ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.2
Committed: Wed Feb 19 12:00:04 1992 UTC (32 years, 2 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.1: +16 -12 lines
Log Message:
improved gradient estimators

File Contents

# Content
1 /* Copyright (c) 1991 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Routines to compute "ambient" values using Monte Carlo
9 */
10
11 #include "ray.h"
12
13 #include "ambient.h"
14
15 #include "random.h"
16
17 typedef struct {
18 short t, p; /* theta, phi indices */
19 COLOR v; /* value sum */
20 float r; /* 1/distance sum */
21 float k; /* variance for this division */
22 int n; /* number of subsamples */
23 } AMBSAMP; /* ambient sample division */
24
25 typedef struct {
26 FVECT ux, uy, uz; /* x, y and z axis directions */
27 short nt, np; /* number of theta and phi directions */
28 } AMBHEMI; /* ambient sample hemisphere */
29
30 extern double sin(), cos(), sqrt();
31
32
33 static int
34 ambcmp(d1, d2) /* decreasing order */
35 AMBSAMP *d1, *d2;
36 {
37 if (d1->k < d2->k)
38 return(1);
39 if (d1->k > d2->k)
40 return(-1);
41 return(0);
42 }
43
44
45 static int
46 ambnorm(d1, d2) /* standard order */
47 AMBSAMP *d1, *d2;
48 {
49 register int c;
50
51 if (c = d1->t - d2->t)
52 return(c);
53 return(d1->p - d2->p);
54 }
55
56
57 divsample(dp, h, r) /* sample a division */
58 register AMBSAMP *dp;
59 AMBHEMI *h;
60 RAY *r;
61 {
62 RAY ar;
63 int hlist[3];
64 double spt[2];
65 double xd, yd, zd;
66 double b2;
67 double phi;
68 register int i;
69
70 if (rayorigin(&ar, r, AMBIENT, AVGREFL) < 0)
71 return(-1);
72 hlist[0] = r->rno;
73 hlist[1] = dp->t;
74 hlist[2] = dp->p;
75 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
76 zd = sqrt((dp->t + spt[0])/h->nt);
77 phi = 2.0*PI * (dp->p + spt[1])/h->np;
78 xd = cos(phi) * zd;
79 yd = sin(phi) * zd;
80 zd = sqrt(1.0 - zd*zd);
81 for (i = 0; i < 3; i++)
82 ar.rdir[i] = xd*h->ux[i] +
83 yd*h->uy[i] +
84 zd*h->uz[i];
85 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
86 rayvalue(&ar);
87 ndims--;
88 addcolor(dp->v, ar.rcol);
89 if (ar.rt > FTINY && ar.rt < FHUGE)
90 dp->r += 1.0/ar.rt;
91 /* (re)initialize error */
92 if (dp->n++) {
93 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
94 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
95 dp->k = b2/(dp->n*dp->n);
96 } else
97 dp->k = 0.0;
98 return(0);
99 }
100
101
102 double
103 doambient(acol, r, wt, pg, dg) /* compute ambient component */
104 COLOR acol;
105 RAY *r;
106 double wt;
107 FVECT pg, dg;
108 {
109 double b, d;
110 AMBHEMI hemi;
111 AMBSAMP *div;
112 AMBSAMP dnew;
113 register AMBSAMP *dp;
114 double arad;
115 int ndivs, ns;
116 register int i, j;
117 /* initialize color */
118 setcolor(acol, 0.0, 0.0, 0.0);
119 /* initialize hemisphere */
120 inithemi(&hemi, r, wt);
121 ndivs = hemi.nt * hemi.np;
122 if (ndivs == 0)
123 return(0.0);
124 /* set number of super-samples */
125 ns = ambssamp * wt + 0.5;
126 if (ns > 0 || pg != NULL || dg != NULL) {
127 div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP));
128 if (div == NULL)
129 error(SYSTEM, "out of memory in doambient");
130 } else
131 div = NULL;
132 /* sample the divisions */
133 arad = 0.0;
134 if ((dp = div) == NULL)
135 dp = &dnew;
136 for (i = 0; i < hemi.nt; i++)
137 for (j = 0; j < hemi.np; j++) {
138 dp->t = i; dp->p = j;
139 setcolor(dp->v, 0.0, 0.0, 0.0);
140 dp->r = 0.0;
141 dp->n = 0;
142 if (divsample(dp, &hemi, r) < 0)
143 goto oopsy;
144 if (div != NULL)
145 dp++;
146 else {
147 addcolor(acol, dp->v);
148 arad += dp->r;
149 }
150 }
151 if (ns > 0) { /* perform super-sampling */
152 comperrs(div, &hemi); /* compute errors */
153 qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */
154 /* super-sample */
155 for (i = ns; i > 0; i--) {
156 copystruct(&dnew, div);
157 if (divsample(&dnew, &hemi, r) < 0)
158 goto oopsy;
159 /* reinsert */
160 dp = div;
161 j = ndivs < i ? ndivs : i;
162 while (--j > 0 && dnew.k < dp[1].k) {
163 copystruct(dp, dp+1);
164 dp++;
165 }
166 copystruct(dp, &dnew);
167 }
168 if (pg != NULL || dg != NULL) /* restore order */
169 qsort(div, ndivs, sizeof(AMBSAMP), ambnorm);
170 }
171 /* compute returned values */
172 if (div != NULL) {
173 for (i = ndivs, dp = div; i-- > 0; dp++) {
174 arad += dp->r;
175 if (dp->n > 1) {
176 b = 1.0/dp->n;
177 scalecolor(dp->v, b);
178 dp->r *= b;
179 dp->n = 1;
180 }
181 addcolor(acol, dp->v);
182 }
183 b = bright(acol);
184 if (b > FTINY) {
185 b = ndivs/b;
186 if (pg != NULL) {
187 posgradient(pg, div, &hemi);
188 for (i = 0; i < 3; i++)
189 pg[i] *= b;
190 }
191 if (dg != NULL) {
192 dirgradient(dg, div, &hemi);
193 for (i = 0; i < 3; i++)
194 dg[i] *= b;
195 }
196 } else {
197 if (pg != NULL)
198 for (i = 0; i < 3; i++)
199 pg[i] = 0.0;
200 if (dg != NULL)
201 for (i = 0; i < 3; i++)
202 dg[i] = 0.0;
203 }
204 free((char *)div);
205 }
206 b = 1.0/ndivs;
207 scalecolor(acol, b);
208 if (arad <= FTINY)
209 arad = maxarad;
210 else {
211 arad = (ndivs+ns)/arad;
212 if (arad > maxarad)
213 arad = maxarad;
214 }
215 if (pg != NULL) { /* reduce radius if gradient large */
216 d = DOT(pg,pg);
217 if (d*arad*arad > 1.0)
218 arad = 1.0/sqrt(d);
219 }
220 if (arad < minarad) {
221 arad = minarad;
222 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
223 d = 1.0/arad/sqrt(d);
224 for (i = 0; i < 3; i++)
225 pg[i] *= d;
226 }
227 }
228 return(arad/sqrt(wt));
229 oopsy:
230 if (div != NULL)
231 free((char *)div);
232 return(0.0);
233 }
234
235
236 inithemi(hp, r, wt) /* initialize sampling hemisphere */
237 register AMBHEMI *hp;
238 RAY *r;
239 double wt;
240 {
241 register int i;
242 /* set number of divisions */
243 if (wt < (.25*PI)/ambdiv+FTINY) {
244 hp->nt = hp->np = 0;
245 return; /* zero samples */
246 }
247 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
248 hp->np = PI * hp->nt + 0.5;
249 /* make axes */
250 VCOPY(hp->uz, r->ron);
251 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
252 for (i = 0; i < 3; i++)
253 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
254 break;
255 if (i >= 3)
256 error(CONSISTENCY, "bad ray direction in inithemi");
257 hp->uy[i] = 1.0;
258 fcross(hp->ux, hp->uy, hp->uz);
259 normalize(hp->ux);
260 fcross(hp->uy, hp->uz, hp->ux);
261 }
262
263
264 comperrs(da, hp) /* compute initial error estimates */
265 AMBSAMP *da; /* assumes standard ordering */
266 register AMBHEMI *hp;
267 {
268 double b, b2;
269 int i, j;
270 register AMBSAMP *dp;
271 /* sum differences from neighbors */
272 dp = da;
273 for (i = 0; i < hp->nt; i++)
274 for (j = 0; j < hp->np; j++) {
275 #ifdef DEBUG
276 if (dp->t != i || dp->p != j)
277 error(CONSISTENCY,
278 "division order in comperrs");
279 #endif
280 b = bright(dp[0].v);
281 if (i > 0) { /* from above */
282 b2 = bright(dp[-hp->np].v) - b;
283 b2 *= b2 * 0.25;
284 dp[0].k += b2;
285 dp[-hp->np].k += b2;
286 }
287 if (j > 0) { /* from behind */
288 b2 = bright(dp[-1].v) - b;
289 b2 *= b2 * 0.25;
290 dp[0].k += b2;
291 dp[-1].k += b2;
292 } else { /* around */
293 b2 = bright(dp[hp->np-1].v) - b;
294 b2 *= b2 * 0.25;
295 dp[0].k += b2;
296 dp[hp->np-1].k += b2;
297 }
298 dp++;
299 }
300 /* divide by number of neighbors */
301 dp = da;
302 for (j = 0; j < hp->np; j++) /* top row */
303 (dp++)->k *= 1.0/3.0;
304 if (hp->nt < 2)
305 return;
306 for (i = 1; i < hp->nt-1; i++) /* central region */
307 for (j = 0; j < hp->np; j++)
308 (dp++)->k *= 0.25;
309 for (j = 0; j < hp->np; j++) /* bottom row */
310 (dp++)->k *= 1.0/3.0;
311 }
312
313
314 posgradient(gv, da, hp) /* compute position gradient */
315 FVECT gv;
316 AMBSAMP *da; /* assumes standard ordering */
317 register AMBHEMI *hp;
318 {
319 register int i, j;
320 double nextsine, lastsine, b, d;
321 double mag0, mag1;
322 double phi, cosp, sinp, xd, yd;
323 register AMBSAMP *dp;
324
325 xd = yd = 0.0;
326 for (j = 0; j < hp->np; j++) {
327 dp = da + j;
328 mag0 = mag1 = 0.0;
329 lastsine = 0.0;
330 for (i = 0; i < hp->nt; i++) {
331 #ifdef DEBUG
332 if (dp->t != i || dp->p != j)
333 error(CONSISTENCY,
334 "division order in posgradient");
335 #endif
336 b = bright(dp->v);
337 if (i > 0) {
338 d = dp[-hp->np].r;
339 if (dp[0].r > d) d = dp[0].r;
340 /* sin(t)*cos(t)^2 */
341 d *= lastsine * (1.0 - (double)i/hp->nt);
342 mag0 += d*(b - bright(dp[-hp->np].v));
343 }
344 nextsine = sqrt((double)(i+1)/hp->nt);
345 if (j > 0) {
346 d = dp[-1].r;
347 if (dp[0].r > d) d = dp[0].r;
348 mag1 += d * (nextsine - lastsine) *
349 (b - bright(dp[-1].v));
350 } else {
351 d = dp[hp->np-1].r;
352 if (dp[0].r > d) d = dp[0].r;
353 mag1 += d * (nextsine - lastsine) *
354 (b - bright(dp[hp->np-1].v));
355 }
356 dp += hp->np;
357 lastsine = nextsine;
358 }
359 mag0 *= 2.0*PI / hp->np;
360 phi = 2.0*PI * (double)j/hp->np;
361 cosp = cos(phi); sinp = sin(phi);
362 xd += mag0*cosp - mag1*sinp;
363 yd += mag0*sinp + mag1*cosp;
364 }
365 for (i = 0; i < 3; i++)
366 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/PI;
367 }
368
369
370 dirgradient(gv, da, hp) /* compute direction gradient */
371 FVECT gv;
372 AMBSAMP *da; /* assumes standard ordering */
373 register AMBHEMI *hp;
374 {
375 register int i, j;
376 double mag;
377 double phi, xd, yd;
378 register AMBSAMP *dp;
379
380 xd = yd = 0.0;
381 for (j = 0; j < hp->np; j++) {
382 dp = da + j;
383 mag = 0.0;
384 for (i = 0; i < hp->nt; i++) {
385 #ifdef DEBUG
386 if (dp->t != i || dp->p != j)
387 error(CONSISTENCY,
388 "division order in dirgradient");
389 #endif
390 /* tan(t) */
391 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
392 dp += hp->np;
393 }
394 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
395 xd += mag * cos(phi);
396 yd += mag * sin(phi);
397 }
398 for (i = 0; i < 3; i++)
399 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/(hp->nt*hp->np);
400 }