ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.27
Committed: Sat Apr 19 02:39:44 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.26: +365 -23 lines
Log Message:
Compilable but untested version of Hessian calculation (-DNEWAMB)

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.26 2014/04/16 20:32:00 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Declarations of external symbols in ambient.h
12 */
13
14 #include "copyright.h"
15
16 #include "ray.h"
17 #include "ambient.h"
18 #include "random.h"
19
20 #ifdef NEWAMB
21
22 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
23
24 typedef struct {
25 RAY *rp; /* originating ray sample */
26 FVECT ux, uy; /* tangent axis unit vectors */
27 int ns; /* number of samples per axis */
28 COLOR acoef; /* division contribution coefficient */
29 struct s_ambsamp {
30 COLOR v; /* hemisphere sample value */
31 float p[3]; /* intersection point */
32 } sa[1]; /* sample array (extends struct) */
33 } AMBHEMI; /* ambient sample hemisphere */
34
35 #define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)]
36
37 typedef struct {
38 FVECT r_i, r_i1, e_i;
39 double nf, I1, I2, J2;
40 } FFTRI; /* vectors and coefficients for Hessian calculation */
41
42
43 static AMBHEMI *
44 inithemi( /* initialize sampling hemisphere */
45 COLOR ac,
46 RAY *r,
47 double wt
48 )
49 {
50 AMBHEMI *hp;
51 double d;
52 int n, i;
53 /* set number of divisions */
54 if (ambacc <= FTINY &&
55 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
56 wt = d; /* avoid ray termination */
57 n = sqrt(ambdiv * wt) + 0.5;
58 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
59 if (n < i)
60 n = i;
61 /* allocate sampling array */
62 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) +
63 sizeof(struct s_ambsamp)*(n*n - 1));
64 if (hp == NULL)
65 return(NULL);
66 hp->rp = r;
67 hp->ns = n;
68 /* assign coefficient */
69 copycolor(hp->acoef, ac);
70 d = 1.0/(n*n);
71 scalecolor(hp->acoef, d);
72 /* make tangent axes */
73 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
74 for (i = 0; i < 3; i++)
75 if (r->ron[i] < 0.6 && r->ron[i] > -0.6)
76 break;
77 if (i >= 3)
78 error(CONSISTENCY, "bad ray direction in inithemi()");
79 hp->uy[i] = 1.0;
80 VCROSS(hp->ux, hp->uy, r->ron);
81 normalize(hp->ux);
82 VCROSS(hp->uy, r->ron, hp->ux);
83 /* we're ready to sample */
84 return(hp);
85 }
86
87
88 static int
89 ambsample( /* sample an ambient direction */
90 AMBHEMI *hp,
91 int i,
92 int j
93 )
94 {
95 struct s_ambsamp *ap = &ambsamp(hp,i,j);
96 RAY ar;
97 int hlist[3];
98 double spt[2], zd;
99 int ii;
100 /* ambient coefficient for weight */
101 if (ambacc > FTINY)
102 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
103 else
104 copycolor(ar.rcoef, hp->acoef);
105 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) {
106 setcolor(ap->v, 0., 0., 0.);
107 VCOPY(ap->p, hp->rp->rop);
108 return(0); /* no sample taken */
109 }
110 if (ambacc > FTINY) {
111 multcolor(ar.rcoef, hp->acoef);
112 scalecolor(ar.rcoef, 1./AVGREFL);
113 }
114 /* generate hemispherical sample */
115 SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns,
116 (j+.1+.8*frandom())/hp->ns);
117 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
118 for (ii = 3; ii--; )
119 ar.rdir[ii] = spt[0]*hp->ux[ii] +
120 spt[1]*hp->uy[ii] +
121 zd*hp->rp->ron[ii];
122 checknorm(ar.rdir);
123 dimlist[ndims++] = i*hp->ns + j + 90171;
124 rayvalue(&ar); /* evaluate ray */
125 ndims--;
126 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
127 copycolor(ap->v, ar.rcol);
128 if (ar.rt > 20.0*maxarad) /* limit vertex distance */
129 ar.rt = 20.0*maxarad;
130 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
131 return(1);
132 }
133
134
135 /* Compute vectors and coefficients for Hessian/gradient calcs */
136 static void
137 comp_fftri(FFTRI *ftp, float ap0[3], float ap1[3], FVECT rop)
138 {
139 FVECT v1;
140 double dot_e, dot_er, dot_r, dot_r1;
141
142 VSUB(ftp->r_i, ap0, rop);
143 VSUB(ftp->r_i1, ap1, rop);
144 VSUB(ftp->e_i, ap1, ap0);
145 VCROSS(v1, ftp->e_i, ftp->r_i);
146 ftp->nf = 1.0/DOT(v1,v1);
147 VCROSS(v1, ftp->r_i, ftp->r_i1);
148 ftp->I1 = sqrt(DOT(v1,v1)*ftp->nf);
149 dot_e = DOT(ftp->e_i,ftp->e_i);
150 dot_er = DOT(ftp->e_i, ftp->r_i);
151 dot_r = DOT(ftp->r_i,ftp->r_i);
152 dot_r1 = DOT(ftp->r_i1,ftp->r_i1);
153 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)/dot_r1 - dot_er/dot_r +
154 dot_e*ftp->I1 )*0.5*ftp->nf;
155 ftp->J2 = 0.25*ftp->nf*( 1.0/dot_r - 1.0/dot_r1 ) -
156 dot_er/dot_e*ftp->I2;
157 }
158
159
160 /* Compose matrix from two vectors */
161 static void
162 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
163 {
164 mat[0][0] = 2.0*va[0]*vb[0];
165 mat[1][1] = 2.0*va[1]*vb[1];
166 mat[2][2] = 2.0*va[2]*vb[2];
167 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
168 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
169 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
170 }
171
172
173 /* Compute partial 3x3 Hessian matrix for edge */
174 static void
175 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
176 {
177 FVECT v1, v2;
178 FVECT m1[3], m2[3], m3[3], m4[3];
179 double d1, d2, d3, d4;
180 double I3, J3, K3;
181 int i, j;
182 /* compute intermediate coefficients */
183 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
184 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
185 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
186 d4 = DOT(ftp->e_i, ftp->r_i);
187 I3 = 0.25*ftp->nf*( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 +
188 3.0*ftp->I2*d3 );
189 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
190 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
191 /* intermediate matrices */
192 VCROSS(v1, nrm, ftp->e_i);
193 for (j = 3; j--; )
194 v2[i] = ftp->I2*ftp->r_i[j] + ftp->J2*ftp->e_i[j];
195 compose_matrix(m1, v1, v2);
196 compose_matrix(m2, ftp->r_i, ftp->r_i);
197 compose_matrix(m3, ftp->e_i, ftp->e_i);
198 compose_matrix(m4, ftp->r_i, ftp->e_i);
199 VCROSS(v1, ftp->r_i, ftp->e_i);
200 d1 = DOT(nrm, v1);
201 d2 = -d1*ftp->I2;
202 d1 *= 2.0;
203 for (i = 3; i--; ) /* final matrix sum */
204 for (j = 3; j--; ) {
205 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
206 2.0*J3*m4[i][j] );
207 hess[i][j] += d2*(i==j);
208 hess[i][j] *= -1.0/PI;
209 }
210 }
211
212
213 /* Reverse hessian calculation result for edge in other direction */
214 static void
215 rev_hessian(FVECT hess[3])
216 {
217 int i;
218
219 for (i = 3; i--; ) {
220 hess[i][0] = -hess[i][0];
221 hess[i][1] = -hess[i][1];
222 hess[i][2] = -hess[i][2];
223 }
224 }
225
226
227 /* Add to radiometric Hessian from the given triangle */
228 static void
229 add2hessian(FVECT hess[3], FVECT ehess1[3],
230 FVECT ehess2[3], FVECT ehess3[3], COLORV v)
231 {
232 int i, j;
233
234 for (i = 3; i--; )
235 for (j = 3; j--; )
236 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
237 }
238
239
240 /* Compute partial displacement form factor gradient for edge */
241 static void
242 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
243 {
244 FVECT vcp;
245 double f1;
246 int i;
247
248 VCROSS(vcp, ftp->r_i, ftp->r_i1);
249 f1 = 2.0*DOT(nrm, vcp);
250 VCROSS(vcp, nrm, ftp->e_i);
251 for (i = 3; i--; )
252 grad[i] = (0.5/PI)*( ftp->I1*vcp[i] +
253 f1*(ftp->I2*ftp->r_i[i] + ftp->J2*ftp->e_i[i]) );
254 }
255
256
257 /* Reverse gradient calculation result for edge in other direction */
258 static void
259 rev_gradient(FVECT grad)
260 {
261 grad[0] = -grad[0];
262 grad[1] = -grad[1];
263 grad[2] = -grad[2];
264 }
265
266
267 /* Add to displacement gradient from the given triangle */
268 static void
269 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v)
270 {
271 int i;
272
273 for (i = 3; i--; )
274 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
275 }
276
277
278 /* Return brightness of furthest ambient sample */
279 static COLORV
280 back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2,
281 struct s_ambsamp *ap3, FVECT orig)
282 {
283 COLORV vback;
284 FVECT vec;
285 double d2, d2best;
286
287 VSUB(vec, ap1->p, orig);
288 d2best = DOT(vec,vec);
289 vback = ap1->v[CIEY];
290 VSUB(vec, ap2->p, orig);
291 d2 = DOT(vec,vec);
292 if (d2 > d2best) {
293 d2best = d2;
294 vback = ap2->v[CIEY];
295 }
296 VSUB(vec, ap3->p, orig);
297 d2 = DOT(vec,vec);
298 if (d2 > d2best)
299 return(ap3->v[CIEY]);
300 return(vback);
301 }
302
303
304 /* Compute anisotropic radii and eigenvector directions */
305 static int
306 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
307 {
308 double hess2[2][2];
309 FVECT a, b;
310 double evalue[2], slope1, xmag1;
311 int i;
312 /* project Hessian to sample plane */
313 for (i = 3; i--; ) {
314 a[i] = DOT(hessian[i], uv[0]);
315 b[i] = DOT(hessian[i], uv[1]);
316 }
317 hess2[0][0] = DOT(uv[0], a);
318 hess2[0][1] = DOT(uv[0], b);
319 hess2[1][0] = DOT(uv[1], a);
320 hess2[1][1] = DOT(uv[1], b);
321 /* compute eigenvalues */
322 if (quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
323 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 ||
324 (evalue[0] = fabs(evalue[0])) <= FTINY*FTINY*FTINY ||
325 (evalue[1] = fabs(evalue[1])) <= FTINY*FTINY*FTINY)
326 error(INTERNAL, "bad eigenvalue calculation");
327
328 if (evalue[0] > evalue[1]) {
329 ra[0] = 1.0/sqrt(sqrt(evalue[0]));
330 ra[1] = 1.0/sqrt(sqrt(evalue[1]));
331 slope1 = evalue[1];
332 } else {
333 ra[0] = 1.0/sqrt(sqrt(evalue[1]));
334 ra[1] = 1.0/sqrt(sqrt(evalue[0]));
335 slope1 = evalue[0];
336 }
337 /* compute unit eigenvectors */
338 if (fabs(hess2[0][1]) <= FTINY)
339 return; /* uv OK as is */
340 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
341 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
342 for (i = 3; i--; ) {
343 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
344 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
345 }
346 VCOPY(uv[0], a);
347 VCOPY(uv[1], b);
348 }
349
350
351 static void
352 ambHessian( /* anisotropic radii & pos. gradient */
353 AMBHEMI *hp,
354 FVECT uv[2], /* returned */
355 float ra[2], /* returned */
356 float pg[2] /* returned */
357 )
358 {
359 static char memerrmsg[] = "out of memory in ambHessian()";
360 FVECT (*hessrow)[3] = NULL;
361 FVECT *gradrow = NULL;
362 FVECT hessian[3];
363 FVECT gradient;
364 FFTRI fftr;
365 int i, j;
366 /* be sure to assign unit vectors */
367 VCOPY(uv[0], hp->ux);
368 VCOPY(uv[1], hp->uy);
369 /* clock-wise vertex traversal from sample POV */
370 if (ra != NULL) { /* initialize Hessian row buffer */
371 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*hp->ns);
372 if (hessrow == NULL)
373 error(SYSTEM, memerrmsg);
374 memset(hessian, 0, sizeof(hessian));
375 } else if (pg == NULL) /* bogus call? */
376 return;
377 if (pg != NULL) { /* initialize form factor row buffer */
378 gradrow = (FVECT *)malloc(sizeof(FVECT)*hp->ns);
379 if (gradrow == NULL)
380 error(SYSTEM, memerrmsg);
381 memset(gradient, 0, sizeof(gradient));
382 }
383 /* compute first row of edges */
384 for (j = 0; j < hp->ns-1; j++) {
385 comp_fftri(&fftr, ambsamp(hp,0,j).p,
386 ambsamp(hp,0,j+1).p, hp->rp->rop);
387 if (hessrow != NULL)
388 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
389 if (gradrow != NULL)
390 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
391 }
392 /* sum each row of triangles */
393 for (i = 0; i < hp->ns-1; i++) {
394 FVECT hesscol[3]; /* compute first vertical edge */
395 FVECT gradcol;
396 comp_fftri(&fftr, ambsamp(hp,i,0).p,
397 ambsamp(hp,i+1,0).p, hp->rp->rop);
398 if (hessrow != NULL)
399 comp_hessian(hesscol, &fftr, hp->rp->ron);
400 if (gradrow != NULL)
401 comp_gradient(gradcol, &fftr, hp->rp->ron);
402 for (j = 0; j < hp->ns-1; j++) {
403 FVECT hessdia[3]; /* compute triangle contributions */
404 FVECT graddia;
405 COLORV backg;
406 backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1),
407 &ambsamp(hp,i+1,j), hp->rp->rop);
408 /* diagonal (inner) edge */
409 comp_fftri(&fftr, ambsamp(hp,i,j+1).p,
410 ambsamp(hp,i+1,j).p, hp->rp->rop);
411 if (hessrow != NULL) {
412 comp_hessian(hessdia, &fftr, hp->rp->ron);
413 rev_hessian(hesscol);
414 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
415 }
416 if (gradient != NULL) {
417 comp_gradient(graddia, &fftr, hp->rp->ron);
418 rev_gradient(gradcol);
419 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
420 }
421 /* initialize edge in next row */
422 comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p,
423 ambsamp(hp,i+1,j).p, hp->rp->rop);
424 if (hessrow != NULL)
425 comp_hessian(hessrow[j], &fftr, hp->rp->ron);
426 if (gradrow != NULL)
427 comp_gradient(gradrow[j], &fftr, hp->rp->ron);
428 /* new column edge & paired triangle */
429 backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1),
430 &ambsamp(hp,i+1,j), hp->rp->rop);
431 comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p,
432 hp->rp->rop);
433 if (hessrow != NULL) {
434 comp_hessian(hesscol, &fftr, hp->rp->ron);
435 rev_hessian(hessdia);
436 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
437 if (i < hp->ns-2)
438 rev_hessian(hessrow[j]);
439 }
440 if (gradrow != NULL) {
441 comp_gradient(gradcol, &fftr, hp->rp->ron);
442 rev_gradient(graddia);
443 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
444 if (i < hp->ns-2)
445 rev_gradient(gradrow[j]);
446 }
447 }
448 }
449 /* release row buffers */
450 if (hessrow != NULL) free(hessrow);
451 if (gradrow != NULL) free(gradrow);
452
453 if (ra != NULL) /* extract eigenvectors & radii */
454 eigenvectors(uv, ra, hessian);
455 if (pg != NULL) { /* project position gradient */
456 pg[0] = DOT(gradient, uv[0]);
457 pg[1] = DOT(gradient, uv[1]);
458 }
459 }
460
461
462 /* Compute direction gradient from a hemispherical sampling */
463 static void
464 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
465 {
466 struct s_ambsamp *ap;
467 int n;
468
469 dg[0] = dg[1] = 0;
470 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
471 FVECT vd;
472 double gfact;
473 /* use vector for azimuth + 90deg */
474 VSUB(vd, ap->p, hp->rp->rop);
475 /* brightness with tangent factor */
476 gfact = ap->v[CIEY] / DOT(hp->rp->ron, vd);
477 /* sine = proj_radius/vd_length */
478 dg[0] -= DOT(uv[1], vd) * gfact ;
479 dg[1] += DOT(uv[0], vd) * gfact;
480 }
481 }
482
483
484 int
485 doambient( /* compute ambient component */
486 COLOR rcol, /* input/output color */
487 RAY *r,
488 double wt,
489 FVECT uv[2], /* returned (optional) */
490 float ra[2], /* returned (optional) */
491 float pg[2], /* returned (optional) */
492 float dg[2] /* returned (optional) */
493 )
494 {
495 int cnt = 0;
496 FVECT my_uv[2];
497 AMBHEMI *hp;
498 double d, acol[3];
499 struct s_ambsamp *ap;
500 int i, j;
501 /* initialize */
502 if ((hp = inithemi(rcol, r, wt)) == NULL)
503 return(0);
504 if (uv != NULL)
505 memset(uv, 0, sizeof(FVECT)*2);
506 if (ra != NULL)
507 ra[0] = ra[1] = 0.0;
508 if (pg != NULL)
509 pg[0] = pg[1] = 0.0;
510 if (dg != NULL)
511 dg[0] = dg[1] = 0.0;
512 /* sample the hemisphere */
513 acol[0] = acol[1] = acol[2] = 0.0;
514 for (i = hp->ns; i--; )
515 for (j = hp->ns; j--; )
516 if (ambsample(hp, i, j)) {
517 ap = &ambsamp(hp,i,j);
518 addcolor(acol, ap->v);
519 ++cnt;
520 }
521 if (!cnt) {
522 setcolor(rcol, 0.0, 0.0, 0.0);
523 free(hp);
524 return(0); /* no valid samples */
525 }
526 d = 1.0 / cnt; /* final indirect irradiance/PI */
527 acol[0] *= d; acol[1] *= d; acol[2] *= d;
528 copycolor(rcol, acol);
529 if (cnt < hp->ns*hp->ns || /* incomplete sampling? */
530 (ra == NULL) & (pg == NULL) & (dg == NULL)) {
531 free(hp);
532 return(-1); /* no radius or gradient calc. */
533 }
534 d = 0.01 * bright(rcol); /* add in 1% before Hessian comp. */
535 if (d < FTINY) d = FTINY;
536 ap = hp->sa; /* using Y channel from here on... */
537 for (i = hp->ns*hp->ns; i--; ap++)
538 colval(ap->v,CIEY) = bright(ap->v) + d;
539
540 if (uv == NULL) /* make sure we have axis pointers */
541 uv = my_uv;
542 /* compute radii & pos. gradient */
543 ambHessian(hp, uv, ra, pg);
544 if (dg != NULL) /* compute direction gradient */
545 ambdirgrad(hp, uv, dg);
546 if (ra != NULL) { /* adjust/clamp radii */
547 d = sqrt(sqrt((4.0/PI)*bright(rcol)/wt));
548 if ((ra[0] *= d) > maxarad)
549 ra[0] = maxarad;
550 if ((ra[1] *= d) > 2.0*ra[0])
551 ra[1] = 2.0*ra[0];
552 }
553 free(hp); /* clean up and return */
554 return(1);
555 }
556
557
558 #else /* ! NEWAMB */
559
560
561 void
562 inithemi( /* initialize sampling hemisphere */
563 AMBHEMI *hp,
564 COLOR ac,
565 RAY *r,
566 double wt
567 )
568 {
569 double d;
570 int i;
571 /* set number of divisions */
572 if (ambacc <= FTINY &&
573 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
574 wt = d; /* avoid ray termination */
575 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
576 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
577 if (hp->nt < i)
578 hp->nt = i;
579 hp->np = PI * hp->nt + 0.5;
580 /* set number of super-samples */
581 hp->ns = ambssamp * wt + 0.5;
582 /* assign coefficient */
583 copycolor(hp->acoef, ac);
584 d = 1.0/(hp->nt*hp->np);
585 scalecolor(hp->acoef, d);
586 /* make axes */
587 VCOPY(hp->uz, r->ron);
588 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
589 for (i = 0; i < 3; i++)
590 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
591 break;
592 if (i >= 3)
593 error(CONSISTENCY, "bad ray direction in inithemi");
594 hp->uy[i] = 1.0;
595 fcross(hp->ux, hp->uy, hp->uz);
596 normalize(hp->ux);
597 fcross(hp->uy, hp->uz, hp->ux);
598 }
599
600
601 int
602 divsample( /* sample a division */
603 AMBSAMP *dp,
604 AMBHEMI *h,
605 RAY *r
606 )
607 {
608 RAY ar;
609 int hlist[3];
610 double spt[2];
611 double xd, yd, zd;
612 double b2;
613 double phi;
614 int i;
615 /* ambient coefficient for weight */
616 if (ambacc > FTINY)
617 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
618 else
619 copycolor(ar.rcoef, h->acoef);
620 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
621 return(-1);
622 if (ambacc > FTINY) {
623 multcolor(ar.rcoef, h->acoef);
624 scalecolor(ar.rcoef, 1./AVGREFL);
625 }
626 hlist[0] = r->rno;
627 hlist[1] = dp->t;
628 hlist[2] = dp->p;
629 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
630 zd = sqrt((dp->t + spt[0])/h->nt);
631 phi = 2.0*PI * (dp->p + spt[1])/h->np;
632 xd = tcos(phi) * zd;
633 yd = tsin(phi) * zd;
634 zd = sqrt(1.0 - zd*zd);
635 for (i = 0; i < 3; i++)
636 ar.rdir[i] = xd*h->ux[i] +
637 yd*h->uy[i] +
638 zd*h->uz[i];
639 checknorm(ar.rdir);
640 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
641 rayvalue(&ar);
642 ndims--;
643 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
644 addcolor(dp->v, ar.rcol);
645 /* use rt to improve gradient calc */
646 if (ar.rt > FTINY && ar.rt < FHUGE)
647 dp->r += 1.0/ar.rt;
648 /* (re)initialize error */
649 if (dp->n++) {
650 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
651 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
652 dp->k = b2/(dp->n*dp->n);
653 } else
654 dp->k = 0.0;
655 return(0);
656 }
657
658
659 static int
660 ambcmp( /* decreasing order */
661 const void *p1,
662 const void *p2
663 )
664 {
665 const AMBSAMP *d1 = (const AMBSAMP *)p1;
666 const AMBSAMP *d2 = (const AMBSAMP *)p2;
667
668 if (d1->k < d2->k)
669 return(1);
670 if (d1->k > d2->k)
671 return(-1);
672 return(0);
673 }
674
675
676 static int
677 ambnorm( /* standard order */
678 const void *p1,
679 const void *p2
680 )
681 {
682 const AMBSAMP *d1 = (const AMBSAMP *)p1;
683 const AMBSAMP *d2 = (const AMBSAMP *)p2;
684 int c;
685
686 if ( (c = d1->t - d2->t) )
687 return(c);
688 return(d1->p - d2->p);
689 }
690
691
692 double
693 doambient( /* compute ambient component */
694 COLOR rcol,
695 RAY *r,
696 double wt,
697 FVECT pg,
698 FVECT dg
699 )
700 {
701 double b, d=0;
702 AMBHEMI hemi;
703 AMBSAMP *div;
704 AMBSAMP dnew;
705 double acol[3];
706 AMBSAMP *dp;
707 double arad;
708 int divcnt;
709 int i, j;
710 /* initialize hemisphere */
711 inithemi(&hemi, rcol, r, wt);
712 divcnt = hemi.nt * hemi.np;
713 /* initialize */
714 if (pg != NULL)
715 pg[0] = pg[1] = pg[2] = 0.0;
716 if (dg != NULL)
717 dg[0] = dg[1] = dg[2] = 0.0;
718 setcolor(rcol, 0.0, 0.0, 0.0);
719 if (divcnt == 0)
720 return(0.0);
721 /* allocate super-samples */
722 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
723 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
724 if (div == NULL)
725 error(SYSTEM, "out of memory in doambient");
726 } else
727 div = NULL;
728 /* sample the divisions */
729 arad = 0.0;
730 acol[0] = acol[1] = acol[2] = 0.0;
731 if ((dp = div) == NULL)
732 dp = &dnew;
733 divcnt = 0;
734 for (i = 0; i < hemi.nt; i++)
735 for (j = 0; j < hemi.np; j++) {
736 dp->t = i; dp->p = j;
737 setcolor(dp->v, 0.0, 0.0, 0.0);
738 dp->r = 0.0;
739 dp->n = 0;
740 if (divsample(dp, &hemi, r) < 0) {
741 if (div != NULL)
742 dp++;
743 continue;
744 }
745 arad += dp->r;
746 divcnt++;
747 if (div != NULL)
748 dp++;
749 else
750 addcolor(acol, dp->v);
751 }
752 if (!divcnt) {
753 if (div != NULL)
754 free((void *)div);
755 return(0.0); /* no samples taken */
756 }
757 if (divcnt < hemi.nt*hemi.np) {
758 pg = dg = NULL; /* incomplete sampling */
759 hemi.ns = 0;
760 } else if (arad > FTINY && divcnt/arad < minarad) {
761 hemi.ns = 0; /* close enough */
762 } else if (hemi.ns > 0) { /* else perform super-sampling? */
763 comperrs(div, &hemi); /* compute errors */
764 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
765 /* super-sample */
766 for (i = hemi.ns; i > 0; i--) {
767 dnew = *div;
768 if (divsample(&dnew, &hemi, r) < 0) {
769 dp++;
770 continue;
771 }
772 dp = div; /* reinsert */
773 j = divcnt < i ? divcnt : i;
774 while (--j > 0 && dnew.k < dp[1].k) {
775 *dp = *(dp+1);
776 dp++;
777 }
778 *dp = dnew;
779 }
780 if (pg != NULL || dg != NULL) /* restore order */
781 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
782 }
783 /* compute returned values */
784 if (div != NULL) {
785 arad = 0.0; /* note: divcnt may be < nt*np */
786 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
787 arad += dp->r;
788 if (dp->n > 1) {
789 b = 1.0/dp->n;
790 scalecolor(dp->v, b);
791 dp->r *= b;
792 dp->n = 1;
793 }
794 addcolor(acol, dp->v);
795 }
796 b = bright(acol);
797 if (b > FTINY) {
798 b = 1.0/b; /* compute & normalize gradient(s) */
799 if (pg != NULL) {
800 posgradient(pg, div, &hemi);
801 for (i = 0; i < 3; i++)
802 pg[i] *= b;
803 }
804 if (dg != NULL) {
805 dirgradient(dg, div, &hemi);
806 for (i = 0; i < 3; i++)
807 dg[i] *= b;
808 }
809 }
810 free((void *)div);
811 }
812 copycolor(rcol, acol);
813 if (arad <= FTINY)
814 arad = maxarad;
815 else
816 arad = (divcnt+hemi.ns)/arad;
817 if (pg != NULL) { /* reduce radius if gradient large */
818 d = DOT(pg,pg);
819 if (d*arad*arad > 1.0)
820 arad = 1.0/sqrt(d);
821 }
822 if (arad < minarad) {
823 arad = minarad;
824 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
825 d = 1.0/arad/sqrt(d);
826 for (i = 0; i < 3; i++)
827 pg[i] *= d;
828 }
829 }
830 if ((arad /= sqrt(wt)) > maxarad)
831 arad = maxarad;
832 return(arad);
833 }
834
835
836 void
837 comperrs( /* compute initial error estimates */
838 AMBSAMP *da, /* assumes standard ordering */
839 AMBHEMI *hp
840 )
841 {
842 double b, b2;
843 int i, j;
844 AMBSAMP *dp;
845 /* sum differences from neighbors */
846 dp = da;
847 for (i = 0; i < hp->nt; i++)
848 for (j = 0; j < hp->np; j++) {
849 #ifdef DEBUG
850 if (dp->t != i || dp->p != j)
851 error(CONSISTENCY,
852 "division order in comperrs");
853 #endif
854 b = bright(dp[0].v);
855 if (i > 0) { /* from above */
856 b2 = bright(dp[-hp->np].v) - b;
857 b2 *= b2 * 0.25;
858 dp[0].k += b2;
859 dp[-hp->np].k += b2;
860 }
861 if (j > 0) { /* from behind */
862 b2 = bright(dp[-1].v) - b;
863 b2 *= b2 * 0.25;
864 dp[0].k += b2;
865 dp[-1].k += b2;
866 } else { /* around */
867 b2 = bright(dp[hp->np-1].v) - b;
868 b2 *= b2 * 0.25;
869 dp[0].k += b2;
870 dp[hp->np-1].k += b2;
871 }
872 dp++;
873 }
874 /* divide by number of neighbors */
875 dp = da;
876 for (j = 0; j < hp->np; j++) /* top row */
877 (dp++)->k *= 1.0/3.0;
878 if (hp->nt < 2)
879 return;
880 for (i = 1; i < hp->nt-1; i++) /* central region */
881 for (j = 0; j < hp->np; j++)
882 (dp++)->k *= 0.25;
883 for (j = 0; j < hp->np; j++) /* bottom row */
884 (dp++)->k *= 1.0/3.0;
885 }
886
887
888 void
889 posgradient( /* compute position gradient */
890 FVECT gv,
891 AMBSAMP *da, /* assumes standard ordering */
892 AMBHEMI *hp
893 )
894 {
895 int i, j;
896 double nextsine, lastsine, b, d;
897 double mag0, mag1;
898 double phi, cosp, sinp, xd, yd;
899 AMBSAMP *dp;
900
901 xd = yd = 0.0;
902 for (j = 0; j < hp->np; j++) {
903 dp = da + j;
904 mag0 = mag1 = 0.0;
905 lastsine = 0.0;
906 for (i = 0; i < hp->nt; i++) {
907 #ifdef DEBUG
908 if (dp->t != i || dp->p != j)
909 error(CONSISTENCY,
910 "division order in posgradient");
911 #endif
912 b = bright(dp->v);
913 if (i > 0) {
914 d = dp[-hp->np].r;
915 if (dp[0].r > d) d = dp[0].r;
916 /* sin(t)*cos(t)^2 */
917 d *= lastsine * (1.0 - (double)i/hp->nt);
918 mag0 += d*(b - bright(dp[-hp->np].v));
919 }
920 nextsine = sqrt((double)(i+1)/hp->nt);
921 if (j > 0) {
922 d = dp[-1].r;
923 if (dp[0].r > d) d = dp[0].r;
924 mag1 += d * (nextsine - lastsine) *
925 (b - bright(dp[-1].v));
926 } else {
927 d = dp[hp->np-1].r;
928 if (dp[0].r > d) d = dp[0].r;
929 mag1 += d * (nextsine - lastsine) *
930 (b - bright(dp[hp->np-1].v));
931 }
932 dp += hp->np;
933 lastsine = nextsine;
934 }
935 mag0 *= 2.0*PI / hp->np;
936 phi = 2.0*PI * (double)j/hp->np;
937 cosp = tcos(phi); sinp = tsin(phi);
938 xd += mag0*cosp - mag1*sinp;
939 yd += mag0*sinp + mag1*cosp;
940 }
941 for (i = 0; i < 3; i++)
942 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
943 }
944
945
946 void
947 dirgradient( /* compute direction gradient */
948 FVECT gv,
949 AMBSAMP *da, /* assumes standard ordering */
950 AMBHEMI *hp
951 )
952 {
953 int i, j;
954 double mag;
955 double phi, xd, yd;
956 AMBSAMP *dp;
957
958 xd = yd = 0.0;
959 for (j = 0; j < hp->np; j++) {
960 dp = da + j;
961 mag = 0.0;
962 for (i = 0; i < hp->nt; i++) {
963 #ifdef DEBUG
964 if (dp->t != i || dp->p != j)
965 error(CONSISTENCY,
966 "division order in dirgradient");
967 #endif
968 /* tan(t) */
969 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
970 dp += hp->np;
971 }
972 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
973 xd += mag * tcos(phi);
974 yd += mag * tsin(phi);
975 }
976 for (i = 0; i < 3; i++)
977 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
978 }
979
980 #endif /* ! NEWAMB */