| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: ambcomp.c,v 2.25 2014/04/11 20:31:37 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* Routines to compute "ambient" values using Monte Carlo
|
| 6 |
*
|
| 7 |
* Declarations of external symbols in ambient.h
|
| 8 |
*/
|
| 9 |
|
| 10 |
#include "copyright.h"
|
| 11 |
|
| 12 |
#include "ray.h"
|
| 13 |
#include "ambient.h"
|
| 14 |
#include "random.h"
|
| 15 |
|
| 16 |
#ifdef NEWAMB
|
| 17 |
|
| 18 |
extern void SDsquare2disk(double ds[2], double seedx, double seedy);
|
| 19 |
|
| 20 |
typedef struct {
|
| 21 |
RAY *rp; /* originating ray sample */
|
| 22 |
FVECT ux, uy; /* tangent axis directions */
|
| 23 |
int ns; /* number of samples per axis */
|
| 24 |
COLOR acoef; /* division contribution coefficient */
|
| 25 |
struct s_ambsamp {
|
| 26 |
COLOR v; /* hemisphere sample value */
|
| 27 |
float p[3]; /* intersection point */
|
| 28 |
} sa[1]; /* sample array (extends struct) */
|
| 29 |
} AMBHEMI; /* ambient sample hemisphere */
|
| 30 |
|
| 31 |
#define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)]
|
| 32 |
|
| 33 |
|
| 34 |
static AMBHEMI *
|
| 35 |
inithemi( /* initialize sampling hemisphere */
|
| 36 |
COLOR ac,
|
| 37 |
RAY *r,
|
| 38 |
double wt
|
| 39 |
)
|
| 40 |
{
|
| 41 |
AMBHEMI *hp;
|
| 42 |
double d;
|
| 43 |
int n, i;
|
| 44 |
/* set number of divisions */
|
| 45 |
if (ambacc <= FTINY &&
|
| 46 |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
|
| 47 |
wt = d; /* avoid ray termination */
|
| 48 |
n = sqrt(ambdiv * wt) + 0.5;
|
| 49 |
i = 1 + 4*(ambacc > FTINY); /* minimum number of samples */
|
| 50 |
if (n < i)
|
| 51 |
n = i;
|
| 52 |
/* allocate sampling array */
|
| 53 |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) +
|
| 54 |
sizeof(struct s_ambsamp)*(n*n - 1));
|
| 55 |
if (hp == NULL)
|
| 56 |
return(NULL);
|
| 57 |
hp->rp = r;
|
| 58 |
hp->ns = n;
|
| 59 |
/* assign coefficient */
|
| 60 |
copycolor(hp->acoef, ac);
|
| 61 |
d = 1.0/(n*n);
|
| 62 |
scalecolor(hp->acoef, d);
|
| 63 |
/* make tangent axes */
|
| 64 |
hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
|
| 65 |
for (i = 0; i < 3; i++)
|
| 66 |
if (r->rn[i] < 0.6 && r->rn[i] > -0.6)
|
| 67 |
break;
|
| 68 |
if (i >= 3)
|
| 69 |
error(CONSISTENCY, "bad ray direction in inithemi()");
|
| 70 |
hp->uy[i] = 1.0;
|
| 71 |
VCROSS(hp->ux, hp->uy, r->rn);
|
| 72 |
normalize(hp->ux);
|
| 73 |
VCROSS(hp->uy, r->rn, hp->ux);
|
| 74 |
/* we're ready to sample */
|
| 75 |
return(hp);
|
| 76 |
}
|
| 77 |
|
| 78 |
|
| 79 |
static int
|
| 80 |
ambsample( /* sample an ambient direction */
|
| 81 |
AMBHEMI *hp,
|
| 82 |
int i,
|
| 83 |
int j,
|
| 84 |
)
|
| 85 |
{
|
| 86 |
struct s_ambsamp *ap = &ambsamp(hp,i,j);
|
| 87 |
RAY ar;
|
| 88 |
int hlist[3];
|
| 89 |
double spt[2], dz;
|
| 90 |
int ii;
|
| 91 |
/* ambient coefficient for weight */
|
| 92 |
if (ambacc > FTINY)
|
| 93 |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
|
| 94 |
else
|
| 95 |
copycolor(ar.rcoef, hp->acoef);
|
| 96 |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) {
|
| 97 |
setcolor(ap->v, 0., 0., 0.);
|
| 98 |
ap->r = 0.;
|
| 99 |
return(0); /* no sample taken */
|
| 100 |
}
|
| 101 |
if (ambacc > FTINY) {
|
| 102 |
multcolor(ar.rcoef, hp->acoef);
|
| 103 |
scalecolor(ar.rcoef, 1./AVGREFL);
|
| 104 |
}
|
| 105 |
/* generate hemispherical sample */
|
| 106 |
SDsquare2disk(spt, (i+frandom())/hp->ns, (j+frandom())/hp->ns);
|
| 107 |
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
|
| 108 |
for (ii = 3; ii--; )
|
| 109 |
ar.rdir[ii] = spt[0]*hp->ux[ii] +
|
| 110 |
spt[1]*hp->uy[ii] +
|
| 111 |
zd*hp->rp->ron[ii];
|
| 112 |
checknorm(ar.rdir);
|
| 113 |
dimlist[ndims++] = i*hp->ns + j + 90171;
|
| 114 |
rayvalue(&ar); /* evaluate ray */
|
| 115 |
ndims--;
|
| 116 |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
|
| 117 |
copycolor(ap->v, ar.rcol);
|
| 118 |
if (ar.rt > 20.0*maxarad) /* limit vertex distance */
|
| 119 |
ar.rt = 20.0*maxarad;
|
| 120 |
VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
|
| 121 |
return(1);
|
| 122 |
}
|
| 123 |
|
| 124 |
|
| 125 |
static void
|
| 126 |
ambHessian( /* anisotropic radii & pos. gradient */
|
| 127 |
AMBHEMI *hp,
|
| 128 |
FVECT uv[2], /* returned */
|
| 129 |
float ra[2], /* returned */
|
| 130 |
float pg[2] /* returned */
|
| 131 |
)
|
| 132 |
{
|
| 133 |
if (ra != NULL) { /* compute Hessian-derived radii */
|
| 134 |
} else { /* else copy original tangent axes */
|
| 135 |
VCOPY(uv[0], hp->ux);
|
| 136 |
VCOPY(uv[1], hp->uy);
|
| 137 |
}
|
| 138 |
if (pg == NULL) /* no position gradient requested? */
|
| 139 |
return;
|
| 140 |
}
|
| 141 |
|
| 142 |
int
|
| 143 |
doambient( /* compute ambient component */
|
| 144 |
COLOR rcol, /* input/output color */
|
| 145 |
RAY *r,
|
| 146 |
double wt,
|
| 147 |
FVECT uv[2], /* returned */
|
| 148 |
float ra[2], /* returned */
|
| 149 |
float pg[2], /* returned */
|
| 150 |
float dg[2] /* returned */
|
| 151 |
)
|
| 152 |
{
|
| 153 |
int cnt = 0;
|
| 154 |
FVECT my_uv[2];
|
| 155 |
AMBHEMI *hp;
|
| 156 |
double d, acol[3];
|
| 157 |
struct s_ambsamp *ap;
|
| 158 |
int i, j;
|
| 159 |
/* initialize */
|
| 160 |
if ((hp = inithemi(rcol, r, wt)) == NULL)
|
| 161 |
return(0);
|
| 162 |
if (uv != NULL)
|
| 163 |
memset(uv, 0, sizeof(FVECT)*2);
|
| 164 |
if (ra != NULL)
|
| 165 |
ra[0] = ra[1] = 0.0;
|
| 166 |
if (pg != NULL)
|
| 167 |
pg[0] = pg[1] = 0.0;
|
| 168 |
if (dg != NULL)
|
| 169 |
dg[0] = dg[1] = 0.0;
|
| 170 |
/* sample the hemisphere */
|
| 171 |
acol[0] = acol[1] = acol[2] = 0.0;
|
| 172 |
for (i = hemi.ns; i--; )
|
| 173 |
for (j = hemi.ns; j--; )
|
| 174 |
if (ambsample(hp, i, j)) {
|
| 175 |
ap = &ambsamp(hp,i,j);
|
| 176 |
addcolor(acol, ap->v);
|
| 177 |
++cnt;
|
| 178 |
}
|
| 179 |
if (!cnt) {
|
| 180 |
setcolor(rcol, 0.0, 0.0, 0.0);
|
| 181 |
free(hp);
|
| 182 |
return(0); /* no valid samples */
|
| 183 |
}
|
| 184 |
d = 1.0 / cnt; /* final indirect irradiance/PI */
|
| 185 |
acol[0] *= d; acol[1] *= d; acol[2] *= d;
|
| 186 |
copycolor(rcol, acol);
|
| 187 |
if (cnt < hp->ns*hp->ns || /* incomplete sampling? */
|
| 188 |
(ra == NULL) & (pg == NULL) & (dg == NULL)) {
|
| 189 |
free(hp);
|
| 190 |
return(-1); /* no radius or gradient calc. */
|
| 191 |
}
|
| 192 |
d = 0.01 * bright(rcol); /* add in 1% before Hessian comp. */
|
| 193 |
if (d < FTINY) d = FTINY;
|
| 194 |
ap = hp->sa; /* using Y channel from here on... */
|
| 195 |
for (i = hp->ns*hp->ns; i--; ap++)
|
| 196 |
colval(ap->v,CIEY) = bright(ap->v) + d;
|
| 197 |
|
| 198 |
if (uv == NULL) /* make sure we have axis pointers */
|
| 199 |
uv = my_uv;
|
| 200 |
/* compute radii & pos. gradient */
|
| 201 |
ambHessian(hp, uv, ra, pg);
|
| 202 |
if (dg != NULL) /* compute direction gradient */
|
| 203 |
ambdirgrad(hp, uv, dg);
|
| 204 |
if (ra != NULL) { /* adjust/clamp radii */
|
| 205 |
d = pow(wt, -0.25);
|
| 206 |
if ((ra[0] *= d) > maxarad)
|
| 207 |
ra[0] = maxarad;
|
| 208 |
if ((ra[1] *= d) > 2.0*ra[0])
|
| 209 |
ra[1] = 2.0*ra[0];
|
| 210 |
}
|
| 211 |
free(hp); /* clean up and return */
|
| 212 |
return(1);
|
| 213 |
}
|
| 214 |
|
| 215 |
|
| 216 |
#else /* ! NEWAMB */
|
| 217 |
|
| 218 |
|
| 219 |
void
|
| 220 |
inithemi( /* initialize sampling hemisphere */
|
| 221 |
AMBHEMI *hp,
|
| 222 |
COLOR ac,
|
| 223 |
RAY *r,
|
| 224 |
double wt
|
| 225 |
)
|
| 226 |
{
|
| 227 |
double d;
|
| 228 |
int i;
|
| 229 |
/* set number of divisions */
|
| 230 |
if (ambacc <= FTINY &&
|
| 231 |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
|
| 232 |
wt = d; /* avoid ray termination */
|
| 233 |
hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
|
| 234 |
i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
|
| 235 |
if (hp->nt < i)
|
| 236 |
hp->nt = i;
|
| 237 |
hp->np = PI * hp->nt + 0.5;
|
| 238 |
/* set number of super-samples */
|
| 239 |
hp->ns = ambssamp * wt + 0.5;
|
| 240 |
/* assign coefficient */
|
| 241 |
copycolor(hp->acoef, ac);
|
| 242 |
d = 1.0/(hp->nt*hp->np);
|
| 243 |
scalecolor(hp->acoef, d);
|
| 244 |
/* make axes */
|
| 245 |
VCOPY(hp->uz, r->ron);
|
| 246 |
hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
|
| 247 |
for (i = 0; i < 3; i++)
|
| 248 |
if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
|
| 249 |
break;
|
| 250 |
if (i >= 3)
|
| 251 |
error(CONSISTENCY, "bad ray direction in inithemi");
|
| 252 |
hp->uy[i] = 1.0;
|
| 253 |
fcross(hp->ux, hp->uy, hp->uz);
|
| 254 |
normalize(hp->ux);
|
| 255 |
fcross(hp->uy, hp->uz, hp->ux);
|
| 256 |
}
|
| 257 |
|
| 258 |
|
| 259 |
int
|
| 260 |
divsample( /* sample a division */
|
| 261 |
AMBSAMP *dp,
|
| 262 |
AMBHEMI *h,
|
| 263 |
RAY *r
|
| 264 |
)
|
| 265 |
{
|
| 266 |
RAY ar;
|
| 267 |
int hlist[3];
|
| 268 |
double spt[2];
|
| 269 |
double xd, yd, zd;
|
| 270 |
double b2;
|
| 271 |
double phi;
|
| 272 |
int i;
|
| 273 |
/* ambient coefficient for weight */
|
| 274 |
if (ambacc > FTINY)
|
| 275 |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
|
| 276 |
else
|
| 277 |
copycolor(ar.rcoef, h->acoef);
|
| 278 |
if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
|
| 279 |
return(-1);
|
| 280 |
if (ambacc > FTINY) {
|
| 281 |
multcolor(ar.rcoef, h->acoef);
|
| 282 |
scalecolor(ar.rcoef, 1./AVGREFL);
|
| 283 |
}
|
| 284 |
hlist[0] = r->rno;
|
| 285 |
hlist[1] = dp->t;
|
| 286 |
hlist[2] = dp->p;
|
| 287 |
multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
|
| 288 |
zd = sqrt((dp->t + spt[0])/h->nt);
|
| 289 |
phi = 2.0*PI * (dp->p + spt[1])/h->np;
|
| 290 |
xd = tcos(phi) * zd;
|
| 291 |
yd = tsin(phi) * zd;
|
| 292 |
zd = sqrt(1.0 - zd*zd);
|
| 293 |
for (i = 0; i < 3; i++)
|
| 294 |
ar.rdir[i] = xd*h->ux[i] +
|
| 295 |
yd*h->uy[i] +
|
| 296 |
zd*h->uz[i];
|
| 297 |
checknorm(ar.rdir);
|
| 298 |
dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
|
| 299 |
rayvalue(&ar);
|
| 300 |
ndims--;
|
| 301 |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
|
| 302 |
addcolor(dp->v, ar.rcol);
|
| 303 |
/* use rt to improve gradient calc */
|
| 304 |
if (ar.rt > FTINY && ar.rt < FHUGE)
|
| 305 |
dp->r += 1.0/ar.rt;
|
| 306 |
/* (re)initialize error */
|
| 307 |
if (dp->n++) {
|
| 308 |
b2 = bright(dp->v)/dp->n - bright(ar.rcol);
|
| 309 |
b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
|
| 310 |
dp->k = b2/(dp->n*dp->n);
|
| 311 |
} else
|
| 312 |
dp->k = 0.0;
|
| 313 |
return(0);
|
| 314 |
}
|
| 315 |
|
| 316 |
|
| 317 |
static int
|
| 318 |
ambcmp( /* decreasing order */
|
| 319 |
const void *p1,
|
| 320 |
const void *p2
|
| 321 |
)
|
| 322 |
{
|
| 323 |
const AMBSAMP *d1 = (const AMBSAMP *)p1;
|
| 324 |
const AMBSAMP *d2 = (const AMBSAMP *)p2;
|
| 325 |
|
| 326 |
if (d1->k < d2->k)
|
| 327 |
return(1);
|
| 328 |
if (d1->k > d2->k)
|
| 329 |
return(-1);
|
| 330 |
return(0);
|
| 331 |
}
|
| 332 |
|
| 333 |
|
| 334 |
static int
|
| 335 |
ambnorm( /* standard order */
|
| 336 |
const void *p1,
|
| 337 |
const void *p2
|
| 338 |
)
|
| 339 |
{
|
| 340 |
const AMBSAMP *d1 = (const AMBSAMP *)p1;
|
| 341 |
const AMBSAMP *d2 = (const AMBSAMP *)p2;
|
| 342 |
int c;
|
| 343 |
|
| 344 |
if ( (c = d1->t - d2->t) )
|
| 345 |
return(c);
|
| 346 |
return(d1->p - d2->p);
|
| 347 |
}
|
| 348 |
|
| 349 |
|
| 350 |
double
|
| 351 |
doambient( /* compute ambient component */
|
| 352 |
COLOR rcol,
|
| 353 |
RAY *r,
|
| 354 |
double wt,
|
| 355 |
FVECT pg,
|
| 356 |
FVECT dg
|
| 357 |
)
|
| 358 |
{
|
| 359 |
double b, d=0;
|
| 360 |
AMBHEMI hemi;
|
| 361 |
AMBSAMP *div;
|
| 362 |
AMBSAMP dnew;
|
| 363 |
double acol[3];
|
| 364 |
AMBSAMP *dp;
|
| 365 |
double arad;
|
| 366 |
int divcnt;
|
| 367 |
int i, j;
|
| 368 |
/* initialize hemisphere */
|
| 369 |
inithemi(&hemi, rcol, r, wt);
|
| 370 |
divcnt = hemi.nt * hemi.np;
|
| 371 |
/* initialize */
|
| 372 |
if (pg != NULL)
|
| 373 |
pg[0] = pg[1] = pg[2] = 0.0;
|
| 374 |
if (dg != NULL)
|
| 375 |
dg[0] = dg[1] = dg[2] = 0.0;
|
| 376 |
setcolor(rcol, 0.0, 0.0, 0.0);
|
| 377 |
if (divcnt == 0)
|
| 378 |
return(0.0);
|
| 379 |
/* allocate super-samples */
|
| 380 |
if (hemi.ns > 0 || pg != NULL || dg != NULL) {
|
| 381 |
div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
|
| 382 |
if (div == NULL)
|
| 383 |
error(SYSTEM, "out of memory in doambient");
|
| 384 |
} else
|
| 385 |
div = NULL;
|
| 386 |
/* sample the divisions */
|
| 387 |
arad = 0.0;
|
| 388 |
acol[0] = acol[1] = acol[2] = 0.0;
|
| 389 |
if ((dp = div) == NULL)
|
| 390 |
dp = &dnew;
|
| 391 |
divcnt = 0;
|
| 392 |
for (i = 0; i < hemi.nt; i++)
|
| 393 |
for (j = 0; j < hemi.np; j++) {
|
| 394 |
dp->t = i; dp->p = j;
|
| 395 |
setcolor(dp->v, 0.0, 0.0, 0.0);
|
| 396 |
dp->r = 0.0;
|
| 397 |
dp->n = 0;
|
| 398 |
if (divsample(dp, &hemi, r) < 0) {
|
| 399 |
if (div != NULL)
|
| 400 |
dp++;
|
| 401 |
continue;
|
| 402 |
}
|
| 403 |
arad += dp->r;
|
| 404 |
divcnt++;
|
| 405 |
if (div != NULL)
|
| 406 |
dp++;
|
| 407 |
else
|
| 408 |
addcolor(acol, dp->v);
|
| 409 |
}
|
| 410 |
if (!divcnt) {
|
| 411 |
if (div != NULL)
|
| 412 |
free((void *)div);
|
| 413 |
return(0.0); /* no samples taken */
|
| 414 |
}
|
| 415 |
if (divcnt < hemi.nt*hemi.np) {
|
| 416 |
pg = dg = NULL; /* incomplete sampling */
|
| 417 |
hemi.ns = 0;
|
| 418 |
} else if (arad > FTINY && divcnt/arad < minarad) {
|
| 419 |
hemi.ns = 0; /* close enough */
|
| 420 |
} else if (hemi.ns > 0) { /* else perform super-sampling? */
|
| 421 |
comperrs(div, &hemi); /* compute errors */
|
| 422 |
qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
|
| 423 |
/* super-sample */
|
| 424 |
for (i = hemi.ns; i > 0; i--) {
|
| 425 |
dnew = *div;
|
| 426 |
if (divsample(&dnew, &hemi, r) < 0) {
|
| 427 |
dp++;
|
| 428 |
continue;
|
| 429 |
}
|
| 430 |
dp = div; /* reinsert */
|
| 431 |
j = divcnt < i ? divcnt : i;
|
| 432 |
while (--j > 0 && dnew.k < dp[1].k) {
|
| 433 |
*dp = *(dp+1);
|
| 434 |
dp++;
|
| 435 |
}
|
| 436 |
*dp = dnew;
|
| 437 |
}
|
| 438 |
if (pg != NULL || dg != NULL) /* restore order */
|
| 439 |
qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
|
| 440 |
}
|
| 441 |
/* compute returned values */
|
| 442 |
if (div != NULL) {
|
| 443 |
arad = 0.0; /* note: divcnt may be < nt*np */
|
| 444 |
for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
|
| 445 |
arad += dp->r;
|
| 446 |
if (dp->n > 1) {
|
| 447 |
b = 1.0/dp->n;
|
| 448 |
scalecolor(dp->v, b);
|
| 449 |
dp->r *= b;
|
| 450 |
dp->n = 1;
|
| 451 |
}
|
| 452 |
addcolor(acol, dp->v);
|
| 453 |
}
|
| 454 |
b = bright(acol);
|
| 455 |
if (b > FTINY) {
|
| 456 |
b = 1.0/b; /* compute & normalize gradient(s) */
|
| 457 |
if (pg != NULL) {
|
| 458 |
posgradient(pg, div, &hemi);
|
| 459 |
for (i = 0; i < 3; i++)
|
| 460 |
pg[i] *= b;
|
| 461 |
}
|
| 462 |
if (dg != NULL) {
|
| 463 |
dirgradient(dg, div, &hemi);
|
| 464 |
for (i = 0; i < 3; i++)
|
| 465 |
dg[i] *= b;
|
| 466 |
}
|
| 467 |
}
|
| 468 |
free((void *)div);
|
| 469 |
}
|
| 470 |
copycolor(rcol, acol);
|
| 471 |
if (arad <= FTINY)
|
| 472 |
arad = maxarad;
|
| 473 |
else
|
| 474 |
arad = (divcnt+hemi.ns)/arad;
|
| 475 |
if (pg != NULL) { /* reduce radius if gradient large */
|
| 476 |
d = DOT(pg,pg);
|
| 477 |
if (d*arad*arad > 1.0)
|
| 478 |
arad = 1.0/sqrt(d);
|
| 479 |
}
|
| 480 |
if (arad < minarad) {
|
| 481 |
arad = minarad;
|
| 482 |
if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
|
| 483 |
d = 1.0/arad/sqrt(d);
|
| 484 |
for (i = 0; i < 3; i++)
|
| 485 |
pg[i] *= d;
|
| 486 |
}
|
| 487 |
}
|
| 488 |
if ((arad /= sqrt(wt)) > maxarad)
|
| 489 |
arad = maxarad;
|
| 490 |
return(arad);
|
| 491 |
}
|
| 492 |
|
| 493 |
|
| 494 |
void
|
| 495 |
comperrs( /* compute initial error estimates */
|
| 496 |
AMBSAMP *da, /* assumes standard ordering */
|
| 497 |
AMBHEMI *hp
|
| 498 |
)
|
| 499 |
{
|
| 500 |
double b, b2;
|
| 501 |
int i, j;
|
| 502 |
AMBSAMP *dp;
|
| 503 |
/* sum differences from neighbors */
|
| 504 |
dp = da;
|
| 505 |
for (i = 0; i < hp->nt; i++)
|
| 506 |
for (j = 0; j < hp->np; j++) {
|
| 507 |
#ifdef DEBUG
|
| 508 |
if (dp->t != i || dp->p != j)
|
| 509 |
error(CONSISTENCY,
|
| 510 |
"division order in comperrs");
|
| 511 |
#endif
|
| 512 |
b = bright(dp[0].v);
|
| 513 |
if (i > 0) { /* from above */
|
| 514 |
b2 = bright(dp[-hp->np].v) - b;
|
| 515 |
b2 *= b2 * 0.25;
|
| 516 |
dp[0].k += b2;
|
| 517 |
dp[-hp->np].k += b2;
|
| 518 |
}
|
| 519 |
if (j > 0) { /* from behind */
|
| 520 |
b2 = bright(dp[-1].v) - b;
|
| 521 |
b2 *= b2 * 0.25;
|
| 522 |
dp[0].k += b2;
|
| 523 |
dp[-1].k += b2;
|
| 524 |
} else { /* around */
|
| 525 |
b2 = bright(dp[hp->np-1].v) - b;
|
| 526 |
b2 *= b2 * 0.25;
|
| 527 |
dp[0].k += b2;
|
| 528 |
dp[hp->np-1].k += b2;
|
| 529 |
}
|
| 530 |
dp++;
|
| 531 |
}
|
| 532 |
/* divide by number of neighbors */
|
| 533 |
dp = da;
|
| 534 |
for (j = 0; j < hp->np; j++) /* top row */
|
| 535 |
(dp++)->k *= 1.0/3.0;
|
| 536 |
if (hp->nt < 2)
|
| 537 |
return;
|
| 538 |
for (i = 1; i < hp->nt-1; i++) /* central region */
|
| 539 |
for (j = 0; j < hp->np; j++)
|
| 540 |
(dp++)->k *= 0.25;
|
| 541 |
for (j = 0; j < hp->np; j++) /* bottom row */
|
| 542 |
(dp++)->k *= 1.0/3.0;
|
| 543 |
}
|
| 544 |
|
| 545 |
|
| 546 |
void
|
| 547 |
posgradient( /* compute position gradient */
|
| 548 |
FVECT gv,
|
| 549 |
AMBSAMP *da, /* assumes standard ordering */
|
| 550 |
AMBHEMI *hp
|
| 551 |
)
|
| 552 |
{
|
| 553 |
int i, j;
|
| 554 |
double nextsine, lastsine, b, d;
|
| 555 |
double mag0, mag1;
|
| 556 |
double phi, cosp, sinp, xd, yd;
|
| 557 |
AMBSAMP *dp;
|
| 558 |
|
| 559 |
xd = yd = 0.0;
|
| 560 |
for (j = 0; j < hp->np; j++) {
|
| 561 |
dp = da + j;
|
| 562 |
mag0 = mag1 = 0.0;
|
| 563 |
lastsine = 0.0;
|
| 564 |
for (i = 0; i < hp->nt; i++) {
|
| 565 |
#ifdef DEBUG
|
| 566 |
if (dp->t != i || dp->p != j)
|
| 567 |
error(CONSISTENCY,
|
| 568 |
"division order in posgradient");
|
| 569 |
#endif
|
| 570 |
b = bright(dp->v);
|
| 571 |
if (i > 0) {
|
| 572 |
d = dp[-hp->np].r;
|
| 573 |
if (dp[0].r > d) d = dp[0].r;
|
| 574 |
/* sin(t)*cos(t)^2 */
|
| 575 |
d *= lastsine * (1.0 - (double)i/hp->nt);
|
| 576 |
mag0 += d*(b - bright(dp[-hp->np].v));
|
| 577 |
}
|
| 578 |
nextsine = sqrt((double)(i+1)/hp->nt);
|
| 579 |
if (j > 0) {
|
| 580 |
d = dp[-1].r;
|
| 581 |
if (dp[0].r > d) d = dp[0].r;
|
| 582 |
mag1 += d * (nextsine - lastsine) *
|
| 583 |
(b - bright(dp[-1].v));
|
| 584 |
} else {
|
| 585 |
d = dp[hp->np-1].r;
|
| 586 |
if (dp[0].r > d) d = dp[0].r;
|
| 587 |
mag1 += d * (nextsine - lastsine) *
|
| 588 |
(b - bright(dp[hp->np-1].v));
|
| 589 |
}
|
| 590 |
dp += hp->np;
|
| 591 |
lastsine = nextsine;
|
| 592 |
}
|
| 593 |
mag0 *= 2.0*PI / hp->np;
|
| 594 |
phi = 2.0*PI * (double)j/hp->np;
|
| 595 |
cosp = tcos(phi); sinp = tsin(phi);
|
| 596 |
xd += mag0*cosp - mag1*sinp;
|
| 597 |
yd += mag0*sinp + mag1*cosp;
|
| 598 |
}
|
| 599 |
for (i = 0; i < 3; i++)
|
| 600 |
gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
|
| 601 |
}
|
| 602 |
|
| 603 |
|
| 604 |
void
|
| 605 |
dirgradient( /* compute direction gradient */
|
| 606 |
FVECT gv,
|
| 607 |
AMBSAMP *da, /* assumes standard ordering */
|
| 608 |
AMBHEMI *hp
|
| 609 |
)
|
| 610 |
{
|
| 611 |
int i, j;
|
| 612 |
double mag;
|
| 613 |
double phi, xd, yd;
|
| 614 |
AMBSAMP *dp;
|
| 615 |
|
| 616 |
xd = yd = 0.0;
|
| 617 |
for (j = 0; j < hp->np; j++) {
|
| 618 |
dp = da + j;
|
| 619 |
mag = 0.0;
|
| 620 |
for (i = 0; i < hp->nt; i++) {
|
| 621 |
#ifdef DEBUG
|
| 622 |
if (dp->t != i || dp->p != j)
|
| 623 |
error(CONSISTENCY,
|
| 624 |
"division order in dirgradient");
|
| 625 |
#endif
|
| 626 |
/* tan(t) */
|
| 627 |
mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
|
| 628 |
dp += hp->np;
|
| 629 |
}
|
| 630 |
phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
|
| 631 |
xd += mag * tcos(phi);
|
| 632 |
yd += mag * tsin(phi);
|
| 633 |
}
|
| 634 |
for (i = 0; i < 3; i++)
|
| 635 |
gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
|
| 636 |
}
|
| 637 |
|
| 638 |
#endif /* ! NEWAMB */
|