ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.30
Committed: Wed Apr 23 17:30:10 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.29: +17 -18 lines
Log Message:
Bug fix and optimization

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.29 2014/04/23 06:04:17 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Declarations of external symbols in ambient.h
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "random.h"
19
20 #ifdef NEWAMB
21
22 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
23
24 typedef struct {
25 RAY *rp; /* originating ray sample */
26 FVECT ux, uy; /* tangent axis unit vectors */
27 int ns; /* number of samples per axis */
28 COLOR acoef; /* division contribution coefficient */
29 struct s_ambsamp {
30 COLOR v; /* hemisphere sample value */
31 float p[3]; /* intersection point */
32 } sa[1]; /* sample array (extends struct) */
33 } AMBHEMI; /* ambient sample hemisphere */
34
35 #define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)]
36
37 typedef struct {
38 FVECT r_i, r_i1, e_i, rI2_eJ2;
39 double nf, I1, I2;
40 } FFTRI; /* vectors and coefficients for Hessian calculation */
41
42
43 static AMBHEMI *
44 inithemi( /* initialize sampling hemisphere */
45 COLOR ac,
46 RAY *r,
47 double wt
48 )
49 {
50 AMBHEMI *hp;
51 double d;
52 int n, i;
53 /* set number of divisions */
54 if (ambacc <= FTINY &&
55 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
56 wt = d; /* avoid ray termination */
57 n = sqrt(ambdiv * wt) + 0.5;
58 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
59 if (n < i)
60 n = i;
61 /* allocate sampling array */
62 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) +
63 sizeof(struct s_ambsamp)*(n*n - 1));
64 if (hp == NULL)
65 return(NULL);
66 hp->rp = r;
67 hp->ns = n;
68 /* assign coefficient */
69 copycolor(hp->acoef, ac);
70 d = 1.0/(n*n);
71 scalecolor(hp->acoef, d);
72 /* make tangent plane axes */
73 hp->uy[0] = 0.1 - 0.2*frandom();
74 hp->uy[1] = 0.1 - 0.2*frandom();
75 hp->uy[2] = 0.1 - 0.2*frandom();
76 for (i = 0; i < 3; i++)
77 if (r->ron[i] < 0.6 && r->ron[i] > -0.6)
78 break;
79 if (i >= 3)
80 error(CONSISTENCY, "bad ray direction in inithemi()");
81 hp->uy[i] = 1.0;
82 VCROSS(hp->ux, hp->uy, r->ron);
83 normalize(hp->ux);
84 VCROSS(hp->uy, r->ron, hp->ux);
85 /* we're ready to sample */
86 return(hp);
87 }
88
89
90 static struct s_ambsamp *
91 ambsample( /* sample an ambient direction */
92 AMBHEMI *hp,
93 int i,
94 int j
95 )
96 {
97 struct s_ambsamp *ap = &ambsamp(hp,i,j);
98 RAY ar;
99 double spt[2], zd;
100 int ii;
101 /* ambient coefficient for weight */
102 if (ambacc > FTINY)
103 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
104 else
105 copycolor(ar.rcoef, hp->acoef);
106 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) {
107 setcolor(ap->v, 0., 0., 0.);
108 VCOPY(ap->p, hp->rp->rop);
109 return(NULL); /* no sample taken */
110 }
111 if (ambacc > FTINY) {
112 multcolor(ar.rcoef, hp->acoef);
113 scalecolor(ar.rcoef, 1./AVGREFL);
114 }
115 /* generate hemispherical sample */
116 SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns,
117 (j+.1+.8*frandom())/hp->ns );
118 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
119 for (ii = 3; ii--; )
120 ar.rdir[ii] = spt[0]*hp->ux[ii] +
121 spt[1]*hp->uy[ii] +
122 zd*hp->rp->ron[ii];
123 checknorm(ar.rdir);
124 dimlist[ndims++] = i*hp->ns + j + 90171;
125 rayvalue(&ar); /* evaluate ray */
126 ndims--;
127 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
128 copycolor(ap->v, ar.rcol);
129 if (ar.rt > 20.0*maxarad) /* limit vertex distance */
130 VSUM(ap->p, ar.rorg, ar.rdir, 20.0*maxarad);
131 else
132 VCOPY(ap->p, ar.rop);
133 return(ap);
134 }
135
136
137 /* Compute vectors and coefficients for Hessian/gradient calcs */
138 static void
139 comp_fftri(FFTRI *ftp, float ap0[3], float ap1[3], FVECT rop)
140 {
141 FVECT vcp;
142 double dot_e, dot_er, dot_r, dot_r1, J2;
143 int i;
144
145 VSUB(ftp->r_i, ap0, rop);
146 VSUB(ftp->r_i1, ap1, rop);
147 VSUB(ftp->e_i, ap1, ap0);
148 VCROSS(vcp, ftp->e_i, ftp->r_i);
149 ftp->nf = 1.0/DOT(vcp,vcp);
150 dot_e = DOT(ftp->e_i,ftp->e_i);
151 dot_er = DOT(ftp->e_i, ftp->r_i);
152 dot_r = DOT(ftp->r_i,ftp->r_i);
153 dot_r1 = DOT(ftp->r_i1,ftp->r_i1);
154 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) / sqrt(dot_r*dot_r1) ) *
155 sqrt( ftp->nf );
156 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)/dot_r1 - dot_er/dot_r +
157 dot_e*ftp->I1 )*0.5*ftp->nf;
158 J2 = 0.5/dot_e*( 1.0/dot_r - 1.0/dot_r1 ) - dot_er/dot_e*ftp->I2;
159 for (i = 3; i--; )
160 ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i];
161 }
162
163
164 /* Compose 3x3 matrix from two vectors */
165 static void
166 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
167 {
168 mat[0][0] = 2.0*va[0]*vb[0];
169 mat[1][1] = 2.0*va[1]*vb[1];
170 mat[2][2] = 2.0*va[2]*vb[2];
171 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
172 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
173 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
174 }
175
176
177 /* Compute partial 3x3 Hessian matrix for edge */
178 static void
179 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
180 {
181 FVECT vcp;
182 FVECT m1[3], m2[3], m3[3], m4[3];
183 double d1, d2, d3, d4;
184 double I3, J3, K3;
185 int i, j;
186 /* compute intermediate coefficients */
187 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
188 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
189 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
190 d4 = DOT(ftp->e_i, ftp->r_i);
191 I3 = 0.25*ftp->nf*( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 +
192 3.0/d3*ftp->I2 );
193 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
194 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
195 /* intermediate matrices */
196 VCROSS(vcp, nrm, ftp->e_i);
197 compose_matrix(m1, vcp, ftp->rI2_eJ2);
198 compose_matrix(m2, ftp->r_i, ftp->r_i);
199 compose_matrix(m3, ftp->e_i, ftp->e_i);
200 compose_matrix(m4, ftp->r_i, ftp->e_i);
201 VCROSS(vcp, ftp->r_i, ftp->e_i);
202 d1 = DOT(nrm, vcp);
203 d2 = -d1*ftp->I2;
204 d1 *= 2.0;
205 for (i = 3; i--; ) /* final matrix sum */
206 for (j = 3; j--; ) {
207 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
208 2.0*J3*m4[i][j] );
209 hess[i][j] += d2*(i==j);
210 hess[i][j] *= -1.0/PI;
211 }
212 }
213
214
215 /* Reverse hessian calculation result for edge in other direction */
216 static void
217 rev_hessian(FVECT hess[3])
218 {
219 int i;
220
221 for (i = 3; i--; ) {
222 hess[i][0] = -hess[i][0];
223 hess[i][1] = -hess[i][1];
224 hess[i][2] = -hess[i][2];
225 }
226 }
227
228
229 /* Add to radiometric Hessian from the given triangle */
230 static void
231 add2hessian(FVECT hess[3], FVECT ehess1[3],
232 FVECT ehess2[3], FVECT ehess3[3], COLORV v)
233 {
234 int i, j;
235
236 for (i = 3; i--; )
237 for (j = 3; j--; )
238 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
239 }
240
241
242 /* Compute partial displacement form factor gradient for edge */
243 static void
244 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
245 {
246 FVECT vcp;
247 double f1;
248 int i;
249
250 VCROSS(vcp, ftp->r_i, ftp->r_i1);
251 f1 = 2.0*DOT(nrm, vcp);
252 VCROSS(vcp, nrm, ftp->e_i);
253 for (i = 3; i--; )
254 grad[i] = (0.5/PI)*( ftp->I1*vcp[i] + f1*ftp->rI2_eJ2[i] );
255 }
256
257
258 /* Reverse gradient calculation result for edge in other direction */
259 static void
260 rev_gradient(FVECT grad)
261 {
262 grad[0] = -grad[0];
263 grad[1] = -grad[1];
264 grad[2] = -grad[2];
265 }
266
267
268 /* Add to displacement gradient from the given triangle */
269 static void
270 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v)
271 {
272 int i;
273
274 for (i = 3; i--; )
275 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
276 }
277
278
279 /* Return brightness of furthest ambient sample */
280 static COLORV
281 back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2,
282 struct s_ambsamp *ap3, FVECT orig)
283 {
284 COLORV vback;
285 FVECT vec;
286 double d2, d2best;
287
288 VSUB(vec, ap1->p, orig);
289 d2best = DOT(vec,vec);
290 vback = colval(ap1->v,CIEY);
291 VSUB(vec, ap2->p, orig);
292 d2 = DOT(vec,vec);
293 if (d2 > d2best) {
294 d2best = d2;
295 vback = colval(ap2->v,CIEY);
296 }
297 VSUB(vec, ap3->p, orig);
298 d2 = DOT(vec,vec);
299 if (d2 > d2best)
300 return(colval(ap3->v,CIEY));
301 return(vback);
302 }
303
304
305 /* Compute anisotropic radii and eigenvector directions */
306 static int
307 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
308 {
309 double hess2[2][2];
310 FVECT a, b;
311 double evalue[2], slope1, xmag1;
312 int i;
313 /* project Hessian to sample plane */
314 for (i = 3; i--; ) {
315 a[i] = DOT(hessian[i], uv[0]);
316 b[i] = DOT(hessian[i], uv[1]);
317 }
318 hess2[0][0] = DOT(uv[0], a);
319 hess2[0][1] = DOT(uv[0], b);
320 hess2[1][0] = DOT(uv[1], a);
321 hess2[1][1] = DOT(uv[1], b);
322 /* compute eigenvalues */
323 if ( quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
324 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 ||
325 (evalue[0] = fabs(evalue[0])) <= FTINY*FTINY ||
326 (evalue[1] = fabs(evalue[1])) <= FTINY*FTINY )
327 error(INTERNAL, "bad eigenvalue calculation");
328
329 if (evalue[0] > evalue[1]) {
330 ra[0] = sqrt(sqrt(4.0/evalue[0]));
331 ra[1] = sqrt(sqrt(4.0/evalue[1]));
332 slope1 = evalue[1];
333 } else {
334 ra[0] = sqrt(sqrt(4.0/evalue[1]));
335 ra[1] = sqrt(sqrt(4.0/evalue[0]));
336 slope1 = evalue[0];
337 }
338 /* compute unit eigenvectors */
339 if (fabs(hess2[0][1]) <= FTINY)
340 return; /* uv OK as is */
341 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
342 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
343 for (i = 3; i--; ) {
344 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
345 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
346 }
347 VCOPY(uv[0], a);
348 VCOPY(uv[1], b);
349 }
350
351
352 static void
353 ambHessian( /* anisotropic radii & pos. gradient */
354 AMBHEMI *hp,
355 FVECT uv[2], /* returned */
356 float ra[2], /* returned (optional) */
357 float pg[2] /* returned (optional) */
358 )
359 {
360 static char memerrmsg[] = "out of memory in ambHessian()";
361 FVECT (*hessrow)[3] = NULL;
362 FVECT *gradrow = NULL;
363 FVECT hessian[3];
364 FVECT gradient;
365 FFTRI fftr;
366 int i, j;
367 /* be sure to assign unit vectors */
368 VCOPY(uv[0], hp->ux);
369 VCOPY(uv[1], hp->uy);
370 /* clock-wise vertex traversal from sample POV */
371 if (ra != NULL) { /* initialize Hessian row buffer */
372 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
373 if (hessrow == NULL)
374 error(SYSTEM, memerrmsg);
375 memset(hessian, 0, sizeof(hessian));
376 } else if (pg == NULL) /* bogus call? */
377 return;
378 if (pg != NULL) { /* initialize form factor row buffer */
379 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
380 if (gradrow == NULL)
381 error(SYSTEM, memerrmsg);
382 memset(gradient, 0, sizeof(gradient));
383 }
384 /* compute first row of edges */
385 for (j = 0; j < hp->ns-1; j++) {
386 comp_fftri(&fftr, ambsamp(hp,0,j).p,
387 ambsamp(hp,0,j+1).p, hp->rp->rop);
388 if (hessrow != NULL)
389 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
390 if (gradrow != NULL)
391 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
392 }
393 /* sum each row of triangles */
394 for (i = 0; i < hp->ns-1; i++) {
395 FVECT hesscol[3]; /* compute first vertical edge */
396 FVECT gradcol;
397 comp_fftri(&fftr, ambsamp(hp,i,0).p,
398 ambsamp(hp,i+1,0).p, hp->rp->rop);
399 if (hessrow != NULL)
400 comp_hessian(hesscol, &fftr, hp->rp->ron);
401 if (gradrow != NULL)
402 comp_gradient(gradcol, &fftr, hp->rp->ron);
403 for (j = 0; j < hp->ns-1; j++) {
404 FVECT hessdia[3]; /* compute triangle contributions */
405 FVECT graddia;
406 COLORV backg;
407 backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1),
408 &ambsamp(hp,i+1,j), hp->rp->rop);
409 /* diagonal (inner) edge */
410 comp_fftri(&fftr, ambsamp(hp,i,j+1).p,
411 ambsamp(hp,i+1,j).p, hp->rp->rop);
412 if (hessrow != NULL) {
413 comp_hessian(hessdia, &fftr, hp->rp->ron);
414 rev_hessian(hesscol);
415 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
416 }
417 if (gradient != NULL) {
418 comp_gradient(graddia, &fftr, hp->rp->ron);
419 rev_gradient(gradcol);
420 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
421 }
422 /* initialize edge in next row */
423 comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p,
424 ambsamp(hp,i+1,j).p, hp->rp->rop);
425 if (hessrow != NULL)
426 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
427 if (gradrow != NULL)
428 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
429 /* new column edge & paired triangle */
430 backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1),
431 &ambsamp(hp,i+1,j), hp->rp->rop);
432 comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p,
433 hp->rp->rop);
434 if (hessrow != NULL) {
435 comp_hessian(hesscol, &fftr, hp->rp->ron);
436 rev_hessian(hessdia);
437 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
438 if (i < hp->ns-2)
439 rev_hessian(hessrow[j]);
440 }
441 if (gradrow != NULL) {
442 comp_gradient(gradcol, &fftr, hp->rp->ron);
443 rev_gradient(graddia);
444 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
445 if (i < hp->ns-2)
446 rev_gradient(gradrow[j]);
447 }
448 }
449 }
450 /* release row buffers */
451 if (hessrow != NULL) free(hessrow);
452 if (gradrow != NULL) free(gradrow);
453
454 if (ra != NULL) /* extract eigenvectors & radii */
455 eigenvectors(uv, ra, hessian);
456 if (pg != NULL) { /* tangential position gradient/PI */
457 pg[0] = DOT(gradient, uv[0]) / PI;
458 pg[1] = DOT(gradient, uv[1]) / PI;
459 }
460 }
461
462
463 /* Compute direction gradient from a hemispherical sampling */
464 static void
465 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
466 {
467 struct s_ambsamp *ap;
468 double dgsum[2];
469 int n;
470 FVECT vd;
471 double gfact;
472
473 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
474 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
475 /* use vector for azimuth + 90deg */
476 VSUB(vd, ap->p, hp->rp->rop);
477 /* brightness over cosine factor */
478 gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
479 /* -sine = -proj_radius/vd_length */
480 dgsum[0] += DOT(uv[1], vd) * gfact;
481 dgsum[1] -= DOT(uv[0], vd) * gfact;
482 }
483 dg[0] = dgsum[0] / (hp->ns*hp->ns);
484 dg[1] = dgsum[1] / (hp->ns*hp->ns);
485 }
486
487
488 int
489 doambient( /* compute ambient component */
490 COLOR rcol, /* input/output color */
491 RAY *r,
492 double wt,
493 FVECT uv[2], /* returned (optional) */
494 float ra[2], /* returned (optional) */
495 float pg[2], /* returned (optional) */
496 float dg[2] /* returned (optional) */
497 )
498 {
499 AMBHEMI *hp = inithemi(rcol, r, wt);
500 int cnt = 0;
501 FVECT my_uv[2];
502 double d, acol[3];
503 struct s_ambsamp *ap;
504 int i, j;
505 /* check/initialize */
506 if (hp == NULL)
507 return(0);
508 if (uv != NULL)
509 memset(uv, 0, sizeof(FVECT)*2);
510 if (ra != NULL)
511 ra[0] = ra[1] = 0.0;
512 if (pg != NULL)
513 pg[0] = pg[1] = 0.0;
514 if (dg != NULL)
515 dg[0] = dg[1] = 0.0;
516 /* sample the hemisphere */
517 acol[0] = acol[1] = acol[2] = 0.0;
518 for (i = hp->ns; i--; )
519 for (j = hp->ns; j--; )
520 if ((ap = ambsample(hp, i, j)) != NULL) {
521 addcolor(acol, ap->v);
522 ++cnt;
523 }
524 if (!cnt) {
525 setcolor(rcol, 0.0, 0.0, 0.0);
526 free(hp);
527 return(0); /* no valid samples */
528 }
529 copycolor(rcol, acol); /* final indirect irradiance/PI */
530 if (cnt < hp->ns*hp->ns || /* incomplete sampling? */
531 (ra == NULL) & (pg == NULL) & (dg == NULL)) {
532 free(hp);
533 return(-1); /* no radius or gradient calc. */
534 }
535 multcolor(acol, hp->acoef); /* normalize Y values */
536 if ((d = bright(acol)) > FTINY)
537 d = 1.0/d;
538 else
539 d = 0.0;
540 ap = hp->sa; /* relative Y channel from here on... */
541 for (i = hp->ns*hp->ns; i--; ap++)
542 colval(ap->v,CIEY) = bright(ap->v)*d + 0.0314;
543
544 if (uv == NULL) /* make sure we have axis pointers */
545 uv = my_uv;
546 /* compute radii & pos. gradient */
547 ambHessian(hp, uv, ra, pg);
548
549 if (dg != NULL) /* compute direction gradient */
550 ambdirgrad(hp, uv, dg);
551
552 if (ra != NULL) { /* scale/clamp radii */
553 if (ra[0] < minarad) {
554 ra[0] = minarad;
555 if (ra[1] < minarad)
556 ra[1] = minarad;
557 }
558 ra[0] *= d = 1.0/sqrt(sqrt(wt));
559 if ((ra[1] *= d) > 2.0*ra[0])
560 ra[1] = 2.0*ra[0];
561 if (ra[1] > maxarad) {
562 ra[1] = maxarad;
563 if (ra[0] > maxarad)
564 ra[0] = maxarad;
565 }
566 }
567 free(hp); /* clean up and return */
568 return(1);
569 }
570
571
572 #else /* ! NEWAMB */
573
574
575 void
576 inithemi( /* initialize sampling hemisphere */
577 AMBHEMI *hp,
578 COLOR ac,
579 RAY *r,
580 double wt
581 )
582 {
583 double d;
584 int i;
585 /* set number of divisions */
586 if (ambacc <= FTINY &&
587 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
588 wt = d; /* avoid ray termination */
589 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
590 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
591 if (hp->nt < i)
592 hp->nt = i;
593 hp->np = PI * hp->nt + 0.5;
594 /* set number of super-samples */
595 hp->ns = ambssamp * wt + 0.5;
596 /* assign coefficient */
597 copycolor(hp->acoef, ac);
598 d = 1.0/(hp->nt*hp->np);
599 scalecolor(hp->acoef, d);
600 /* make axes */
601 VCOPY(hp->uz, r->ron);
602 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
603 for (i = 0; i < 3; i++)
604 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
605 break;
606 if (i >= 3)
607 error(CONSISTENCY, "bad ray direction in inithemi");
608 hp->uy[i] = 1.0;
609 fcross(hp->ux, hp->uy, hp->uz);
610 normalize(hp->ux);
611 fcross(hp->uy, hp->uz, hp->ux);
612 }
613
614
615 int
616 divsample( /* sample a division */
617 AMBSAMP *dp,
618 AMBHEMI *h,
619 RAY *r
620 )
621 {
622 RAY ar;
623 int hlist[3];
624 double spt[2];
625 double xd, yd, zd;
626 double b2;
627 double phi;
628 int i;
629 /* ambient coefficient for weight */
630 if (ambacc > FTINY)
631 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
632 else
633 copycolor(ar.rcoef, h->acoef);
634 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
635 return(-1);
636 if (ambacc > FTINY) {
637 multcolor(ar.rcoef, h->acoef);
638 scalecolor(ar.rcoef, 1./AVGREFL);
639 }
640 hlist[0] = r->rno;
641 hlist[1] = dp->t;
642 hlist[2] = dp->p;
643 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
644 zd = sqrt((dp->t + spt[0])/h->nt);
645 phi = 2.0*PI * (dp->p + spt[1])/h->np;
646 xd = tcos(phi) * zd;
647 yd = tsin(phi) * zd;
648 zd = sqrt(1.0 - zd*zd);
649 for (i = 0; i < 3; i++)
650 ar.rdir[i] = xd*h->ux[i] +
651 yd*h->uy[i] +
652 zd*h->uz[i];
653 checknorm(ar.rdir);
654 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
655 rayvalue(&ar);
656 ndims--;
657 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
658 addcolor(dp->v, ar.rcol);
659 /* use rt to improve gradient calc */
660 if (ar.rt > FTINY && ar.rt < FHUGE)
661 dp->r += 1.0/ar.rt;
662 /* (re)initialize error */
663 if (dp->n++) {
664 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
665 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
666 dp->k = b2/(dp->n*dp->n);
667 } else
668 dp->k = 0.0;
669 return(0);
670 }
671
672
673 static int
674 ambcmp( /* decreasing order */
675 const void *p1,
676 const void *p2
677 )
678 {
679 const AMBSAMP *d1 = (const AMBSAMP *)p1;
680 const AMBSAMP *d2 = (const AMBSAMP *)p2;
681
682 if (d1->k < d2->k)
683 return(1);
684 if (d1->k > d2->k)
685 return(-1);
686 return(0);
687 }
688
689
690 static int
691 ambnorm( /* standard order */
692 const void *p1,
693 const void *p2
694 )
695 {
696 const AMBSAMP *d1 = (const AMBSAMP *)p1;
697 const AMBSAMP *d2 = (const AMBSAMP *)p2;
698 int c;
699
700 if ( (c = d1->t - d2->t) )
701 return(c);
702 return(d1->p - d2->p);
703 }
704
705
706 double
707 doambient( /* compute ambient component */
708 COLOR rcol,
709 RAY *r,
710 double wt,
711 FVECT pg,
712 FVECT dg
713 )
714 {
715 double b, d=0;
716 AMBHEMI hemi;
717 AMBSAMP *div;
718 AMBSAMP dnew;
719 double acol[3];
720 AMBSAMP *dp;
721 double arad;
722 int divcnt;
723 int i, j;
724 /* initialize hemisphere */
725 inithemi(&hemi, rcol, r, wt);
726 divcnt = hemi.nt * hemi.np;
727 /* initialize */
728 if (pg != NULL)
729 pg[0] = pg[1] = pg[2] = 0.0;
730 if (dg != NULL)
731 dg[0] = dg[1] = dg[2] = 0.0;
732 setcolor(rcol, 0.0, 0.0, 0.0);
733 if (divcnt == 0)
734 return(0.0);
735 /* allocate super-samples */
736 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
737 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
738 if (div == NULL)
739 error(SYSTEM, "out of memory in doambient");
740 } else
741 div = NULL;
742 /* sample the divisions */
743 arad = 0.0;
744 acol[0] = acol[1] = acol[2] = 0.0;
745 if ((dp = div) == NULL)
746 dp = &dnew;
747 divcnt = 0;
748 for (i = 0; i < hemi.nt; i++)
749 for (j = 0; j < hemi.np; j++) {
750 dp->t = i; dp->p = j;
751 setcolor(dp->v, 0.0, 0.0, 0.0);
752 dp->r = 0.0;
753 dp->n = 0;
754 if (divsample(dp, &hemi, r) < 0) {
755 if (div != NULL)
756 dp++;
757 continue;
758 }
759 arad += dp->r;
760 divcnt++;
761 if (div != NULL)
762 dp++;
763 else
764 addcolor(acol, dp->v);
765 }
766 if (!divcnt) {
767 if (div != NULL)
768 free((void *)div);
769 return(0.0); /* no samples taken */
770 }
771 if (divcnt < hemi.nt*hemi.np) {
772 pg = dg = NULL; /* incomplete sampling */
773 hemi.ns = 0;
774 } else if (arad > FTINY && divcnt/arad < minarad) {
775 hemi.ns = 0; /* close enough */
776 } else if (hemi.ns > 0) { /* else perform super-sampling? */
777 comperrs(div, &hemi); /* compute errors */
778 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
779 /* super-sample */
780 for (i = hemi.ns; i > 0; i--) {
781 dnew = *div;
782 if (divsample(&dnew, &hemi, r) < 0) {
783 dp++;
784 continue;
785 }
786 dp = div; /* reinsert */
787 j = divcnt < i ? divcnt : i;
788 while (--j > 0 && dnew.k < dp[1].k) {
789 *dp = *(dp+1);
790 dp++;
791 }
792 *dp = dnew;
793 }
794 if (pg != NULL || dg != NULL) /* restore order */
795 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
796 }
797 /* compute returned values */
798 if (div != NULL) {
799 arad = 0.0; /* note: divcnt may be < nt*np */
800 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
801 arad += dp->r;
802 if (dp->n > 1) {
803 b = 1.0/dp->n;
804 scalecolor(dp->v, b);
805 dp->r *= b;
806 dp->n = 1;
807 }
808 addcolor(acol, dp->v);
809 }
810 b = bright(acol);
811 if (b > FTINY) {
812 b = 1.0/b; /* compute & normalize gradient(s) */
813 if (pg != NULL) {
814 posgradient(pg, div, &hemi);
815 for (i = 0; i < 3; i++)
816 pg[i] *= b;
817 }
818 if (dg != NULL) {
819 dirgradient(dg, div, &hemi);
820 for (i = 0; i < 3; i++)
821 dg[i] *= b;
822 }
823 }
824 free((void *)div);
825 }
826 copycolor(rcol, acol);
827 if (arad <= FTINY)
828 arad = maxarad;
829 else
830 arad = (divcnt+hemi.ns)/arad;
831 if (pg != NULL) { /* reduce radius if gradient large */
832 d = DOT(pg,pg);
833 if (d*arad*arad > 1.0)
834 arad = 1.0/sqrt(d);
835 }
836 if (arad < minarad) {
837 arad = minarad;
838 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
839 d = 1.0/arad/sqrt(d);
840 for (i = 0; i < 3; i++)
841 pg[i] *= d;
842 }
843 }
844 if ((arad /= sqrt(wt)) > maxarad)
845 arad = maxarad;
846 return(arad);
847 }
848
849
850 void
851 comperrs( /* compute initial error estimates */
852 AMBSAMP *da, /* assumes standard ordering */
853 AMBHEMI *hp
854 )
855 {
856 double b, b2;
857 int i, j;
858 AMBSAMP *dp;
859 /* sum differences from neighbors */
860 dp = da;
861 for (i = 0; i < hp->nt; i++)
862 for (j = 0; j < hp->np; j++) {
863 #ifdef DEBUG
864 if (dp->t != i || dp->p != j)
865 error(CONSISTENCY,
866 "division order in comperrs");
867 #endif
868 b = bright(dp[0].v);
869 if (i > 0) { /* from above */
870 b2 = bright(dp[-hp->np].v) - b;
871 b2 *= b2 * 0.25;
872 dp[0].k += b2;
873 dp[-hp->np].k += b2;
874 }
875 if (j > 0) { /* from behind */
876 b2 = bright(dp[-1].v) - b;
877 b2 *= b2 * 0.25;
878 dp[0].k += b2;
879 dp[-1].k += b2;
880 } else { /* around */
881 b2 = bright(dp[hp->np-1].v) - b;
882 b2 *= b2 * 0.25;
883 dp[0].k += b2;
884 dp[hp->np-1].k += b2;
885 }
886 dp++;
887 }
888 /* divide by number of neighbors */
889 dp = da;
890 for (j = 0; j < hp->np; j++) /* top row */
891 (dp++)->k *= 1.0/3.0;
892 if (hp->nt < 2)
893 return;
894 for (i = 1; i < hp->nt-1; i++) /* central region */
895 for (j = 0; j < hp->np; j++)
896 (dp++)->k *= 0.25;
897 for (j = 0; j < hp->np; j++) /* bottom row */
898 (dp++)->k *= 1.0/3.0;
899 }
900
901
902 void
903 posgradient( /* compute position gradient */
904 FVECT gv,
905 AMBSAMP *da, /* assumes standard ordering */
906 AMBHEMI *hp
907 )
908 {
909 int i, j;
910 double nextsine, lastsine, b, d;
911 double mag0, mag1;
912 double phi, cosp, sinp, xd, yd;
913 AMBSAMP *dp;
914
915 xd = yd = 0.0;
916 for (j = 0; j < hp->np; j++) {
917 dp = da + j;
918 mag0 = mag1 = 0.0;
919 lastsine = 0.0;
920 for (i = 0; i < hp->nt; i++) {
921 #ifdef DEBUG
922 if (dp->t != i || dp->p != j)
923 error(CONSISTENCY,
924 "division order in posgradient");
925 #endif
926 b = bright(dp->v);
927 if (i > 0) {
928 d = dp[-hp->np].r;
929 if (dp[0].r > d) d = dp[0].r;
930 /* sin(t)*cos(t)^2 */
931 d *= lastsine * (1.0 - (double)i/hp->nt);
932 mag0 += d*(b - bright(dp[-hp->np].v));
933 }
934 nextsine = sqrt((double)(i+1)/hp->nt);
935 if (j > 0) {
936 d = dp[-1].r;
937 if (dp[0].r > d) d = dp[0].r;
938 mag1 += d * (nextsine - lastsine) *
939 (b - bright(dp[-1].v));
940 } else {
941 d = dp[hp->np-1].r;
942 if (dp[0].r > d) d = dp[0].r;
943 mag1 += d * (nextsine - lastsine) *
944 (b - bright(dp[hp->np-1].v));
945 }
946 dp += hp->np;
947 lastsine = nextsine;
948 }
949 mag0 *= 2.0*PI / hp->np;
950 phi = 2.0*PI * (double)j/hp->np;
951 cosp = tcos(phi); sinp = tsin(phi);
952 xd += mag0*cosp - mag1*sinp;
953 yd += mag0*sinp + mag1*cosp;
954 }
955 for (i = 0; i < 3; i++)
956 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
957 }
958
959
960 void
961 dirgradient( /* compute direction gradient */
962 FVECT gv,
963 AMBSAMP *da, /* assumes standard ordering */
964 AMBHEMI *hp
965 )
966 {
967 int i, j;
968 double mag;
969 double phi, xd, yd;
970 AMBSAMP *dp;
971
972 xd = yd = 0.0;
973 for (j = 0; j < hp->np; j++) {
974 dp = da + j;
975 mag = 0.0;
976 for (i = 0; i < hp->nt; i++) {
977 #ifdef DEBUG
978 if (dp->t != i || dp->p != j)
979 error(CONSISTENCY,
980 "division order in dirgradient");
981 #endif
982 /* tan(t) */
983 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
984 dp += hp->np;
985 }
986 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
987 xd += mag * tcos(phi);
988 yd += mag * tsin(phi);
989 }
990 for (i = 0; i < 3; i++)
991 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
992 }
993
994 #endif /* ! NEWAMB */