#ifndef lint static const char RCSid[] = "$Id: ambcomp.c,v 2.14 2005/04/19 01:15:06 greg Exp $"; #endif /* * Routines to compute "ambient" values using Monte Carlo * * Declarations of external symbols in ambient.h */ #include "copyright.h" #include "ray.h" #include "ambient.h" #include "random.h" int inithemi( /* initialize sampling hemisphere */ register AMBHEMI *hp, RAY *r, COLOR ac, double wt ) { int ns; double d; register int i; /* set number of divisions */ hp->nt = sqrt(ambdiv * wt / PI) + 0.5; i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */ if (hp->nt < i) hp->nt = i; hp->np = PI * hp->nt + 0.5; /* set number of super-samples */ ns = ambssamp * wt + 0.5; /* assign coefficient */ d = 1.0/(hp->nt*hp->np + ns); /* XXX weight not uniform if ns > 0 */ copycolor(hp->acoef, ac); scalecolor(hp->acoef, d); /* make axes */ VCOPY(hp->uz, r->ron); hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; for (i = 0; i < 3; i++) if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6) break; if (i >= 3) error(CONSISTENCY, "bad ray direction in inithemi"); hp->uy[i] = 1.0; fcross(hp->ux, hp->uy, hp->uz); normalize(hp->ux); fcross(hp->uy, hp->uz, hp->ux); return(ns); } int divsample( /* sample a division */ register AMBSAMP *dp, AMBHEMI *h, RAY *r ) { RAY ar; int hlist[3]; double spt[2]; double xd, yd, zd; double b2; double phi; register int i; /* assign coefficient */ if (ambacc <= FTINY) /* no storage, so report accurately */ copycolor(ar.rcoef, h->acoef); else /* else lie for sake of cache */ setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0) return(-1); copycolor(ar.rcoef, h->acoef); /* correct coefficient rtrace output */ hlist[0] = r->rno; hlist[1] = dp->t; hlist[2] = dp->p; multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n)); zd = sqrt((dp->t + spt[0])/h->nt); phi = 2.0*PI * (dp->p + spt[1])/h->np; xd = tcos(phi) * zd; yd = tsin(phi) * zd; zd = sqrt(1.0 - zd*zd); for (i = 0; i < 3; i++) ar.rdir[i] = xd*h->ux[i] + yd*h->uy[i] + zd*h->uz[i]; dimlist[ndims++] = dp->t*h->np + dp->p + 90171; rayvalue(&ar); ndims--; addcolor(dp->v, ar.rcol); /* use rt to improve gradient calc */ if (ar.rt > FTINY && ar.rt < FHUGE) dp->r += 1.0/ar.rt; /* (re)initialize error */ if (dp->n++) { b2 = bright(dp->v)/dp->n - bright(ar.rcol); b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1)); dp->k = b2/(dp->n*dp->n); } else dp->k = 0.0; return(0); } static int ambcmp( /* decreasing order */ const void *p1, const void *p2 ) { const AMBSAMP *d1 = (const AMBSAMP *)p1; const AMBSAMP *d2 = (const AMBSAMP *)p2; if (d1->k < d2->k) return(1); if (d1->k > d2->k) return(-1); return(0); } static int ambnorm( /* standard order */ const void *p1, const void *p2 ) { const AMBSAMP *d1 = (const AMBSAMP *)p1; const AMBSAMP *d2 = (const AMBSAMP *)p2; register int c; if ( (c = d1->t - d2->t) ) return(c); return(d1->p - d2->p); } double doambient( /* compute ambient component */ COLOR acol, RAY *r, COLOR ac, double wt, FVECT pg, FVECT dg ) { double b, d; AMBHEMI hemi; AMBSAMP *div; AMBSAMP dnew; register AMBSAMP *dp; double arad; int ndivs, ns; register int i, j; /* initialize color */ setcolor(acol, 0.0, 0.0, 0.0); /* initialize hemisphere */ ns = inithemi(&hemi, r, ac, wt); ndivs = hemi.nt * hemi.np; if (ndivs == 0) return(0.0); /* allocate super-samples */ if (ns > 0 || pg != NULL || dg != NULL) { div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP)); if (div == NULL) error(SYSTEM, "out of memory in doambient"); } else div = NULL; /* sample the divisions */ arad = 0.0; if ((dp = div) == NULL) dp = &dnew; for (i = 0; i < hemi.nt; i++) for (j = 0; j < hemi.np; j++) { dp->t = i; dp->p = j; setcolor(dp->v, 0.0, 0.0, 0.0); dp->r = 0.0; dp->n = 0; if (divsample(dp, &hemi, r) < 0) goto oopsy; arad += dp->r; if (div != NULL) dp++; else addcolor(acol, dp->v); } if (ns > 0 && arad > FTINY && ndivs/arad < minarad) ns = 0; /* close enough */ else if (ns > 0) { /* else perform super-sampling */ comperrs(div, &hemi); /* compute errors */ qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */ /* super-sample */ for (i = ns; i > 0; i--) { dnew = *div; if (divsample(&dnew, &hemi, r) < 0) goto oopsy; /* reinsert */ dp = div; j = ndivs < i ? ndivs : i; while (--j > 0 && dnew.k < dp[1].k) { *dp = *(dp+1); dp++; } *dp = dnew; } if (pg != NULL || dg != NULL) /* restore order */ qsort(div, ndivs, sizeof(AMBSAMP), ambnorm); } /* compute returned values */ if (div != NULL) { arad = 0.0; for (i = ndivs, dp = div; i-- > 0; dp++) { arad += dp->r; if (dp->n > 1) { b = 1.0/dp->n; scalecolor(dp->v, b); dp->r *= b; dp->n = 1; } addcolor(acol, dp->v); } b = bright(acol); if (b > FTINY) { b = ndivs/b; if (pg != NULL) { posgradient(pg, div, &hemi); for (i = 0; i < 3; i++) pg[i] *= b; } if (dg != NULL) { dirgradient(dg, div, &hemi); for (i = 0; i < 3; i++) dg[i] *= b; } } else { if (pg != NULL) for (i = 0; i < 3; i++) pg[i] = 0.0; if (dg != NULL) for (i = 0; i < 3; i++) dg[i] = 0.0; } free((void *)div); } b = 1.0/ndivs; scalecolor(acol, b); if (arad <= FTINY) arad = maxarad; else arad = (ndivs+ns)/arad; if (pg != NULL) { /* reduce radius if gradient large */ d = DOT(pg,pg); if (d*arad*arad > 1.0) arad = 1.0/sqrt(d); } if (arad < minarad) { arad = minarad; if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */ d = 1.0/arad/sqrt(d); for (i = 0; i < 3; i++) pg[i] *= d; } } if ((arad /= sqrt(wt)) > maxarad) arad = maxarad; return(arad); oopsy: if (div != NULL) free((void *)div); return(0.0); } void comperrs( /* compute initial error estimates */ AMBSAMP *da, /* assumes standard ordering */ register AMBHEMI *hp ) { double b, b2; int i, j; register AMBSAMP *dp; /* sum differences from neighbors */ dp = da; for (i = 0; i < hp->nt; i++) for (j = 0; j < hp->np; j++) { #ifdef DEBUG if (dp->t != i || dp->p != j) error(CONSISTENCY, "division order in comperrs"); #endif b = bright(dp[0].v); if (i > 0) { /* from above */ b2 = bright(dp[-hp->np].v) - b; b2 *= b2 * 0.25; dp[0].k += b2; dp[-hp->np].k += b2; } if (j > 0) { /* from behind */ b2 = bright(dp[-1].v) - b; b2 *= b2 * 0.25; dp[0].k += b2; dp[-1].k += b2; } else { /* around */ b2 = bright(dp[hp->np-1].v) - b; b2 *= b2 * 0.25; dp[0].k += b2; dp[hp->np-1].k += b2; } dp++; } /* divide by number of neighbors */ dp = da; for (j = 0; j < hp->np; j++) /* top row */ (dp++)->k *= 1.0/3.0; if (hp->nt < 2) return; for (i = 1; i < hp->nt-1; i++) /* central region */ for (j = 0; j < hp->np; j++) (dp++)->k *= 0.25; for (j = 0; j < hp->np; j++) /* bottom row */ (dp++)->k *= 1.0/3.0; } void posgradient( /* compute position gradient */ FVECT gv, AMBSAMP *da, /* assumes standard ordering */ register AMBHEMI *hp ) { register int i, j; double nextsine, lastsine, b, d; double mag0, mag1; double phi, cosp, sinp, xd, yd; register AMBSAMP *dp; xd = yd = 0.0; for (j = 0; j < hp->np; j++) { dp = da + j; mag0 = mag1 = 0.0; lastsine = 0.0; for (i = 0; i < hp->nt; i++) { #ifdef DEBUG if (dp->t != i || dp->p != j) error(CONSISTENCY, "division order in posgradient"); #endif b = bright(dp->v); if (i > 0) { d = dp[-hp->np].r; if (dp[0].r > d) d = dp[0].r; /* sin(t)*cos(t)^2 */ d *= lastsine * (1.0 - (double)i/hp->nt); mag0 += d*(b - bright(dp[-hp->np].v)); } nextsine = sqrt((double)(i+1)/hp->nt); if (j > 0) { d = dp[-1].r; if (dp[0].r > d) d = dp[0].r; mag1 += d * (nextsine - lastsine) * (b - bright(dp[-1].v)); } else { d = dp[hp->np-1].r; if (dp[0].r > d) d = dp[0].r; mag1 += d * (nextsine - lastsine) * (b - bright(dp[hp->np-1].v)); } dp += hp->np; lastsine = nextsine; } mag0 *= 2.0*PI / hp->np; phi = 2.0*PI * (double)j/hp->np; cosp = tcos(phi); sinp = tsin(phi); xd += mag0*cosp - mag1*sinp; yd += mag0*sinp + mag1*cosp; } for (i = 0; i < 3; i++) gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/PI; } void dirgradient( /* compute direction gradient */ FVECT gv, AMBSAMP *da, /* assumes standard ordering */ register AMBHEMI *hp ) { register int i, j; double mag; double phi, xd, yd; register AMBSAMP *dp; xd = yd = 0.0; for (j = 0; j < hp->np; j++) { dp = da + j; mag = 0.0; for (i = 0; i < hp->nt; i++) { #ifdef DEBUG if (dp->t != i || dp->p != j) error(CONSISTENCY, "division order in dirgradient"); #endif /* tan(t) */ mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0); dp += hp->np; } phi = 2.0*PI * (j+.5)/hp->np + PI/2.0; xd += mag * tcos(phi); yd += mag * tsin(phi); } for (i = 0; i < 3; i++) gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/(hp->nt*hp->np); }