ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.18
Committed: Mon Jun 6 19:14:28 2005 UTC (18 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R7P1
Changes since 2.17: +3 -2 lines
Log Message:
(Very) minor optimization

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.17 2005/06/04 06:10:12 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Declarations of external symbols in ambient.h
8 */
9
10 #include "copyright.h"
11
12 #include "ray.h"
13
14 #include "ambient.h"
15
16 #include "random.h"
17
18
19 void
20 inithemi( /* initialize sampling hemisphere */
21 register AMBHEMI *hp,
22 COLOR ac,
23 RAY *r,
24 double wt
25 )
26 {
27 double d;
28 register int i;
29 /* set number of divisions */
30 if (ambacc <= FTINY &&
31 wt > (d = 0.8*bright(ac)*r->rweight/(ambdiv*minweight)))
32 wt = d; /* avoid ray termination */
33 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
34 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
35 if (hp->nt < i)
36 hp->nt = i;
37 hp->np = PI * hp->nt + 0.5;
38 /* set number of super-samples */
39 hp->ns = ambssamp * wt + 0.5;
40 /* assign coefficient */
41 copycolor(hp->acoef, ac);
42 d = 1.0/(hp->nt*hp->np);
43 scalecolor(hp->acoef, d);
44 /* make axes */
45 VCOPY(hp->uz, r->ron);
46 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
47 for (i = 0; i < 3; i++)
48 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
49 break;
50 if (i >= 3)
51 error(CONSISTENCY, "bad ray direction in inithemi");
52 hp->uy[i] = 1.0;
53 fcross(hp->ux, hp->uy, hp->uz);
54 normalize(hp->ux);
55 fcross(hp->uy, hp->uz, hp->ux);
56 }
57
58
59 int
60 divsample( /* sample a division */
61 register AMBSAMP *dp,
62 AMBHEMI *h,
63 RAY *r
64 )
65 {
66 RAY ar;
67 int hlist[3];
68 double spt[2];
69 double xd, yd, zd;
70 double b2;
71 double phi;
72 register int i;
73 /* ambient coefficient for weight */
74 if (ambacc > FTINY)
75 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
76 else
77 copycolor(ar.rcoef, h->acoef);
78 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
79 return(-1);
80 if (ambacc > FTINY) {
81 multcolor(ar.rcoef, h->acoef);
82 scalecolor(ar.rcoef, 1./AVGREFL);
83 }
84 hlist[0] = r->rno;
85 hlist[1] = dp->t;
86 hlist[2] = dp->p;
87 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
88 zd = sqrt((dp->t + spt[0])/h->nt);
89 phi = 2.0*PI * (dp->p + spt[1])/h->np;
90 xd = tcos(phi) * zd;
91 yd = tsin(phi) * zd;
92 zd = sqrt(1.0 - zd*zd);
93 for (i = 0; i < 3; i++)
94 ar.rdir[i] = xd*h->ux[i] +
95 yd*h->uy[i] +
96 zd*h->uz[i];
97 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
98 rayvalue(&ar);
99 ndims--;
100 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
101 addcolor(dp->v, ar.rcol);
102 /* use rt to improve gradient calc */
103 if (ar.rt > FTINY && ar.rt < FHUGE)
104 dp->r += 1.0/ar.rt;
105 /* (re)initialize error */
106 if (dp->n++) {
107 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
108 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
109 dp->k = b2/(dp->n*dp->n);
110 } else
111 dp->k = 0.0;
112 return(0);
113 }
114
115
116 static int
117 ambcmp( /* decreasing order */
118 const void *p1,
119 const void *p2
120 )
121 {
122 const AMBSAMP *d1 = (const AMBSAMP *)p1;
123 const AMBSAMP *d2 = (const AMBSAMP *)p2;
124
125 if (d1->k < d2->k)
126 return(1);
127 if (d1->k > d2->k)
128 return(-1);
129 return(0);
130 }
131
132
133 static int
134 ambnorm( /* standard order */
135 const void *p1,
136 const void *p2
137 )
138 {
139 const AMBSAMP *d1 = (const AMBSAMP *)p1;
140 const AMBSAMP *d2 = (const AMBSAMP *)p2;
141 register int c;
142
143 if ( (c = d1->t - d2->t) )
144 return(c);
145 return(d1->p - d2->p);
146 }
147
148
149 double
150 doambient( /* compute ambient component */
151 COLOR acol,
152 RAY *r,
153 double wt,
154 FVECT pg,
155 FVECT dg
156 )
157 {
158 double b, d;
159 AMBHEMI hemi;
160 AMBSAMP *div;
161 AMBSAMP dnew;
162 register AMBSAMP *dp;
163 double arad;
164 int ndivs;
165 register int i, j;
166 /* initialize hemisphere */
167 inithemi(&hemi, acol, r, wt);
168 ndivs = hemi.nt * hemi.np;
169 /* initialize */
170 if (pg != NULL)
171 pg[0] = pg[1] = pg[2] = 0.0;
172 if (dg != NULL)
173 dg[0] = dg[1] = dg[2] = 0.0;
174 setcolor(acol, 0.0, 0.0, 0.0);
175 if (ndivs == 0)
176 return(0.0);
177 /* allocate super-samples */
178 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
179 div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP));
180 if (div == NULL)
181 error(SYSTEM, "out of memory in doambient");
182 } else
183 div = NULL;
184 /* sample the divisions */
185 arad = 0.0;
186 if ((dp = div) == NULL)
187 dp = &dnew;
188 for (i = 0; i < hemi.nt; i++)
189 for (j = 0; j < hemi.np; j++) {
190 dp->t = i; dp->p = j;
191 setcolor(dp->v, 0.0, 0.0, 0.0);
192 dp->r = 0.0;
193 dp->n = 0;
194 if (divsample(dp, &hemi, r) < 0) {
195 if (div == NULL) continue;
196 dp++;
197 hemi.ns = 0; /* incomplete sampling */
198 pg = dg = NULL;
199 continue;
200 }
201 arad += dp->r;
202 if (div != NULL)
203 dp++;
204 else
205 addcolor(acol, dp->v);
206 }
207 if (hemi.ns > 0 && arad > FTINY && ndivs/arad < minarad)
208 hemi.ns = 0; /* close enough */
209 else if (hemi.ns > 0) { /* else perform super-sampling */
210 comperrs(div, &hemi); /* compute errors */
211 qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */
212 /* super-sample */
213 for (i = hemi.ns; i > 0; i--) {
214 dnew = *div;
215 if (divsample(&dnew, &hemi, r) < 0) {
216 dp++;
217 continue;
218 }
219 dp = div; /* reinsert */
220 j = ndivs < i ? ndivs : i;
221 while (--j > 0 && dnew.k < dp[1].k) {
222 *dp = *(dp+1);
223 dp++;
224 }
225 *dp = dnew;
226 }
227 if (pg != NULL || dg != NULL) /* restore order */
228 qsort(div, ndivs, sizeof(AMBSAMP), ambnorm);
229 }
230 /* compute returned values */
231 if (div != NULL) {
232 arad = 0.0;
233 for (i = ndivs, dp = div; i-- > 0; dp++) {
234 arad += dp->r;
235 if (dp->n > 1) {
236 b = 1.0/dp->n;
237 scalecolor(dp->v, b);
238 dp->r *= b;
239 dp->n = 1;
240 }
241 addcolor(acol, dp->v);
242 }
243 b = bright(acol);
244 if (b > FTINY) {
245 b = 1.0/b; /* compute & normalize gradient(s) */
246 if (pg != NULL) {
247 posgradient(pg, div, &hemi);
248 for (i = 0; i < 3; i++)
249 pg[i] *= b;
250 }
251 if (dg != NULL) {
252 dirgradient(dg, div, &hemi);
253 for (i = 0; i < 3; i++)
254 dg[i] *= b;
255 }
256 }
257 free((void *)div);
258 }
259 if (arad <= FTINY)
260 arad = maxarad;
261 else
262 arad = (ndivs+hemi.ns)/arad;
263 if (pg != NULL) { /* reduce radius if gradient large */
264 d = DOT(pg,pg);
265 if (d*arad*arad > 1.0)
266 arad = 1.0/sqrt(d);
267 }
268 if (arad < minarad) {
269 arad = minarad;
270 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
271 d = 1.0/arad/sqrt(d);
272 for (i = 0; i < 3; i++)
273 pg[i] *= d;
274 }
275 }
276 if ((arad /= sqrt(wt)) > maxarad)
277 arad = maxarad;
278 return(arad);
279 }
280
281
282 void
283 comperrs( /* compute initial error estimates */
284 AMBSAMP *da, /* assumes standard ordering */
285 register AMBHEMI *hp
286 )
287 {
288 double b, b2;
289 int i, j;
290 register AMBSAMP *dp;
291 /* sum differences from neighbors */
292 dp = da;
293 for (i = 0; i < hp->nt; i++)
294 for (j = 0; j < hp->np; j++) {
295 #ifdef DEBUG
296 if (dp->t != i || dp->p != j)
297 error(CONSISTENCY,
298 "division order in comperrs");
299 #endif
300 b = bright(dp[0].v);
301 if (i > 0) { /* from above */
302 b2 = bright(dp[-hp->np].v) - b;
303 b2 *= b2 * 0.25;
304 dp[0].k += b2;
305 dp[-hp->np].k += b2;
306 }
307 if (j > 0) { /* from behind */
308 b2 = bright(dp[-1].v) - b;
309 b2 *= b2 * 0.25;
310 dp[0].k += b2;
311 dp[-1].k += b2;
312 } else { /* around */
313 b2 = bright(dp[hp->np-1].v) - b;
314 b2 *= b2 * 0.25;
315 dp[0].k += b2;
316 dp[hp->np-1].k += b2;
317 }
318 dp++;
319 }
320 /* divide by number of neighbors */
321 dp = da;
322 for (j = 0; j < hp->np; j++) /* top row */
323 (dp++)->k *= 1.0/3.0;
324 if (hp->nt < 2)
325 return;
326 for (i = 1; i < hp->nt-1; i++) /* central region */
327 for (j = 0; j < hp->np; j++)
328 (dp++)->k *= 0.25;
329 for (j = 0; j < hp->np; j++) /* bottom row */
330 (dp++)->k *= 1.0/3.0;
331 }
332
333
334 void
335 posgradient( /* compute position gradient */
336 FVECT gv,
337 AMBSAMP *da, /* assumes standard ordering */
338 register AMBHEMI *hp
339 )
340 {
341 register int i, j;
342 double nextsine, lastsine, b, d;
343 double mag0, mag1;
344 double phi, cosp, sinp, xd, yd;
345 register AMBSAMP *dp;
346
347 xd = yd = 0.0;
348 for (j = 0; j < hp->np; j++) {
349 dp = da + j;
350 mag0 = mag1 = 0.0;
351 lastsine = 0.0;
352 for (i = 0; i < hp->nt; i++) {
353 #ifdef DEBUG
354 if (dp->t != i || dp->p != j)
355 error(CONSISTENCY,
356 "division order in posgradient");
357 #endif
358 b = bright(dp->v);
359 if (i > 0) {
360 d = dp[-hp->np].r;
361 if (dp[0].r > d) d = dp[0].r;
362 /* sin(t)*cos(t)^2 */
363 d *= lastsine * (1.0 - (double)i/hp->nt);
364 mag0 += d*(b - bright(dp[-hp->np].v));
365 }
366 nextsine = sqrt((double)(i+1)/hp->nt);
367 if (j > 0) {
368 d = dp[-1].r;
369 if (dp[0].r > d) d = dp[0].r;
370 mag1 += d * (nextsine - lastsine) *
371 (b - bright(dp[-1].v));
372 } else {
373 d = dp[hp->np-1].r;
374 if (dp[0].r > d) d = dp[0].r;
375 mag1 += d * (nextsine - lastsine) *
376 (b - bright(dp[hp->np-1].v));
377 }
378 dp += hp->np;
379 lastsine = nextsine;
380 }
381 mag0 *= 2.0*PI / hp->np;
382 phi = 2.0*PI * (double)j/hp->np;
383 cosp = tcos(phi); sinp = tsin(phi);
384 xd += mag0*cosp - mag1*sinp;
385 yd += mag0*sinp + mag1*cosp;
386 }
387 for (i = 0; i < 3; i++)
388 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
389 }
390
391
392 void
393 dirgradient( /* compute direction gradient */
394 FVECT gv,
395 AMBSAMP *da, /* assumes standard ordering */
396 register AMBHEMI *hp
397 )
398 {
399 register int i, j;
400 double mag;
401 double phi, xd, yd;
402 register AMBSAMP *dp;
403
404 xd = yd = 0.0;
405 for (j = 0; j < hp->np; j++) {
406 dp = da + j;
407 mag = 0.0;
408 for (i = 0; i < hp->nt; i++) {
409 #ifdef DEBUG
410 if (dp->t != i || dp->p != j)
411 error(CONSISTENCY,
412 "division order in dirgradient");
413 #endif
414 /* tan(t) */
415 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
416 dp += hp->np;
417 }
418 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
419 xd += mag * tcos(phi);
420 yd += mag * tsin(phi);
421 }
422 for (i = 0; i < 3; i++)
423 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
424 }