ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.14
Committed: Tue Apr 19 01:15:06 2005 UTC (19 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.13: +105 -74 lines
Log Message:
Extensive changes to enable rtrace -oTW option for tracking ray contributions

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.13 2005/04/13 23:00:59 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Declarations of external symbols in ambient.h
8 */
9
10 #include "copyright.h"
11
12 #include "ray.h"
13
14 #include "ambient.h"
15
16 #include "random.h"
17
18
19 int
20 inithemi( /* initialize sampling hemisphere */
21 register AMBHEMI *hp,
22 RAY *r,
23 COLOR ac,
24 double wt
25 )
26 {
27 int ns;
28 double d;
29 register int i;
30 /* set number of divisions */
31 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
32 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
33 if (hp->nt < i)
34 hp->nt = i;
35 hp->np = PI * hp->nt + 0.5;
36 /* set number of super-samples */
37 ns = ambssamp * wt + 0.5;
38 /* assign coefficient */
39 d = 1.0/(hp->nt*hp->np + ns); /* XXX weight not uniform if ns > 0 */
40 copycolor(hp->acoef, ac);
41 scalecolor(hp->acoef, d);
42 /* make axes */
43 VCOPY(hp->uz, r->ron);
44 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
45 for (i = 0; i < 3; i++)
46 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
47 break;
48 if (i >= 3)
49 error(CONSISTENCY, "bad ray direction in inithemi");
50 hp->uy[i] = 1.0;
51 fcross(hp->ux, hp->uy, hp->uz);
52 normalize(hp->ux);
53 fcross(hp->uy, hp->uz, hp->ux);
54 return(ns);
55 }
56
57
58 int
59 divsample( /* sample a division */
60 register AMBSAMP *dp,
61 AMBHEMI *h,
62 RAY *r
63 )
64 {
65 RAY ar;
66 int hlist[3];
67 double spt[2];
68 double xd, yd, zd;
69 double b2;
70 double phi;
71 register int i;
72 /* assign coefficient */
73 if (ambacc <= FTINY) /* no storage, so report accurately */
74 copycolor(ar.rcoef, h->acoef);
75 else /* else lie for sake of cache */
76 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
77 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
78 return(-1);
79 copycolor(ar.rcoef, h->acoef); /* correct coefficient rtrace output */
80 hlist[0] = r->rno;
81 hlist[1] = dp->t;
82 hlist[2] = dp->p;
83 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
84 zd = sqrt((dp->t + spt[0])/h->nt);
85 phi = 2.0*PI * (dp->p + spt[1])/h->np;
86 xd = tcos(phi) * zd;
87 yd = tsin(phi) * zd;
88 zd = sqrt(1.0 - zd*zd);
89 for (i = 0; i < 3; i++)
90 ar.rdir[i] = xd*h->ux[i] +
91 yd*h->uy[i] +
92 zd*h->uz[i];
93 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
94 rayvalue(&ar);
95 ndims--;
96 addcolor(dp->v, ar.rcol);
97 /* use rt to improve gradient calc */
98 if (ar.rt > FTINY && ar.rt < FHUGE)
99 dp->r += 1.0/ar.rt;
100 /* (re)initialize error */
101 if (dp->n++) {
102 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
103 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
104 dp->k = b2/(dp->n*dp->n);
105 } else
106 dp->k = 0.0;
107 return(0);
108 }
109
110
111 static int
112 ambcmp( /* decreasing order */
113 const void *p1,
114 const void *p2
115 )
116 {
117 const AMBSAMP *d1 = (const AMBSAMP *)p1;
118 const AMBSAMP *d2 = (const AMBSAMP *)p2;
119
120 if (d1->k < d2->k)
121 return(1);
122 if (d1->k > d2->k)
123 return(-1);
124 return(0);
125 }
126
127
128 static int
129 ambnorm( /* standard order */
130 const void *p1,
131 const void *p2
132 )
133 {
134 const AMBSAMP *d1 = (const AMBSAMP *)p1;
135 const AMBSAMP *d2 = (const AMBSAMP *)p2;
136 register int c;
137
138 if ( (c = d1->t - d2->t) )
139 return(c);
140 return(d1->p - d2->p);
141 }
142
143
144 double
145 doambient( /* compute ambient component */
146 COLOR acol,
147 RAY *r,
148 COLOR ac,
149 double wt,
150 FVECT pg,
151 FVECT dg
152 )
153 {
154 double b, d;
155 AMBHEMI hemi;
156 AMBSAMP *div;
157 AMBSAMP dnew;
158 register AMBSAMP *dp;
159 double arad;
160 int ndivs, ns;
161 register int i, j;
162 /* initialize color */
163 setcolor(acol, 0.0, 0.0, 0.0);
164 /* initialize hemisphere */
165 ns = inithemi(&hemi, r, ac, wt);
166 ndivs = hemi.nt * hemi.np;
167 if (ndivs == 0)
168 return(0.0);
169 /* allocate super-samples */
170 if (ns > 0 || pg != NULL || dg != NULL) {
171 div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP));
172 if (div == NULL)
173 error(SYSTEM, "out of memory in doambient");
174 } else
175 div = NULL;
176 /* sample the divisions */
177 arad = 0.0;
178 if ((dp = div) == NULL)
179 dp = &dnew;
180 for (i = 0; i < hemi.nt; i++)
181 for (j = 0; j < hemi.np; j++) {
182 dp->t = i; dp->p = j;
183 setcolor(dp->v, 0.0, 0.0, 0.0);
184 dp->r = 0.0;
185 dp->n = 0;
186 if (divsample(dp, &hemi, r) < 0)
187 goto oopsy;
188 arad += dp->r;
189 if (div != NULL)
190 dp++;
191 else
192 addcolor(acol, dp->v);
193 }
194 if (ns > 0 && arad > FTINY && ndivs/arad < minarad)
195 ns = 0; /* close enough */
196 else if (ns > 0) { /* else perform super-sampling */
197 comperrs(div, &hemi); /* compute errors */
198 qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */
199 /* super-sample */
200 for (i = ns; i > 0; i--) {
201 dnew = *div;
202 if (divsample(&dnew, &hemi, r) < 0)
203 goto oopsy;
204 /* reinsert */
205 dp = div;
206 j = ndivs < i ? ndivs : i;
207 while (--j > 0 && dnew.k < dp[1].k) {
208 *dp = *(dp+1);
209 dp++;
210 }
211 *dp = dnew;
212 }
213 if (pg != NULL || dg != NULL) /* restore order */
214 qsort(div, ndivs, sizeof(AMBSAMP), ambnorm);
215 }
216 /* compute returned values */
217 if (div != NULL) {
218 arad = 0.0;
219 for (i = ndivs, dp = div; i-- > 0; dp++) {
220 arad += dp->r;
221 if (dp->n > 1) {
222 b = 1.0/dp->n;
223 scalecolor(dp->v, b);
224 dp->r *= b;
225 dp->n = 1;
226 }
227 addcolor(acol, dp->v);
228 }
229 b = bright(acol);
230 if (b > FTINY) {
231 b = ndivs/b;
232 if (pg != NULL) {
233 posgradient(pg, div, &hemi);
234 for (i = 0; i < 3; i++)
235 pg[i] *= b;
236 }
237 if (dg != NULL) {
238 dirgradient(dg, div, &hemi);
239 for (i = 0; i < 3; i++)
240 dg[i] *= b;
241 }
242 } else {
243 if (pg != NULL)
244 for (i = 0; i < 3; i++)
245 pg[i] = 0.0;
246 if (dg != NULL)
247 for (i = 0; i < 3; i++)
248 dg[i] = 0.0;
249 }
250 free((void *)div);
251 }
252 b = 1.0/ndivs;
253 scalecolor(acol, b);
254 if (arad <= FTINY)
255 arad = maxarad;
256 else
257 arad = (ndivs+ns)/arad;
258 if (pg != NULL) { /* reduce radius if gradient large */
259 d = DOT(pg,pg);
260 if (d*arad*arad > 1.0)
261 arad = 1.0/sqrt(d);
262 }
263 if (arad < minarad) {
264 arad = minarad;
265 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
266 d = 1.0/arad/sqrt(d);
267 for (i = 0; i < 3; i++)
268 pg[i] *= d;
269 }
270 }
271 if ((arad /= sqrt(wt)) > maxarad)
272 arad = maxarad;
273 return(arad);
274 oopsy:
275 if (div != NULL)
276 free((void *)div);
277 return(0.0);
278 }
279
280
281 void
282 comperrs( /* compute initial error estimates */
283 AMBSAMP *da, /* assumes standard ordering */
284 register AMBHEMI *hp
285 )
286 {
287 double b, b2;
288 int i, j;
289 register AMBSAMP *dp;
290 /* sum differences from neighbors */
291 dp = da;
292 for (i = 0; i < hp->nt; i++)
293 for (j = 0; j < hp->np; j++) {
294 #ifdef DEBUG
295 if (dp->t != i || dp->p != j)
296 error(CONSISTENCY,
297 "division order in comperrs");
298 #endif
299 b = bright(dp[0].v);
300 if (i > 0) { /* from above */
301 b2 = bright(dp[-hp->np].v) - b;
302 b2 *= b2 * 0.25;
303 dp[0].k += b2;
304 dp[-hp->np].k += b2;
305 }
306 if (j > 0) { /* from behind */
307 b2 = bright(dp[-1].v) - b;
308 b2 *= b2 * 0.25;
309 dp[0].k += b2;
310 dp[-1].k += b2;
311 } else { /* around */
312 b2 = bright(dp[hp->np-1].v) - b;
313 b2 *= b2 * 0.25;
314 dp[0].k += b2;
315 dp[hp->np-1].k += b2;
316 }
317 dp++;
318 }
319 /* divide by number of neighbors */
320 dp = da;
321 for (j = 0; j < hp->np; j++) /* top row */
322 (dp++)->k *= 1.0/3.0;
323 if (hp->nt < 2)
324 return;
325 for (i = 1; i < hp->nt-1; i++) /* central region */
326 for (j = 0; j < hp->np; j++)
327 (dp++)->k *= 0.25;
328 for (j = 0; j < hp->np; j++) /* bottom row */
329 (dp++)->k *= 1.0/3.0;
330 }
331
332
333 void
334 posgradient( /* compute position gradient */
335 FVECT gv,
336 AMBSAMP *da, /* assumes standard ordering */
337 register AMBHEMI *hp
338 )
339 {
340 register int i, j;
341 double nextsine, lastsine, b, d;
342 double mag0, mag1;
343 double phi, cosp, sinp, xd, yd;
344 register AMBSAMP *dp;
345
346 xd = yd = 0.0;
347 for (j = 0; j < hp->np; j++) {
348 dp = da + j;
349 mag0 = mag1 = 0.0;
350 lastsine = 0.0;
351 for (i = 0; i < hp->nt; i++) {
352 #ifdef DEBUG
353 if (dp->t != i || dp->p != j)
354 error(CONSISTENCY,
355 "division order in posgradient");
356 #endif
357 b = bright(dp->v);
358 if (i > 0) {
359 d = dp[-hp->np].r;
360 if (dp[0].r > d) d = dp[0].r;
361 /* sin(t)*cos(t)^2 */
362 d *= lastsine * (1.0 - (double)i/hp->nt);
363 mag0 += d*(b - bright(dp[-hp->np].v));
364 }
365 nextsine = sqrt((double)(i+1)/hp->nt);
366 if (j > 0) {
367 d = dp[-1].r;
368 if (dp[0].r > d) d = dp[0].r;
369 mag1 += d * (nextsine - lastsine) *
370 (b - bright(dp[-1].v));
371 } else {
372 d = dp[hp->np-1].r;
373 if (dp[0].r > d) d = dp[0].r;
374 mag1 += d * (nextsine - lastsine) *
375 (b - bright(dp[hp->np-1].v));
376 }
377 dp += hp->np;
378 lastsine = nextsine;
379 }
380 mag0 *= 2.0*PI / hp->np;
381 phi = 2.0*PI * (double)j/hp->np;
382 cosp = tcos(phi); sinp = tsin(phi);
383 xd += mag0*cosp - mag1*sinp;
384 yd += mag0*sinp + mag1*cosp;
385 }
386 for (i = 0; i < 3; i++)
387 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/PI;
388 }
389
390
391 void
392 dirgradient( /* compute direction gradient */
393 FVECT gv,
394 AMBSAMP *da, /* assumes standard ordering */
395 register AMBHEMI *hp
396 )
397 {
398 register int i, j;
399 double mag;
400 double phi, xd, yd;
401 register AMBSAMP *dp;
402
403 xd = yd = 0.0;
404 for (j = 0; j < hp->np; j++) {
405 dp = da + j;
406 mag = 0.0;
407 for (i = 0; i < hp->nt; i++) {
408 #ifdef DEBUG
409 if (dp->t != i || dp->p != j)
410 error(CONSISTENCY,
411 "division order in dirgradient");
412 #endif
413 /* tan(t) */
414 mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
415 dp += hp->np;
416 }
417 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
418 xd += mag * tcos(phi);
419 yd += mag * tsin(phi);
420 }
421 for (i = 0; i < 3; i++)
422 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/(hp->nt*hp->np);
423 }