ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.22
Committed: Sun Sep 26 15:51:15 2010 UTC (13 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R1
Changes since 2.21: +2 -1 lines
Log Message:
Added checknorm() macro to avoid normalization errors with gcc --fast-math

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.21 2007/12/31 18:19:42 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Declarations of external symbols in ambient.h
8 */
9
10 #include "copyright.h"
11
12 #include "ray.h"
13
14 #include "ambient.h"
15
16 #include "random.h"
17
18
19 void
20 inithemi( /* initialize sampling hemisphere */
21 register AMBHEMI *hp,
22 COLOR ac,
23 RAY *r,
24 double wt
25 )
26 {
27 double d;
28 register int i;
29 /* set number of divisions */
30 if (ambacc <= FTINY &&
31 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
32 wt = d; /* avoid ray termination */
33 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
34 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
35 if (hp->nt < i)
36 hp->nt = i;
37 hp->np = PI * hp->nt + 0.5;
38 /* set number of super-samples */
39 hp->ns = ambssamp * wt + 0.5;
40 /* assign coefficient */
41 copycolor(hp->acoef, ac);
42 d = 1.0/(hp->nt*hp->np);
43 scalecolor(hp->acoef, d);
44 /* make axes */
45 VCOPY(hp->uz, r->ron);
46 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
47 for (i = 0; i < 3; i++)
48 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
49 break;
50 if (i >= 3)
51 error(CONSISTENCY, "bad ray direction in inithemi");
52 hp->uy[i] = 1.0;
53 fcross(hp->ux, hp->uy, hp->uz);
54 normalize(hp->ux);
55 fcross(hp->uy, hp->uz, hp->ux);
56 }
57
58
59 int
60 divsample( /* sample a division */
61 register AMBSAMP *dp,
62 AMBHEMI *h,
63 RAY *r
64 )
65 {
66 RAY ar;
67 int hlist[3];
68 double spt[2];
69 double xd, yd, zd;
70 double b2;
71 double phi;
72 register int i;
73 /* ambient coefficient for weight */
74 if (ambacc > FTINY)
75 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
76 else
77 copycolor(ar.rcoef, h->acoef);
78 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
79 return(-1);
80 if (ambacc > FTINY) {
81 multcolor(ar.rcoef, h->acoef);
82 scalecolor(ar.rcoef, 1./AVGREFL);
83 }
84 hlist[0] = r->rno;
85 hlist[1] = dp->t;
86 hlist[2] = dp->p;
87 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
88 zd = sqrt((dp->t + spt[0])/h->nt);
89 phi = 2.0*PI * (dp->p + spt[1])/h->np;
90 xd = tcos(phi) * zd;
91 yd = tsin(phi) * zd;
92 zd = sqrt(1.0 - zd*zd);
93 for (i = 0; i < 3; i++)
94 ar.rdir[i] = xd*h->ux[i] +
95 yd*h->uy[i] +
96 zd*h->uz[i];
97 checknorm(ar.rdir);
98 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
99 rayvalue(&ar);
100 ndims--;
101 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
102 addcolor(dp->v, ar.rcol);
103 /* use rt to improve gradient calc */
104 if (ar.rt > FTINY && ar.rt < FHUGE)
105 dp->r += 1.0/ar.rt;
106 /* (re)initialize error */
107 if (dp->n++) {
108 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
109 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
110 dp->k = b2/(dp->n*dp->n);
111 } else
112 dp->k = 0.0;
113 return(0);
114 }
115
116
117 static int
118 ambcmp( /* decreasing order */
119 const void *p1,
120 const void *p2
121 )
122 {
123 const AMBSAMP *d1 = (const AMBSAMP *)p1;
124 const AMBSAMP *d2 = (const AMBSAMP *)p2;
125
126 if (d1->k < d2->k)
127 return(1);
128 if (d1->k > d2->k)
129 return(-1);
130 return(0);
131 }
132
133
134 static int
135 ambnorm( /* standard order */
136 const void *p1,
137 const void *p2
138 )
139 {
140 const AMBSAMP *d1 = (const AMBSAMP *)p1;
141 const AMBSAMP *d2 = (const AMBSAMP *)p2;
142 register int c;
143
144 if ( (c = d1->t - d2->t) )
145 return(c);
146 return(d1->p - d2->p);
147 }
148
149
150 double
151 doambient( /* compute ambient component */
152 COLOR acol,
153 RAY *r,
154 double wt,
155 FVECT pg,
156 FVECT dg
157 )
158 {
159 double b, d;
160 AMBHEMI hemi;
161 AMBSAMP *div;
162 AMBSAMP dnew;
163 register AMBSAMP *dp;
164 double arad;
165 int divcnt;
166 register int i, j;
167 /* initialize hemisphere */
168 inithemi(&hemi, acol, r, wt);
169 divcnt = hemi.nt * hemi.np;
170 /* initialize */
171 if (pg != NULL)
172 pg[0] = pg[1] = pg[2] = 0.0;
173 if (dg != NULL)
174 dg[0] = dg[1] = dg[2] = 0.0;
175 setcolor(acol, 0.0, 0.0, 0.0);
176 if (divcnt == 0)
177 return(0.0);
178 /* allocate super-samples */
179 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
180 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
181 if (div == NULL)
182 error(SYSTEM, "out of memory in doambient");
183 } else
184 div = NULL;
185 /* sample the divisions */
186 arad = 0.0;
187 if ((dp = div) == NULL)
188 dp = &dnew;
189 divcnt = 0;
190 for (i = 0; i < hemi.nt; i++)
191 for (j = 0; j < hemi.np; j++) {
192 dp->t = i; dp->p = j;
193 setcolor(dp->v, 0.0, 0.0, 0.0);
194 dp->r = 0.0;
195 dp->n = 0;
196 if (divsample(dp, &hemi, r) < 0) {
197 if (div != NULL)
198 dp++;
199 continue;
200 }
201 arad += dp->r;
202 divcnt++;
203 if (div != NULL)
204 dp++;
205 else
206 addcolor(acol, dp->v);
207 }
208 if (!divcnt) {
209 if (div != NULL)
210 free((void *)div);
211 return(0.0); /* no samples taken */
212 }
213 if (divcnt < hemi.nt*hemi.np) {
214 pg = dg = NULL; /* incomplete sampling */
215 hemi.ns = 0;
216 } else if (arad > FTINY && divcnt/arad < minarad) {
217 hemi.ns = 0; /* close enough */
218 } else if (hemi.ns > 0) { /* else perform super-sampling? */
219 comperrs(div, &hemi); /* compute errors */
220 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
221 /* super-sample */
222 for (i = hemi.ns; i > 0; i--) {
223 dnew = *div;
224 if (divsample(&dnew, &hemi, r) < 0) {
225 dp++;
226 continue;
227 }
228 dp = div; /* reinsert */
229 j = divcnt < i ? divcnt : i;
230 while (--j > 0 && dnew.k < dp[1].k) {
231 *dp = *(dp+1);
232 dp++;
233 }
234 *dp = dnew;
235 }
236 if (pg != NULL || dg != NULL) /* restore order */
237 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
238 }
239 /* compute returned values */
240 if (div != NULL) {
241 arad = 0.0; /* note: divcnt may be < nt*np */
242 for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
243 arad += dp->r;
244 if (dp->n > 1) {
245 b = 1.0/dp->n;
246 scalecolor(dp->v, b);
247 dp->r *= b;
248 dp->n = 1;
249 }
250 addcolor(acol, dp->v);
251 }
252 b = bright(acol);
253 if (b > FTINY) {
254 b = 1.0/b; /* compute & normalize gradient(s) */
255 if (pg != NULL) {
256 posgradient(pg, div, &hemi);
257 for (i = 0; i < 3; i++)
258 pg[i] *= b;
259 }
260 if (dg != NULL) {
261 dirgradient(dg, div, &hemi);
262 for (i = 0; i < 3; i++)
263 dg[i] *= b;
264 }
265 }
266 free((void *)div);
267 }
268 if (arad <= FTINY)
269 arad = maxarad;
270 else
271 arad = (divcnt+hemi.ns)/arad;
272 if (pg != NULL) { /* reduce radius if gradient large */
273 d = DOT(pg,pg);
274 if (d*arad*arad > 1.0)
275 arad = 1.0/sqrt(d);
276 }
277 if (arad < minarad) {
278 arad = minarad;
279 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
280 d = 1.0/arad/sqrt(d);
281 for (i = 0; i < 3; i++)
282 pg[i] *= d;
283 }
284 }
285 if ((arad /= sqrt(wt)) > maxarad)
286 arad = maxarad;
287 return(arad);
288 }
289
290
291 void
292 comperrs( /* compute initial error estimates */
293 AMBSAMP *da, /* assumes standard ordering */
294 register AMBHEMI *hp
295 )
296 {
297 double b, b2;
298 int i, j;
299 register AMBSAMP *dp;
300 /* sum differences from neighbors */
301 dp = da;
302 for (i = 0; i < hp->nt; i++)
303 for (j = 0; j < hp->np; j++) {
304 #ifdef DEBUG
305 if (dp->t != i || dp->p != j)
306 error(CONSISTENCY,
307 "division order in comperrs");
308 #endif
309 b = bright(dp[0].v);
310 if (i > 0) { /* from above */
311 b2 = bright(dp[-hp->np].v) - b;
312 b2 *= b2 * 0.25;
313 dp[0].k += b2;
314 dp[-hp->np].k += b2;
315 }
316 if (j > 0) { /* from behind */
317 b2 = bright(dp[-1].v) - b;
318 b2 *= b2 * 0.25;
319 dp[0].k += b2;
320 dp[-1].k += b2;
321 } else { /* around */
322 b2 = bright(dp[hp->np-1].v) - b;
323 b2 *= b2 * 0.25;
324 dp[0].k += b2;
325 dp[hp->np-1].k += b2;
326 }
327 dp++;
328 }
329 /* divide by number of neighbors */
330 dp = da;
331 for (j = 0; j < hp->np; j++) /* top row */
332 (dp++)->k *= 1.0/3.0;
333 if (hp->nt < 2)
334 return;
335 for (i = 1; i < hp->nt-1; i++) /* central region */
336 for (j = 0; j < hp->np; j++)
337 (dp++)->k *= 0.25;
338 for (j = 0; j < hp->np; j++) /* bottom row */
339 (dp++)->k *= 1.0/3.0;
340 }
341
342
343 void
344 posgradient( /* compute position gradient */
345 FVECT gv,
346 AMBSAMP *da, /* assumes standard ordering */
347 register AMBHEMI *hp
348 )
349 {
350 register int i, j;
351 double nextsine, lastsine, b, d;
352 double mag0, mag1;
353 double phi, cosp, sinp, xd, yd;
354 register AMBSAMP *dp;
355
356 xd = yd = 0.0;
357 for (j = 0; j < hp->np; j++) {
358 dp = da + j;
359 mag0 = mag1 = 0.0;
360 lastsine = 0.0;
361 for (i = 0; i < hp->nt; i++) {
362 #ifdef DEBUG
363 if (dp->t != i || dp->p != j)
364 error(CONSISTENCY,
365 "division order in posgradient");
366 #endif
367 b = bright(dp->v);
368 if (i > 0) {
369 d = dp[-hp->np].r;
370 if (dp[0].r > d) d = dp[0].r;
371 /* sin(t)*cos(t)^2 */
372 d *= lastsine * (1.0 - (double)i/hp->nt);
373 mag0 += d*(b - bright(dp[-hp->np].v));
374 }
375 nextsine = sqrt((double)(i+1)/hp->nt);
376 if (j > 0) {
377 d = dp[-1].r;
378 if (dp[0].r > d) d = dp[0].r;
379 mag1 += d * (nextsine - lastsine) *
380 (b - bright(dp[-1].v));
381 } else {
382 d = dp[hp->np-1].r;
383 if (dp[0].r > d) d = dp[0].r;
384 mag1 += d * (nextsine - lastsine) *
385 (b - bright(dp[hp->np-1].v));
386 }
387 dp += hp->np;
388 lastsine = nextsine;
389 }
390 mag0 *= 2.0*PI / hp->np;
391 phi = 2.0*PI * (double)j/hp->np;
392 cosp = tcos(phi); sinp = tsin(phi);
393 xd += mag0*cosp - mag1*sinp;
394 yd += mag0*sinp + mag1*cosp;
395 }
396 for (i = 0; i < 3; i++)
397 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
398 }
399
400
401 void
402 dirgradient( /* compute direction gradient */
403 FVECT gv,
404 AMBSAMP *da, /* assumes standard ordering */
405 register AMBHEMI *hp
406 )
407 {
408 register int i, j;
409 double mag;
410 double phi, xd, yd;
411 register AMBSAMP *dp;
412
413 xd = yd = 0.0;
414 for (j = 0; j < hp->np; j++) {
415 dp = da + j;
416 mag = 0.0;
417 for (i = 0; i < hp->nt; i++) {
418 #ifdef DEBUG
419 if (dp->t != i || dp->p != j)
420 error(CONSISTENCY,
421 "division order in dirgradient");
422 #endif
423 /* tan(t) */
424 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
425 dp += hp->np;
426 }
427 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
428 xd += mag * tcos(phi);
429 yd += mag * tsin(phi);
430 }
431 for (i = 0; i < 3; i++)
432 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
433 }