#ifndef lint static const char RCSid[] = "$Id: ambcomp.c,v 2.27 2014/04/19 02:39:44 greg Exp $"; #endif /* * Routines to compute "ambient" values using Monte Carlo * * Hessian calculations based on "Practical Hessian-Based Error Control * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz * from ACM SIGGRAPH Asia 2012 conference proceedings. * * Declarations of external symbols in ambient.h */ #include "copyright.h" #include "ray.h" #include "ambient.h" #include "random.h" #ifdef NEWAMB extern void SDsquare2disk(double ds[2], double seedx, double seedy); typedef struct { RAY *rp; /* originating ray sample */ FVECT ux, uy; /* tangent axis unit vectors */ int ns; /* number of samples per axis */ COLOR acoef; /* division contribution coefficient */ struct s_ambsamp { COLOR v; /* hemisphere sample value */ float p[3]; /* intersection point */ } sa[1]; /* sample array (extends struct) */ } AMBHEMI; /* ambient sample hemisphere */ #define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)] typedef struct { FVECT r_i, r_i1, e_i; double nf, I1, I2, J2; } FFTRI; /* vectors and coefficients for Hessian calculation */ static AMBHEMI * inithemi( /* initialize sampling hemisphere */ COLOR ac, RAY *r, double wt ) { AMBHEMI *hp; double d; int n, i; /* set number of divisions */ if (ambacc <= FTINY && wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) wt = d; /* avoid ray termination */ n = sqrt(ambdiv * wt) + 0.5; i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ if (n < i) n = i; /* allocate sampling array */ hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(struct s_ambsamp)*(n*n - 1)); if (hp == NULL) return(NULL); hp->rp = r; hp->ns = n; /* assign coefficient */ copycolor(hp->acoef, ac); d = 1.0/(n*n); scalecolor(hp->acoef, d); /* make tangent axes */ hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; for (i = 0; i < 3; i++) if (r->ron[i] < 0.6 && r->ron[i] > -0.6) break; if (i >= 3) error(CONSISTENCY, "bad ray direction in inithemi()"); hp->uy[i] = 1.0; VCROSS(hp->ux, hp->uy, r->ron); normalize(hp->ux); VCROSS(hp->uy, r->ron, hp->ux); /* we're ready to sample */ return(hp); } static int ambsample( /* sample an ambient direction */ AMBHEMI *hp, int i, int j ) { struct s_ambsamp *ap = &ambsamp(hp,i,j); RAY ar; int hlist[3]; double spt[2], zd; int ii; /* ambient coefficient for weight */ if (ambacc > FTINY) setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); else copycolor(ar.rcoef, hp->acoef); if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) { setcolor(ap->v, 0., 0., 0.); VCOPY(ap->p, hp->rp->rop); return(0); /* no sample taken */ } if (ambacc > FTINY) { multcolor(ar.rcoef, hp->acoef); scalecolor(ar.rcoef, 1./AVGREFL); } /* generate hemispherical sample */ SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns, (j+.1+.8*frandom())/hp->ns); zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); for (ii = 3; ii--; ) ar.rdir[ii] = spt[0]*hp->ux[ii] + spt[1]*hp->uy[ii] + zd*hp->rp->ron[ii]; checknorm(ar.rdir); dimlist[ndims++] = i*hp->ns + j + 90171; rayvalue(&ar); /* evaluate ray */ ndims--; multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ copycolor(ap->v, ar.rcol); if (ar.rt > 20.0*maxarad) /* limit vertex distance */ ar.rt = 20.0*maxarad; VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); return(1); } /* Compute vectors and coefficients for Hessian/gradient calcs */ static void comp_fftri(FFTRI *ftp, float ap0[3], float ap1[3], FVECT rop) { FVECT v1; double dot_e, dot_er, dot_r, dot_r1; VSUB(ftp->r_i, ap0, rop); VSUB(ftp->r_i1, ap1, rop); VSUB(ftp->e_i, ap1, ap0); VCROSS(v1, ftp->e_i, ftp->r_i); ftp->nf = 1.0/DOT(v1,v1); VCROSS(v1, ftp->r_i, ftp->r_i1); ftp->I1 = sqrt(DOT(v1,v1)*ftp->nf); dot_e = DOT(ftp->e_i,ftp->e_i); dot_er = DOT(ftp->e_i, ftp->r_i); dot_r = DOT(ftp->r_i,ftp->r_i); dot_r1 = DOT(ftp->r_i1,ftp->r_i1); ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)/dot_r1 - dot_er/dot_r + dot_e*ftp->I1 )*0.5*ftp->nf; ftp->J2 = 0.25*ftp->nf*( 1.0/dot_r - 1.0/dot_r1 ) - dot_er/dot_e*ftp->I2; } /* Compose matrix from two vectors */ static void compose_matrix(FVECT mat[3], FVECT va, FVECT vb) { mat[0][0] = 2.0*va[0]*vb[0]; mat[1][1] = 2.0*va[1]*vb[1]; mat[2][2] = 2.0*va[2]*vb[2]; mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0]; mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0]; mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1]; } /* Compute partial 3x3 Hessian matrix for edge */ static void comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) { FVECT v1, v2; FVECT m1[3], m2[3], m3[3], m4[3]; double d1, d2, d3, d4; double I3, J3, K3; int i, j; /* compute intermediate coefficients */ d1 = 1.0/DOT(ftp->r_i,ftp->r_i); d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1); d3 = 1.0/DOT(ftp->e_i,ftp->e_i); d4 = DOT(ftp->e_i, ftp->r_i); I3 = 0.25*ftp->nf*( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0*ftp->I2*d3 ); J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3; K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3); /* intermediate matrices */ VCROSS(v1, nrm, ftp->e_i); for (j = 3; j--; ) v2[i] = ftp->I2*ftp->r_i[j] + ftp->J2*ftp->e_i[j]; compose_matrix(m1, v1, v2); compose_matrix(m2, ftp->r_i, ftp->r_i); compose_matrix(m3, ftp->e_i, ftp->e_i); compose_matrix(m4, ftp->r_i, ftp->e_i); VCROSS(v1, ftp->r_i, ftp->e_i); d1 = DOT(nrm, v1); d2 = -d1*ftp->I2; d1 *= 2.0; for (i = 3; i--; ) /* final matrix sum */ for (j = 3; j--; ) { hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] + 2.0*J3*m4[i][j] ); hess[i][j] += d2*(i==j); hess[i][j] *= -1.0/PI; } } /* Reverse hessian calculation result for edge in other direction */ static void rev_hessian(FVECT hess[3]) { int i; for (i = 3; i--; ) { hess[i][0] = -hess[i][0]; hess[i][1] = -hess[i][1]; hess[i][2] = -hess[i][2]; } } /* Add to radiometric Hessian from the given triangle */ static void add2hessian(FVECT hess[3], FVECT ehess1[3], FVECT ehess2[3], FVECT ehess3[3], COLORV v) { int i, j; for (i = 3; i--; ) for (j = 3; j--; ) hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] ); } /* Compute partial displacement form factor gradient for edge */ static void comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm) { FVECT vcp; double f1; int i; VCROSS(vcp, ftp->r_i, ftp->r_i1); f1 = 2.0*DOT(nrm, vcp); VCROSS(vcp, nrm, ftp->e_i); for (i = 3; i--; ) grad[i] = (0.5/PI)*( ftp->I1*vcp[i] + f1*(ftp->I2*ftp->r_i[i] + ftp->J2*ftp->e_i[i]) ); } /* Reverse gradient calculation result for edge in other direction */ static void rev_gradient(FVECT grad) { grad[0] = -grad[0]; grad[1] = -grad[1]; grad[2] = -grad[2]; } /* Add to displacement gradient from the given triangle */ static void add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v) { int i; for (i = 3; i--; ) grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] ); } /* Return brightness of furthest ambient sample */ static COLORV back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2, struct s_ambsamp *ap3, FVECT orig) { COLORV vback; FVECT vec; double d2, d2best; VSUB(vec, ap1->p, orig); d2best = DOT(vec,vec); vback = ap1->v[CIEY]; VSUB(vec, ap2->p, orig); d2 = DOT(vec,vec); if (d2 > d2best) { d2best = d2; vback = ap2->v[CIEY]; } VSUB(vec, ap3->p, orig); d2 = DOT(vec,vec); if (d2 > d2best) return(ap3->v[CIEY]); return(vback); } /* Compute anisotropic radii and eigenvector directions */ static int eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3]) { double hess2[2][2]; FVECT a, b; double evalue[2], slope1, xmag1; int i; /* project Hessian to sample plane */ for (i = 3; i--; ) { a[i] = DOT(hessian[i], uv[0]); b[i] = DOT(hessian[i], uv[1]); } hess2[0][0] = DOT(uv[0], a); hess2[0][1] = DOT(uv[0], b); hess2[1][0] = DOT(uv[1], a); hess2[1][1] = DOT(uv[1], b); /* compute eigenvalues */ if (quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 || (evalue[0] = fabs(evalue[0])) <= FTINY*FTINY*FTINY || (evalue[1] = fabs(evalue[1])) <= FTINY*FTINY*FTINY) error(INTERNAL, "bad eigenvalue calculation"); if (evalue[0] > evalue[1]) { ra[0] = 1.0/sqrt(sqrt(evalue[0])); ra[1] = 1.0/sqrt(sqrt(evalue[1])); slope1 = evalue[1]; } else { ra[0] = 1.0/sqrt(sqrt(evalue[1])); ra[1] = 1.0/sqrt(sqrt(evalue[0])); slope1 = evalue[0]; } /* compute unit eigenvectors */ if (fabs(hess2[0][1]) <= FTINY) return; /* uv OK as is */ slope1 = (slope1 - hess2[0][0]) / hess2[0][1]; xmag1 = sqrt(1.0/(1.0 + slope1*slope1)); for (i = 3; i--; ) { b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i]; a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i]; } VCOPY(uv[0], a); VCOPY(uv[1], b); } static void ambHessian( /* anisotropic radii & pos. gradient */ AMBHEMI *hp, FVECT uv[2], /* returned */ float ra[2], /* returned */ float pg[2] /* returned */ ) { static char memerrmsg[] = "out of memory in ambHessian()"; FVECT (*hessrow)[3] = NULL; FVECT *gradrow = NULL; FVECT hessian[3]; FVECT gradient; FFTRI fftr; int i, j; /* be sure to assign unit vectors */ VCOPY(uv[0], hp->ux); VCOPY(uv[1], hp->uy); /* clock-wise vertex traversal from sample POV */ if (ra != NULL) { /* initialize Hessian row buffer */ hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*hp->ns); if (hessrow == NULL) error(SYSTEM, memerrmsg); memset(hessian, 0, sizeof(hessian)); } else if (pg == NULL) /* bogus call? */ return; if (pg != NULL) { /* initialize form factor row buffer */ gradrow = (FVECT *)malloc(sizeof(FVECT)*hp->ns); if (gradrow == NULL) error(SYSTEM, memerrmsg); memset(gradient, 0, sizeof(gradient)); } /* compute first row of edges */ for (j = 0; j < hp->ns-1; j++) { comp_fftri(&fftr, ambsamp(hp,0,j).p, ambsamp(hp,0,j+1).p, hp->rp->rop); if (hessrow != NULL) comp_hessian(hessrow[j], &fftr, hp->rp->ron); if (gradrow != NULL) comp_gradient(gradrow[j], &fftr, hp->rp->ron); } /* sum each row of triangles */ for (i = 0; i < hp->ns-1; i++) { FVECT hesscol[3]; /* compute first vertical edge */ FVECT gradcol; comp_fftri(&fftr, ambsamp(hp,i,0).p, ambsamp(hp,i+1,0).p, hp->rp->rop); if (hessrow != NULL) comp_hessian(hesscol, &fftr, hp->rp->ron); if (gradrow != NULL) comp_gradient(gradcol, &fftr, hp->rp->ron); for (j = 0; j < hp->ns-1; j++) { FVECT hessdia[3]; /* compute triangle contributions */ FVECT graddia; COLORV backg; backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j), hp->rp->rop); /* diagonal (inner) edge */ comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j).p, hp->rp->rop); if (hessrow != NULL) { comp_hessian(hessdia, &fftr, hp->rp->ron); rev_hessian(hesscol); add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); } if (gradient != NULL) { comp_gradient(graddia, &fftr, hp->rp->ron); rev_gradient(gradcol); add2gradient(gradient, gradrow[j], graddia, gradcol, backg); } /* initialize edge in next row */ comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p, ambsamp(hp,i+1,j).p, hp->rp->rop); if (hessrow != NULL) comp_hessian(hessrow[j], &fftr, hp->rp->ron); if (gradrow != NULL) comp_gradient(gradrow[j], &fftr, hp->rp->ron); /* new column edge & paired triangle */ backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1), &ambsamp(hp,i+1,j), hp->rp->rop); comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p, hp->rp->rop); if (hessrow != NULL) { comp_hessian(hesscol, &fftr, hp->rp->ron); rev_hessian(hessdia); add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); if (i < hp->ns-2) rev_hessian(hessrow[j]); } if (gradrow != NULL) { comp_gradient(gradcol, &fftr, hp->rp->ron); rev_gradient(graddia); add2gradient(gradient, gradrow[j], graddia, gradcol, backg); if (i < hp->ns-2) rev_gradient(gradrow[j]); } } } /* release row buffers */ if (hessrow != NULL) free(hessrow); if (gradrow != NULL) free(gradrow); if (ra != NULL) /* extract eigenvectors & radii */ eigenvectors(uv, ra, hessian); if (pg != NULL) { /* project position gradient */ pg[0] = DOT(gradient, uv[0]); pg[1] = DOT(gradient, uv[1]); } } /* Compute direction gradient from a hemispherical sampling */ static void ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) { struct s_ambsamp *ap; int n; dg[0] = dg[1] = 0; for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) { FVECT vd; double gfact; /* use vector for azimuth + 90deg */ VSUB(vd, ap->p, hp->rp->rop); /* brightness with tangent factor */ gfact = ap->v[CIEY] / DOT(hp->rp->ron, vd); /* sine = proj_radius/vd_length */ dg[0] -= DOT(uv[1], vd) * gfact ; dg[1] += DOT(uv[0], vd) * gfact; } } int doambient( /* compute ambient component */ COLOR rcol, /* input/output color */ RAY *r, double wt, FVECT uv[2], /* returned (optional) */ float ra[2], /* returned (optional) */ float pg[2], /* returned (optional) */ float dg[2] /* returned (optional) */ ) { int cnt = 0; FVECT my_uv[2]; AMBHEMI *hp; double d, acol[3]; struct s_ambsamp *ap; int i, j; /* initialize */ if ((hp = inithemi(rcol, r, wt)) == NULL) return(0); if (uv != NULL) memset(uv, 0, sizeof(FVECT)*2); if (ra != NULL) ra[0] = ra[1] = 0.0; if (pg != NULL) pg[0] = pg[1] = 0.0; if (dg != NULL) dg[0] = dg[1] = 0.0; /* sample the hemisphere */ acol[0] = acol[1] = acol[2] = 0.0; for (i = hp->ns; i--; ) for (j = hp->ns; j--; ) if (ambsample(hp, i, j)) { ap = &ambsamp(hp,i,j); addcolor(acol, ap->v); ++cnt; } if (!cnt) { setcolor(rcol, 0.0, 0.0, 0.0); free(hp); return(0); /* no valid samples */ } d = 1.0 / cnt; /* final indirect irradiance/PI */ acol[0] *= d; acol[1] *= d; acol[2] *= d; copycolor(rcol, acol); if (cnt < hp->ns*hp->ns || /* incomplete sampling? */ (ra == NULL) & (pg == NULL) & (dg == NULL)) { free(hp); return(-1); /* no radius or gradient calc. */ } d = 0.01 * bright(rcol); /* add in 1% before Hessian comp. */ if (d < FTINY) d = FTINY; ap = hp->sa; /* using Y channel from here on... */ for (i = hp->ns*hp->ns; i--; ap++) colval(ap->v,CIEY) = bright(ap->v) + d; if (uv == NULL) /* make sure we have axis pointers */ uv = my_uv; /* compute radii & pos. gradient */ ambHessian(hp, uv, ra, pg); if (dg != NULL) /* compute direction gradient */ ambdirgrad(hp, uv, dg); if (ra != NULL) { /* adjust/clamp radii */ d = sqrt(sqrt((4.0/PI)*bright(rcol)/wt)); if ((ra[0] *= d) > maxarad) ra[0] = maxarad; if ((ra[1] *= d) > 2.0*ra[0]) ra[1] = 2.0*ra[0]; } free(hp); /* clean up and return */ return(1); } #else /* ! NEWAMB */ void inithemi( /* initialize sampling hemisphere */ AMBHEMI *hp, COLOR ac, RAY *r, double wt ) { double d; int i; /* set number of divisions */ if (ambacc <= FTINY && wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) wt = d; /* avoid ray termination */ hp->nt = sqrt(ambdiv * wt / PI) + 0.5; i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */ if (hp->nt < i) hp->nt = i; hp->np = PI * hp->nt + 0.5; /* set number of super-samples */ hp->ns = ambssamp * wt + 0.5; /* assign coefficient */ copycolor(hp->acoef, ac); d = 1.0/(hp->nt*hp->np); scalecolor(hp->acoef, d); /* make axes */ VCOPY(hp->uz, r->ron); hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; for (i = 0; i < 3; i++) if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6) break; if (i >= 3) error(CONSISTENCY, "bad ray direction in inithemi"); hp->uy[i] = 1.0; fcross(hp->ux, hp->uy, hp->uz); normalize(hp->ux); fcross(hp->uy, hp->uz, hp->ux); } int divsample( /* sample a division */ AMBSAMP *dp, AMBHEMI *h, RAY *r ) { RAY ar; int hlist[3]; double spt[2]; double xd, yd, zd; double b2; double phi; int i; /* ambient coefficient for weight */ if (ambacc > FTINY) setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); else copycolor(ar.rcoef, h->acoef); if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0) return(-1); if (ambacc > FTINY) { multcolor(ar.rcoef, h->acoef); scalecolor(ar.rcoef, 1./AVGREFL); } hlist[0] = r->rno; hlist[1] = dp->t; hlist[2] = dp->p; multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n)); zd = sqrt((dp->t + spt[0])/h->nt); phi = 2.0*PI * (dp->p + spt[1])/h->np; xd = tcos(phi) * zd; yd = tsin(phi) * zd; zd = sqrt(1.0 - zd*zd); for (i = 0; i < 3; i++) ar.rdir[i] = xd*h->ux[i] + yd*h->uy[i] + zd*h->uz[i]; checknorm(ar.rdir); dimlist[ndims++] = dp->t*h->np + dp->p + 90171; rayvalue(&ar); ndims--; multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ addcolor(dp->v, ar.rcol); /* use rt to improve gradient calc */ if (ar.rt > FTINY && ar.rt < FHUGE) dp->r += 1.0/ar.rt; /* (re)initialize error */ if (dp->n++) { b2 = bright(dp->v)/dp->n - bright(ar.rcol); b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1)); dp->k = b2/(dp->n*dp->n); } else dp->k = 0.0; return(0); } static int ambcmp( /* decreasing order */ const void *p1, const void *p2 ) { const AMBSAMP *d1 = (const AMBSAMP *)p1; const AMBSAMP *d2 = (const AMBSAMP *)p2; if (d1->k < d2->k) return(1); if (d1->k > d2->k) return(-1); return(0); } static int ambnorm( /* standard order */ const void *p1, const void *p2 ) { const AMBSAMP *d1 = (const AMBSAMP *)p1; const AMBSAMP *d2 = (const AMBSAMP *)p2; int c; if ( (c = d1->t - d2->t) ) return(c); return(d1->p - d2->p); } double doambient( /* compute ambient component */ COLOR rcol, RAY *r, double wt, FVECT pg, FVECT dg ) { double b, d=0; AMBHEMI hemi; AMBSAMP *div; AMBSAMP dnew; double acol[3]; AMBSAMP *dp; double arad; int divcnt; int i, j; /* initialize hemisphere */ inithemi(&hemi, rcol, r, wt); divcnt = hemi.nt * hemi.np; /* initialize */ if (pg != NULL) pg[0] = pg[1] = pg[2] = 0.0; if (dg != NULL) dg[0] = dg[1] = dg[2] = 0.0; setcolor(rcol, 0.0, 0.0, 0.0); if (divcnt == 0) return(0.0); /* allocate super-samples */ if (hemi.ns > 0 || pg != NULL || dg != NULL) { div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP)); if (div == NULL) error(SYSTEM, "out of memory in doambient"); } else div = NULL; /* sample the divisions */ arad = 0.0; acol[0] = acol[1] = acol[2] = 0.0; if ((dp = div) == NULL) dp = &dnew; divcnt = 0; for (i = 0; i < hemi.nt; i++) for (j = 0; j < hemi.np; j++) { dp->t = i; dp->p = j; setcolor(dp->v, 0.0, 0.0, 0.0); dp->r = 0.0; dp->n = 0; if (divsample(dp, &hemi, r) < 0) { if (div != NULL) dp++; continue; } arad += dp->r; divcnt++; if (div != NULL) dp++; else addcolor(acol, dp->v); } if (!divcnt) { if (div != NULL) free((void *)div); return(0.0); /* no samples taken */ } if (divcnt < hemi.nt*hemi.np) { pg = dg = NULL; /* incomplete sampling */ hemi.ns = 0; } else if (arad > FTINY && divcnt/arad < minarad) { hemi.ns = 0; /* close enough */ } else if (hemi.ns > 0) { /* else perform super-sampling? */ comperrs(div, &hemi); /* compute errors */ qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */ /* super-sample */ for (i = hemi.ns; i > 0; i--) { dnew = *div; if (divsample(&dnew, &hemi, r) < 0) { dp++; continue; } dp = div; /* reinsert */ j = divcnt < i ? divcnt : i; while (--j > 0 && dnew.k < dp[1].k) { *dp = *(dp+1); dp++; } *dp = dnew; } if (pg != NULL || dg != NULL) /* restore order */ qsort(div, divcnt, sizeof(AMBSAMP), ambnorm); } /* compute returned values */ if (div != NULL) { arad = 0.0; /* note: divcnt may be < nt*np */ for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) { arad += dp->r; if (dp->n > 1) { b = 1.0/dp->n; scalecolor(dp->v, b); dp->r *= b; dp->n = 1; } addcolor(acol, dp->v); } b = bright(acol); if (b > FTINY) { b = 1.0/b; /* compute & normalize gradient(s) */ if (pg != NULL) { posgradient(pg, div, &hemi); for (i = 0; i < 3; i++) pg[i] *= b; } if (dg != NULL) { dirgradient(dg, div, &hemi); for (i = 0; i < 3; i++) dg[i] *= b; } } free((void *)div); } copycolor(rcol, acol); if (arad <= FTINY) arad = maxarad; else arad = (divcnt+hemi.ns)/arad; if (pg != NULL) { /* reduce radius if gradient large */ d = DOT(pg,pg); if (d*arad*arad > 1.0) arad = 1.0/sqrt(d); } if (arad < minarad) { arad = minarad; if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */ d = 1.0/arad/sqrt(d); for (i = 0; i < 3; i++) pg[i] *= d; } } if ((arad /= sqrt(wt)) > maxarad) arad = maxarad; return(arad); } void comperrs( /* compute initial error estimates */ AMBSAMP *da, /* assumes standard ordering */ AMBHEMI *hp ) { double b, b2; int i, j; AMBSAMP *dp; /* sum differences from neighbors */ dp = da; for (i = 0; i < hp->nt; i++) for (j = 0; j < hp->np; j++) { #ifdef DEBUG if (dp->t != i || dp->p != j) error(CONSISTENCY, "division order in comperrs"); #endif b = bright(dp[0].v); if (i > 0) { /* from above */ b2 = bright(dp[-hp->np].v) - b; b2 *= b2 * 0.25; dp[0].k += b2; dp[-hp->np].k += b2; } if (j > 0) { /* from behind */ b2 = bright(dp[-1].v) - b; b2 *= b2 * 0.25; dp[0].k += b2; dp[-1].k += b2; } else { /* around */ b2 = bright(dp[hp->np-1].v) - b; b2 *= b2 * 0.25; dp[0].k += b2; dp[hp->np-1].k += b2; } dp++; } /* divide by number of neighbors */ dp = da; for (j = 0; j < hp->np; j++) /* top row */ (dp++)->k *= 1.0/3.0; if (hp->nt < 2) return; for (i = 1; i < hp->nt-1; i++) /* central region */ for (j = 0; j < hp->np; j++) (dp++)->k *= 0.25; for (j = 0; j < hp->np; j++) /* bottom row */ (dp++)->k *= 1.0/3.0; } void posgradient( /* compute position gradient */ FVECT gv, AMBSAMP *da, /* assumes standard ordering */ AMBHEMI *hp ) { int i, j; double nextsine, lastsine, b, d; double mag0, mag1; double phi, cosp, sinp, xd, yd; AMBSAMP *dp; xd = yd = 0.0; for (j = 0; j < hp->np; j++) { dp = da + j; mag0 = mag1 = 0.0; lastsine = 0.0; for (i = 0; i < hp->nt; i++) { #ifdef DEBUG if (dp->t != i || dp->p != j) error(CONSISTENCY, "division order in posgradient"); #endif b = bright(dp->v); if (i > 0) { d = dp[-hp->np].r; if (dp[0].r > d) d = dp[0].r; /* sin(t)*cos(t)^2 */ d *= lastsine * (1.0 - (double)i/hp->nt); mag0 += d*(b - bright(dp[-hp->np].v)); } nextsine = sqrt((double)(i+1)/hp->nt); if (j > 0) { d = dp[-1].r; if (dp[0].r > d) d = dp[0].r; mag1 += d * (nextsine - lastsine) * (b - bright(dp[-1].v)); } else { d = dp[hp->np-1].r; if (dp[0].r > d) d = dp[0].r; mag1 += d * (nextsine - lastsine) * (b - bright(dp[hp->np-1].v)); } dp += hp->np; lastsine = nextsine; } mag0 *= 2.0*PI / hp->np; phi = 2.0*PI * (double)j/hp->np; cosp = tcos(phi); sinp = tsin(phi); xd += mag0*cosp - mag1*sinp; yd += mag0*sinp + mag1*cosp; } for (i = 0; i < 3; i++) gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI; } void dirgradient( /* compute direction gradient */ FVECT gv, AMBSAMP *da, /* assumes standard ordering */ AMBHEMI *hp ) { int i, j; double mag; double phi, xd, yd; AMBSAMP *dp; xd = yd = 0.0; for (j = 0; j < hp->np; j++) { dp = da + j; mag = 0.0; for (i = 0; i < hp->nt; i++) { #ifdef DEBUG if (dp->t != i || dp->p != j) error(CONSISTENCY, "division order in dirgradient"); #endif /* tan(t) */ mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0); dp += hp->np; } phi = 2.0*PI * (j+.5)/hp->np + PI/2.0; xd += mag * tcos(phi); yd += mag * tsin(phi); } for (i = 0; i < 3; i++) gv[i] = xd*hp->ux[i] + yd*hp->uy[i]; } #endif /* ! NEWAMB */