;
547 /* compute radii & pos. gradient */
548 ambHessian(hp, uv, ra, pg);
549
550 if (dg != NULL) /* compute direction gradient */
551 ambdirgrad(hp, uv, dg);
552
553 if (ra != NULL) { /* scale/clamp radii */
554 if (ra[0] < minarad) {
555 ra[0] = minarad;
556 if (ra[1] < minarad)
557 ra[1] = minarad;
558 }
559 ra[0] *= d = 1.0/sqrt(sqrt(wt));
560 if ((ra[1] *= d) > 2.0*ra[0])
561 ra[1] = 2.0*ra[0];
562 if (ra[1] > maxarad) {
563 ra[1] = maxarad;
564 if (ra[0] > maxarad)
565 ra[0] = maxarad;
566 }
567 }
568 free(hp); /* clean up and return */
569 return(1);
570 }
571
572
573 #else /* ! NEWAMB */
574
575
576 void
577 inithemi( /* initialize sampling hemisphere */
578 AMBHEMI *hp,
579 COLOR ac,
580 RAY *r,
581 double wt
582 )
583 {
584 double d;
585 int i;
586 /* set number of divisions */
587 if (ambacc <= FTINY &&
588 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
589 wt = d; /* avoid ray termination */
590 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
591 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
592 if (hp->nt < i)
593 hp->nt = i;
594 hp->np = PI * hp->nt + 0.5;
595 /* set number of super-samples */
596 hp->ns = ambssamp * wt + 0.5;
597 /* assign coefficient */
598 copycolor(hp->acoef, ac);
599 d = 1.0/(hp->nt*hp->np);
600 scalecolor(hp->acoef, d);
601 /* make axes */
602 VCOPY(hp->uz, r->ron);
603 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
604 for (i = 0; i < 3; i++)
605 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
606 break;
607 if (i >= 3)
608 error(CONSISTENCY, "bad ray direction in inithemi");
609 hp->uy[i] = 1.0;
610 fcross(hp->ux, hp->uy, hp->uz);
611 normalize(hp->ux);
612 fcross(hp->uy, hp->uz, hp->ux);
613 }
614
615
616 int
617 divsample( /* sample a division */
618 AMBSAMP *dp,
619 AMBHEMI *h,
620 RAY *r
621 )
622 {
623 RAY ar;
624 int hlist[3];
625 double spt[2];
626 double xd, yd, zd;
627 double b2;
628 double phi;
629 int i;
630 /* ambient coefficient for weight */
631 if (ambacc > FTINY)
632 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
633 else
634 copycolor(ar.rcoef, h->acoef);
635 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
636 return(-1);
637 if (ambacc > FTINY) {
638 multcolor(ar.rcoef, h->acoef);
639 scalecolor(ar.rcoef, 1./AVGREFL);
640 }
641 hlist[0] = r->rno;
642 hlist[1] = dp->t;
643 hlist[2] = dp->p;
644 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
645 zd = sqrt((dp->t + spt[0])/h->nt);
646 phi = 2.0*PI * (dp->p + spt[1])/h->np;
647 xd = tcos(phi) * zd;
648 yd = tsin(phi) * zd;
649 zd = sqrt(1.0 - zd*zd);
650 for (i = 0; i < 3; i++)
651 ar.rdir[i] = xd*h->ux[i] +
652 yd*h->uy[i] +
653 zd*h->uz[i];
654 checknorm(ar.rdir);
655 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
656 rayvalue(&ar);
657 ndims--;
658 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
659 addcolor(dp->v, ar.rcol);
660 /* use rt to improve gradient calc */
661 if (ar.rt > FTINY && ar.rt < FHUGE)
662 dp->r += 1.0/ar.rt;
663 /* (re)initialize error */
664 if (dp->n++) {
665 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
666 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
667 dp->k = b2/(dp->n*dp->n);
668 } else
669 dp->k = 0.0;
670 return(0);
671 }
672
673
674 static int
675 ambcmp( /* decreasing order */
676 const void *p1,
677 const void *p2
678 )
679 {
680 const AMBSAMP *d1 = (const AMBSAMP *)p1;
681 const AMBSAMP *d2 = (const AMBSAMP *)p2;
682
683 if (d1->k < d2->k)
684 return(1);
685 if (d1->k > d2->k)
686 return(-1);
687 return(0);
688 }
689
690
691 static int
692 ambnorm( /* standard order */
693 const void *p1,
694 const void *p2
695 )
696 {
697 const AMBSAMP *d1 = (const AMBSAMP *)p1;
698 const AMBSAMP *d2 = (const AMBSAMP *)p2;
699 int c;
700
701 if ( (c = d1->t - d2->t) )
702 return(c);
703 return(d1->p - d2->p);
704 }
705
706
707 double
708 doambient( /* compute ambient component */
709 COLOR rcol,
710 RAY *r,
711 double wt,
712 FVECT pg,
713 FVECT dg
714 )
715 {
716 double b, d=0;
717 AMBHEMI hemi;
718 AMBSAMP *div;
719 AMBSAMP dnew;
720 double acol[3];
721 AMBSAMP *dp;
722 double arad;
723 int divcnt;
724 int i, j;
725 /* initialize hemisphere */
726 inithemi(&hemi, rcol, r, wt);
727 divcnt = hemi.nt * hemi.np;
728 /* initialize */
729 if (pg != NULL)
730 pg[0] = pg[1] = pg[2] = 0.0;
731 if (dg != NULL)
732 dg[0] = dg[1] = dg[2] = 0.0;
733 setcolor(rcol, 0.0, 0.0, 0.0);
734 if (divcnt == 0)
735 return(0.0);
736 /* allocate super-samples */
737 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
738 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
739 if (div == NULL)
740 error(SYSTEM, "out of memory in doambient");
741 } else
742 div = NULL;
743 /* sample the divisions */
744 arad = 0.0;
745 acol[0] = acol[1] = acol[2] = 0.0;
746 if ((dp = div) == NULL)
747 dp = &dnew;
748 divcnt = 0;
749 for (i = 0; i < hemi.nt; i++)
750 for (j = 0; j < hemi.np; j++) {
751 dp->t = i; dp->p = j;
752 setcolor(dp->v, 0.0, 0.0, 0.0);
753 dp->r = 0.0;
754 dp->n = 0;
755 if (divsample(dp, &hemi, r) < 0) {
756 if (div != NULL)
757 dp++;
758 continue;
759 }
760 arad += dp->r;
761 divcnt++;
762 if (div != NULL)
763 dp++;
764 else
765 addcolor(acol, dp->v);
766 }
767 if (!divcnt) {
768 if (div != NULL)
769 free((void *)div);
770 return(0.0); /* no samples taken */
771 }
772 if (divcnt < hemi.nt*hemi.np) {
773 pg = dg = NULL; /* incomplete sampling */
774 hemi.ns = 0;
775 } else if (arad > FTINY && divcnt/arad < minarad) {
776 hemi.ns = 0; /* close enough */
777 } else if (hemi.ns > 0) { /* else perform super-sampling? */
778 comperrs(div, &hemi); /* compute errors */
779 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
780 /* super-sample */
781 for (i = hemi.ns; i > 0; i--) {
782 dnew = *div;
783 if (divsample(&dnew, &hemi, r) < 0) {
784 dp++;
785 continue;
786 }
787 dp = div; /* reinsert */
788 j = divcnt < i ? divcnt : i;
789 while (--j > 0 && dnew.k < dp[1].k) {
790 *dp = *(dp+1);
791 dp++;
792 }
793 *dp = dnew;
794 }
795 if (pg != NULL || dg != NULL) /* restore order */
796 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
797 }
798 /* compute returned values */
799 if (div != NULL) {
800 arad = 0.0; /* note: divcnt may be < nt*np */
801 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
802 arad += dp->r;
803 if (dp->n > 1) {
804 b = 1.0/dp->n;
805 scalecolor(dp->v, b);
806 dp->r *= b;
807 dp->n = 1;
808 }
809 addcolor(acol, dp->v);
810 }
811 b = bright(acol);
812 if (b > FTINY) {
813 b = 1.0/b; /* compute & normalize gradient(s) */
814 if (pg != NULL) {
815 posgradient(pg, div, &hemi);
816 for (i = 0; i < 3; i++)
817 pg[i] *= b;
818 }
819 if (dg != NULL) {
820 dirgradient(dg, div, &hemi);
821 for (i = 0; i < 3; i++)
822 dg[i] *= b;
823 }
824 }
825 free((void *)div);
826 }
827 copycolor(rcol, acol);
828 if (arad <= FTINY)
829 arad = maxarad;
830 else
831 arad = (divcnt+hemi.ns)/arad;
832 if (pg != NULL) { /* reduce radius if gradient large */
833 d = DOT(pg,pg);
834 if (d*arad*arad > 1.0)
835 arad = 1.0/sqrt(d);
836 }
837 if (arad < minarad) {
838 arad = minarad;
839 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
840 d = 1.0/arad/sqrt(d);
841 for (i = 0; i < 3; i++)
842 pg[i] *= d;
843 }
844 }
845 if ((arad /= sqrt(wt)) > maxarad)
846 arad = maxarad;
847 return(arad);
848 }
849
850
851 void
852 comperrs( /* compute initial error estimates */
853 AMBSAMP *da, /* assumes standard ordering */
854 AMBHEMI *hp
855 )
856 {
857 double b, b2;
858 int i, j;
859 AMBSAMP *dp;
860 /* sum differences from neighbors */
861 dp = da;
862 for (i = 0; i < hp->nt; i++)
863 for (j = 0; j < hp->np; j++) {
864 #ifdef DEBUG
865 if (dp->t != i || dp->p != j)
866 error(CONSISTENCY,
867 "division order in comperrs");
868 #endif
869 b = bright(dp[0].v);
870 if (i > 0) { /* from above */
871 b2 = bright(dp[-hp->np].v) - b;
872 b2 *= b2 * 0.25;
873 dp[0].k += b2;
874 dp[-hp->np].k += b2;
875 }
876 if (j > 0) { /* from behind */
877 b2 = bright(dp[-1].v) - b;
878 b2 *= b2 * 0.25;
879 dp[0].k += b2;
880 dp[-1].k += b2;
881 } else { /* around */
882 b2 = bright(dp[hp->np-1].v) - b;
883 b2 *= b2 * 0.25;
884 dp[0].k += b2;
885 dp[hp->np-1].k += b2;
886 }
887 dp++;
888 }
889 /* divide by number of neighbors */
890 dp = da;
891 for (j = 0; j < hp->np; j++) /* top row */
892 (dp++)->k *= 1.0/3.0;
893 if (hp->nt < 2)
894 return;
895 for (i = 1; i < hp->nt-1; i++) /* central region */
896 for (j = 0; j < hp->np; j++)
897 (dp++)->k *= 0.25;
898 for (j = 0; j < hp->np; j++) /* bottom row */
899 (dp++)->k *= 1.0/3.0;
900 }
901
902
903 void
904 posgradient( /* compute position gradient */
905 FVECT gv,
906 AMBSAMP *da, /* assumes standard ordering */
907 AMBHEMI *hp
908 )
909 {
910 int i, j;
911 double nextsine, lastsine, b, d;
912 double mag0, mag1;
913 double phi, cosp, sinp, xd, yd;
914 AMBSAMP *dp;
915
916 xd = yd = 0.0;
917 for (j = 0; j < hp->np; j++) {
918 dp = da + j;
919 mag0 = mag1 = 0.0;
920 lastsine = 0.0;
921 for (i = 0; i < hp->nt; i++) {
922 #ifdef DEBUG
923 if (dp->t != i || dp->p != j)
924 error(CONSISTENCY,
925 "division order in posgradient");
926 #endif
927 b = bright(dp->v);
928 if (i > 0) {
929 d = dp[-hp->np].r;
930 if (dp[0].r > d) d = dp[0].r;
931 /* sin(t)*cos(t)^2 */
932 d *= lastsine * (1.0 - (double)i/hp->nt);
933 mag0 += d*(b - bright(dp[-hp->np].v));
934 }
935 nextsine = sqrt((double)(i+1)/hp->nt);
936 if (j > 0) {
937 d = dp[-1].r;
938 if (dp[0].r > d) d = dp[0].r;
939 mag1 += d * (nextsine - lastsine) *
940 (b - bright(dp[-1].v));
941 } else {
942 d = dp[hp->np-1].r;
943 if (dp[0].r > d) d = dp[0].r;
944 mag1 += d * (nextsine - lastsine) *
945 (b - bright(dp[hp->np-1].v));
946 }
947 dp += hp->np;
948 lastsine = nextsine;
949 }
950 mag0 *= 2.0*PI / hp->np;
951 phi = 2.0*PI * (double)j/hp->np;
952 cosp = tcos(phi); sinp = tsin(phi);
953 xd += mag0*cosp - mag1*sinp;
954 yd += mag0*sinp + mag1*cosp;
955 }
956 for (i = 0; i < 3; i++)
957 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
958 }
959
960
961 void
962 dirgradient( /* compute direction gradient */
963 FVECT gv,
964 AMBSAMP *da, /* assumes standard ordering */
965 AMBHEMI *hp
966 )
967 {
968 int i, j;
969 double mag;
970 double phi, xd, yd;
971 AMBSAMP *dp;
972
973 xd = yd = 0.0;
974 for (j = 0; j < hp->np; j++) {
975 dp = da + j;
976 mag = 0.0;
977 for (i = 0; i < hp->nt; i++) {
978 #ifdef DEBUG
979 if (dp->t != i || dp->p != j)
980 error(CONSISTENCY,
981 "division order in dirgradient");
982 #endif
983 /* tan(t) */
984 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
985 dp += hp->np;
986 }
987 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
988 xd += mag * tcos(phi);
989 yd += mag * tsin(phi);
990 }
991 for (i = 0; i < 3; i++)
992 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
993 }
994
995 #endif /* ! NEWAMB */