| 1 |
/* Copyright (c) 1991 Regents of the University of California */
|
| 2 |
|
| 3 |
#ifndef lint
|
| 4 |
static char SCCSid[] = "$SunId$ LBL";
|
| 5 |
#endif
|
| 6 |
|
| 7 |
/*
|
| 8 |
* Routines to compute "ambient" values using Monte Carlo
|
| 9 |
*/
|
| 10 |
|
| 11 |
#include "ray.h"
|
| 12 |
|
| 13 |
#include "ambient.h"
|
| 14 |
|
| 15 |
#include "random.h"
|
| 16 |
|
| 17 |
typedef struct {
|
| 18 |
short t, p; /* theta, phi indices */
|
| 19 |
COLOR v; /* value sum */
|
| 20 |
float r; /* 1/distance sum */
|
| 21 |
float k; /* variance for this division */
|
| 22 |
int n; /* number of subsamples */
|
| 23 |
} AMBSAMP; /* ambient sample division */
|
| 24 |
|
| 25 |
typedef struct {
|
| 26 |
FVECT ux, uy, uz; /* x, y and z axis directions */
|
| 27 |
short nt, np; /* number of theta and phi directions */
|
| 28 |
} AMBHEMI; /* ambient sample hemisphere */
|
| 29 |
|
| 30 |
extern double sin(), cos(), sqrt();
|
| 31 |
|
| 32 |
|
| 33 |
static int
|
| 34 |
ambcmp(d1, d2) /* decreasing order */
|
| 35 |
AMBSAMP *d1, *d2;
|
| 36 |
{
|
| 37 |
if (d1->k < d2->k)
|
| 38 |
return(1);
|
| 39 |
if (d1->k > d2->k)
|
| 40 |
return(-1);
|
| 41 |
return(0);
|
| 42 |
}
|
| 43 |
|
| 44 |
|
| 45 |
static int
|
| 46 |
ambnorm(d1, d2) /* standard order */
|
| 47 |
AMBSAMP *d1, *d2;
|
| 48 |
{
|
| 49 |
register int c;
|
| 50 |
|
| 51 |
if (c = d1->t - d2->t)
|
| 52 |
return(c);
|
| 53 |
return(d1->p - d2->p);
|
| 54 |
}
|
| 55 |
|
| 56 |
|
| 57 |
divsample(dp, h, r) /* sample a division */
|
| 58 |
register AMBSAMP *dp;
|
| 59 |
AMBHEMI *h;
|
| 60 |
RAY *r;
|
| 61 |
{
|
| 62 |
RAY ar;
|
| 63 |
int hlist[3];
|
| 64 |
double spt[2];
|
| 65 |
double xd, yd, zd;
|
| 66 |
double b2;
|
| 67 |
double phi;
|
| 68 |
register int i;
|
| 69 |
|
| 70 |
if (rayorigin(&ar, r, AMBIENT, AVGREFL) < 0)
|
| 71 |
return(-1);
|
| 72 |
hlist[0] = r->rno;
|
| 73 |
hlist[1] = dp->t;
|
| 74 |
hlist[2] = dp->p;
|
| 75 |
multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
|
| 76 |
zd = sqrt((dp->t + spt[0])/h->nt);
|
| 77 |
phi = 2.0*PI * (dp->p + spt[1])/h->np;
|
| 78 |
xd = cos(phi) * zd;
|
| 79 |
yd = sin(phi) * zd;
|
| 80 |
zd = sqrt(1.0 - zd*zd);
|
| 81 |
for (i = 0; i < 3; i++)
|
| 82 |
ar.rdir[i] = xd*h->ux[i] +
|
| 83 |
yd*h->uy[i] +
|
| 84 |
zd*h->uz[i];
|
| 85 |
dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
|
| 86 |
rayvalue(&ar);
|
| 87 |
ndims--;
|
| 88 |
addcolor(dp->v, ar.rcol);
|
| 89 |
if (ar.rt > FTINY && ar.rt < FHUGE)
|
| 90 |
dp->r += 1.0/ar.rt;
|
| 91 |
/* (re)initialize error */
|
| 92 |
if (dp->n++) {
|
| 93 |
b2 = bright(dp->v)/dp->n - bright(ar.rcol);
|
| 94 |
b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
|
| 95 |
dp->k = b2/(dp->n*dp->n);
|
| 96 |
} else
|
| 97 |
dp->k = 0.0;
|
| 98 |
return(0);
|
| 99 |
}
|
| 100 |
|
| 101 |
|
| 102 |
double
|
| 103 |
doambient(acol, r, wt, pg, dg) /* compute ambient component */
|
| 104 |
COLOR acol;
|
| 105 |
RAY *r;
|
| 106 |
double wt;
|
| 107 |
FVECT pg, dg;
|
| 108 |
{
|
| 109 |
double b, d;
|
| 110 |
AMBHEMI hemi;
|
| 111 |
AMBSAMP *div;
|
| 112 |
AMBSAMP dnew;
|
| 113 |
register AMBSAMP *dp;
|
| 114 |
double arad;
|
| 115 |
int ndivs, ns;
|
| 116 |
register int i, j;
|
| 117 |
/* initialize color */
|
| 118 |
setcolor(acol, 0.0, 0.0, 0.0);
|
| 119 |
/* initialize hemisphere */
|
| 120 |
inithemi(&hemi, r, wt);
|
| 121 |
ndivs = hemi.nt * hemi.np;
|
| 122 |
if (ndivs == 0)
|
| 123 |
return(0.0);
|
| 124 |
/* set number of super-samples */
|
| 125 |
ns = ambssamp * wt + 0.5;
|
| 126 |
if (ns > 0 || pg != NULL || dg != NULL) {
|
| 127 |
div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP));
|
| 128 |
if (div == NULL)
|
| 129 |
error(SYSTEM, "out of memory in doambient");
|
| 130 |
} else
|
| 131 |
div = NULL;
|
| 132 |
/* sample the divisions */
|
| 133 |
arad = 0.0;
|
| 134 |
if ((dp = div) == NULL)
|
| 135 |
dp = &dnew;
|
| 136 |
for (i = 0; i < hemi.nt; i++)
|
| 137 |
for (j = 0; j < hemi.np; j++) {
|
| 138 |
dp->t = i; dp->p = j;
|
| 139 |
setcolor(dp->v, 0.0, 0.0, 0.0);
|
| 140 |
dp->r = 0.0;
|
| 141 |
dp->n = 0;
|
| 142 |
if (divsample(dp, &hemi, r) < 0)
|
| 143 |
goto oopsy;
|
| 144 |
if (div != NULL)
|
| 145 |
dp++;
|
| 146 |
else {
|
| 147 |
addcolor(acol, dp->v);
|
| 148 |
arad += dp->r;
|
| 149 |
}
|
| 150 |
}
|
| 151 |
if (ns > 0) { /* perform super-sampling */
|
| 152 |
comperrs(div, &hemi); /* compute errors */
|
| 153 |
qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */
|
| 154 |
/* super-sample */
|
| 155 |
for (i = ns; i > 0; i--) {
|
| 156 |
copystruct(&dnew, div);
|
| 157 |
if (divsample(&dnew, &hemi, r) < 0)
|
| 158 |
goto oopsy;
|
| 159 |
/* reinsert */
|
| 160 |
dp = div;
|
| 161 |
j = ndivs < i ? ndivs : i;
|
| 162 |
while (--j > 0 && dnew.k < dp[1].k) {
|
| 163 |
copystruct(dp, dp+1);
|
| 164 |
dp++;
|
| 165 |
}
|
| 166 |
copystruct(dp, &dnew);
|
| 167 |
}
|
| 168 |
if (pg != NULL || dg != NULL) /* restore order */
|
| 169 |
qsort(div, ndivs, sizeof(AMBSAMP), ambnorm);
|
| 170 |
}
|
| 171 |
/* compute returned values */
|
| 172 |
if (div != NULL) {
|
| 173 |
for (i = ndivs, dp = div; i-- > 0; dp++) {
|
| 174 |
arad += dp->r;
|
| 175 |
if (dp->n > 1) {
|
| 176 |
b = 1.0/dp->n;
|
| 177 |
scalecolor(dp->v, b);
|
| 178 |
dp->r *= b;
|
| 179 |
dp->n = 1;
|
| 180 |
}
|
| 181 |
addcolor(acol, dp->v);
|
| 182 |
}
|
| 183 |
b = bright(acol);
|
| 184 |
if (b > FTINY) {
|
| 185 |
b = ndivs/b;
|
| 186 |
if (pg != NULL) {
|
| 187 |
posgradient(pg, div, &hemi);
|
| 188 |
for (i = 0; i < 3; i++)
|
| 189 |
pg[i] *= b;
|
| 190 |
}
|
| 191 |
if (dg != NULL) {
|
| 192 |
dirgradient(dg, div, &hemi);
|
| 193 |
for (i = 0; i < 3; i++)
|
| 194 |
dg[i] *= b;
|
| 195 |
}
|
| 196 |
} else {
|
| 197 |
if (pg != NULL)
|
| 198 |
for (i = 0; i < 3; i++)
|
| 199 |
pg[i] = 0.0;
|
| 200 |
if (dg != NULL)
|
| 201 |
for (i = 0; i < 3; i++)
|
| 202 |
dg[i] = 0.0;
|
| 203 |
}
|
| 204 |
free((char *)div);
|
| 205 |
}
|
| 206 |
b = 1.0/ndivs;
|
| 207 |
scalecolor(acol, b);
|
| 208 |
if (arad <= FTINY)
|
| 209 |
arad = FHUGE;
|
| 210 |
else
|
| 211 |
arad = (ndivs+ns)/arad;
|
| 212 |
if (pg != NULL) { /* reduce radius if gradient large */
|
| 213 |
d = DOT(pg,pg);
|
| 214 |
if (d*arad*arad > 1.0)
|
| 215 |
arad = 1.0/sqrt(d);
|
| 216 |
}
|
| 217 |
if (arad > maxarad)
|
| 218 |
arad = maxarad;
|
| 219 |
else if (arad < minarad)
|
| 220 |
arad = minarad;
|
| 221 |
return(arad/sqrt(wt));
|
| 222 |
oopsy:
|
| 223 |
if (div != NULL)
|
| 224 |
free((char *)div);
|
| 225 |
return(0.0);
|
| 226 |
}
|
| 227 |
|
| 228 |
|
| 229 |
inithemi(hp, r, wt) /* initialize sampling hemisphere */
|
| 230 |
register AMBHEMI *hp;
|
| 231 |
RAY *r;
|
| 232 |
double wt;
|
| 233 |
{
|
| 234 |
register int i;
|
| 235 |
/* set number of divisions */
|
| 236 |
if (wt < (.25*PI)/ambdiv+FTINY) {
|
| 237 |
hp->nt = hp->np = 0;
|
| 238 |
return; /* zero samples */
|
| 239 |
}
|
| 240 |
hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
|
| 241 |
hp->np = PI * hp->nt + 0.5;
|
| 242 |
/* make axes */
|
| 243 |
VCOPY(hp->uz, r->ron);
|
| 244 |
hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
|
| 245 |
for (i = 0; i < 3; i++)
|
| 246 |
if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
|
| 247 |
break;
|
| 248 |
if (i >= 3)
|
| 249 |
error(CONSISTENCY, "bad ray direction in inithemi");
|
| 250 |
hp->uy[i] = 1.0;
|
| 251 |
fcross(hp->ux, hp->uy, hp->uz);
|
| 252 |
normalize(hp->ux);
|
| 253 |
fcross(hp->uy, hp->uz, hp->ux);
|
| 254 |
}
|
| 255 |
|
| 256 |
|
| 257 |
comperrs(da, hp) /* compute initial error estimates */
|
| 258 |
AMBSAMP *da; /* assumes standard ordering */
|
| 259 |
register AMBHEMI *hp;
|
| 260 |
{
|
| 261 |
double b, b2;
|
| 262 |
int i, j;
|
| 263 |
register AMBSAMP *dp;
|
| 264 |
/* sum differences from neighbors */
|
| 265 |
dp = da;
|
| 266 |
for (i = 0; i < hp->nt; i++)
|
| 267 |
for (j = 0; j < hp->np; j++) {
|
| 268 |
#ifdef DEBUG
|
| 269 |
if (dp->t != i || dp->p != j)
|
| 270 |
error(CONSISTENCY,
|
| 271 |
"division order in comperrs");
|
| 272 |
#endif
|
| 273 |
b = bright(dp[0].v);
|
| 274 |
if (i > 0) { /* from above */
|
| 275 |
b2 = bright(dp[-hp->np].v) - b;
|
| 276 |
b2 *= b2 * 0.25;
|
| 277 |
dp[0].k += b2;
|
| 278 |
dp[-hp->np].k += b2;
|
| 279 |
}
|
| 280 |
if (j > 0) { /* from behind */
|
| 281 |
b2 = bright(dp[-1].v) - b;
|
| 282 |
b2 *= b2 * 0.25;
|
| 283 |
dp[0].k += b2;
|
| 284 |
dp[-1].k += b2;
|
| 285 |
} else { /* around */
|
| 286 |
b2 = bright(dp[hp->np-1].v) - b;
|
| 287 |
b2 *= b2 * 0.25;
|
| 288 |
dp[0].k += b2;
|
| 289 |
dp[hp->np-1].k += b2;
|
| 290 |
}
|
| 291 |
dp++;
|
| 292 |
}
|
| 293 |
/* divide by number of neighbors */
|
| 294 |
dp = da;
|
| 295 |
for (j = 0; j < hp->np; j++) /* top row */
|
| 296 |
(dp++)->k *= 1.0/3.0;
|
| 297 |
if (hp->nt < 2)
|
| 298 |
return;
|
| 299 |
for (i = 1; i < hp->nt-1; i++) /* central region */
|
| 300 |
for (j = 0; j < hp->np; j++)
|
| 301 |
(dp++)->k *= 0.25;
|
| 302 |
for (j = 0; j < hp->np; j++) /* bottom row */
|
| 303 |
(dp++)->k *= 1.0/3.0;
|
| 304 |
}
|
| 305 |
|
| 306 |
|
| 307 |
posgradient(gv, da, hp) /* compute position gradient */
|
| 308 |
FVECT gv;
|
| 309 |
AMBSAMP *da; /* assumes standard ordering */
|
| 310 |
AMBHEMI *hp;
|
| 311 |
{
|
| 312 |
register int i, j;
|
| 313 |
double b, d;
|
| 314 |
double mag0, mag1;
|
| 315 |
double phi, cosp, sinp, xd, yd;
|
| 316 |
register AMBSAMP *dp;
|
| 317 |
|
| 318 |
xd = yd = 0.0;
|
| 319 |
for (j = 0; j < hp->np; j++) {
|
| 320 |
dp = da + j;
|
| 321 |
mag0 = mag1 = 0.0;
|
| 322 |
for (i = 0; i < hp->nt; i++) {
|
| 323 |
#ifdef DEBUG
|
| 324 |
if (dp->t != i || dp->p != j)
|
| 325 |
error(CONSISTENCY,
|
| 326 |
"division order in posgradient");
|
| 327 |
#endif
|
| 328 |
b = bright(dp->v);
|
| 329 |
if (i > 0) {
|
| 330 |
d = dp[-hp->np].r;
|
| 331 |
if (dp[0].r > d) d = dp[0].r;
|
| 332 |
d *= 1.0 - (double)i/hp->nt; /* cos(t)^2 */
|
| 333 |
mag0 += d*(b - bright(dp[-hp->np].v));
|
| 334 |
}
|
| 335 |
if (j > 0) {
|
| 336 |
d = dp[-1].r;
|
| 337 |
if (dp[0].r > d) d = dp[0].r;
|
| 338 |
mag1 += d*(b - bright(dp[-1].v));
|
| 339 |
} else {
|
| 340 |
d = dp[hp->np-1].r;
|
| 341 |
if (dp[0].r > d) d = dp[0].r;
|
| 342 |
mag1 += d*(b - bright(dp[hp->np-1].v));
|
| 343 |
}
|
| 344 |
dp += hp->np;
|
| 345 |
}
|
| 346 |
if (hp->nt > 1) {
|
| 347 |
mag0 /= (double)hp->np;
|
| 348 |
mag1 /= (double)hp->nt;
|
| 349 |
}
|
| 350 |
phi = 2.0*PI * (double)j/hp->np;
|
| 351 |
cosp = cos(phi); sinp = sin(phi);
|
| 352 |
xd += mag0*cosp - mag1*sinp;
|
| 353 |
yd += mag0*sinp + mag1*cosp;
|
| 354 |
}
|
| 355 |
for (i = 0; i < 3; i++)
|
| 356 |
gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/PI;
|
| 357 |
}
|
| 358 |
|
| 359 |
|
| 360 |
dirgradient(gv, da, hp) /* compute direction gradient */
|
| 361 |
FVECT gv;
|
| 362 |
AMBSAMP *da; /* assumes standard ordering */
|
| 363 |
AMBHEMI *hp;
|
| 364 |
{
|
| 365 |
register int i, j;
|
| 366 |
double mag;
|
| 367 |
double phi, xd, yd;
|
| 368 |
register AMBSAMP *dp;
|
| 369 |
|
| 370 |
xd = yd = 0.0;
|
| 371 |
for (j = 0; j < hp->np; j++) {
|
| 372 |
dp = da + j;
|
| 373 |
mag = 0.0;
|
| 374 |
for (i = 0; i < hp->nt; i++) {
|
| 375 |
#ifdef DEBUG
|
| 376 |
if (dp->t != i || dp->p != j)
|
| 377 |
error(CONSISTENCY,
|
| 378 |
"division order in dirgradient");
|
| 379 |
#endif
|
| 380 |
mag += sqrt((i+.5)/hp->nt)*bright(dp->v); /* sin(t) */
|
| 381 |
dp += hp->np;
|
| 382 |
}
|
| 383 |
phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
|
| 384 |
xd += mag * cos(phi);
|
| 385 |
yd += mag * sin(phi);
|
| 386 |
}
|
| 387 |
for (i = 0; i < 3; i++)
|
| 388 |
gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*PI/(hp->nt*hp->np);
|
| 389 |
}
|