/* Copyright (c) 1991 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * Routines to compute "ambient" values using Monte Carlo */ #include "ray.h" #include "ambient.h" #include "random.h" typedef struct { short t, p; /* theta, phi indices */ COLOR v; /* value sum */ float r; /* 1/distance sum */ float k; /* variance for this division */ int n; /* number of subsamples */ } AMBSAMP; /* ambient sample division */ typedef struct { FVECT ux, uy, uz; /* x, y and z axis directions */ short nt, np; /* number of theta and phi directions */ } AMBHEMI; /* ambient sample hemisphere */ extern double sin(), cos(), sqrt(); static int ambcmp(d1, d2) /* decreasing order */ AMBSAMP *d1, *d2; { if (d1->k < d2->k) return(1); if (d1->k > d2->k) return(-1); return(0); } static int ambnorm(d1, d2) /* standard order */ AMBSAMP *d1, *d2; { register int c; if (c = d1->t - d2->t) return(c); return(d1->p - d2->p); } divsample(dp, h, r) /* sample a division */ register AMBSAMP *dp; AMBHEMI *h; RAY *r; { RAY ar; int hlist[3]; double spt[2]; double xd, yd, zd; double b2; double phi; register int i; if (rayorigin(&ar, r, AMBIENT, AVGREFL) < 0) return(-1); hlist[0] = r->rno; hlist[1] = dp->t; hlist[2] = dp->p; multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n)); zd = sqrt((dp->t + spt[0])/h->nt); phi = 2.0*PI * (dp->p + spt[1])/h->np; xd = cos(phi) * zd; yd = sin(phi) * zd; zd = sqrt(1.0 - zd*zd); for (i = 0; i < 3; i++) ar.rdir[i] = xd*h->ux[i] + yd*h->uy[i] + zd*h->uz[i]; dimlist[ndims++] = dp->t*h->np + dp->p + 90171; rayvalue(&ar); ndims--; addcolor(dp->v, ar.rcol); if (ar.rt > FTINY && ar.rt < FHUGE) dp->r += 1.0/ar.rt; /* (re)initialize error */ if (dp->n++) { b2 = bright(dp->v)/dp->n - bright(ar.rcol); b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1)); dp->k = b2/(dp->n*dp->n); } else dp->k = 0.0; return(0); } double doambient(acol, r, wt, pg, dg) /* compute ambient component */ COLOR acol; RAY *r; double wt; FVECT pg, dg; { double b, d; AMBHEMI hemi; AMBSAMP *div; AMBSAMP dnew; register AMBSAMP *dp; double arad; int ndivs, ns; register int i, j; /* initialize color */ setcolor(acol, 0.0, 0.0, 0.0); /* initialize hemisphere */ inithemi(&hemi, r, wt); ndivs = hemi.nt * hemi.np; if (ndivs == 0) return(0.0); /* set number of super-samples */ ns = ambssamp * wt + 0.5; if (ns > 0 || pg != NULL || dg != NULL) { div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP)); if (div == NULL) error(SYSTEM, "out of memory in doambient"); } else div = NULL; /* sample the divisions */ arad = 0.0; if ((dp = div) == NULL) dp = &dnew; for (i = 0; i < hemi.nt; i++) for (j = 0; j < hemi.np; j++) { dp->t = i; dp->p = j; setcolor(dp->v, 0.0, 0.0, 0.0); dp->r = 0.0; dp->n = 0; if (divsample(dp, &hemi, r) < 0) goto oopsy; if (div != NULL) dp++; else { addcolor(acol, dp->v); arad += dp->r; } } if (ns > 0) { /* perform super-sampling */ comperrs(div, &hemi); /* compute errors */ qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */ /* super-sample */ for (i = ns; i > 0; i--) { copystruct(&dnew, div); if (divsample(&dnew, &hemi, r) < 0) goto oopsy; /* reinsert */ dp = div; j = ndivs < i ? ndivs : i; while (--j > 0 && dnew.k < dp[1].k) { copystruct(dp, dp+1); dp++; } copystruct(dp, &dnew); } if (pg != NULL || dg != NULL) /* restore order */ qsort(div, ndivs, sizeof(AMBSAMP), ambnorm); } /* compute returned values */ if (div != NULL) { for (i = ndivs, dp = div; i-- > 0; dp++) { arad += dp->r; if (dp->n > 1) { b = 1.0/dp->n; scalecolor(dp->v, b); dp->r *= b; dp->n = 1; } addcolor(acol, dp->v); } b = bright(acol); if (b > FTINY) { b = ndivs/b; if (pg != NULL) { posgradient(pg, div, &hemi); for (i = 0; i < 3; i++) pg[i] *= b; } if (dg != NULL) { dirgradient(dg, div, &hemi); for (i = 0; i < 3; i++) dg[i] *= b; } } else { if (pg != NULL) for (i = 0; i < 3; i++) pg[i] = 0.0; if (dg != NULL) for (i = 0; i < 3; i++) dg[i] = 0.0; } free((char *)div); } b = 1.0/ndivs; scalecolor(acol, b); if (arad <= FTINY) arad = FHUGE; else arad = (ndivs+ns)/arad; if (pg != NULL) { /* reduce radius if gradient large */ d = DOT(pg,pg); if (d*arad*arad > 1.0) arad = 1.0/sqrt(d); } if (arad > maxarad) arad = maxarad; else if (arad < minarad) arad = minarad; return(arad/sqrt(wt)); oopsy: if (div != NULL) free((char *)div); return(0.0); } inithemi(hp, r, wt) /* initialize sampling hemisphere */ register AMBHEMI *hp; RAY *r; double wt; { register int i; /* set number of divisions */ if (wt < (.25*PI)/ambdiv+FTINY) { hp->nt = hp->np = 0; return; /* zero samples */ } hp->nt = sqrt(ambdiv * wt / PI) + 0.5; hp->np = PI * hp->nt + 0.5; /* make axes */ VCOPY(hp->uz, r->ron); hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; for (i = 0; i < 3; i++) if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6) break; if (i >= 3) error(CONSISTENCY, "bad ray direction in inithemi"); hp->uy[i] = 1.0; fcross(hp->ux, hp->uy, hp->uz); normalize(hp->ux); fcross(hp->uy, hp->uz, hp->ux); } comperrs(da, hp) /* compute initial error estimates */ AMBSAMP *da; /* assumes standard ordering */ register AMBHEMI *hp; { double b, b2; int i, j; register AMBSAMP *dp; /* sum differences from neighbors */ dp = da; for (i = 0; i < hp->nt; i++) for (j = 0; j < hp->np; j++) { #ifdef DEBUG if (dp->t != i || dp->p != j) error(CONSISTENCY, "division order in comperrs"); #endif b = bright(dp[0].v); if (i > 0) { /* from above */ b2 = bright(dp[-hp->np].v) - b; b2 *= b2 * 0.25; dp[0].k += b2; dp[-hp->np].k += b2; } if (j > 0) { /* from behind */ b2 = bright(dp[-1].v) - b; b2 *= b2 * 0.25; dp[0].k += b2; dp[-1].k += b2; } else { /* around */ b2 = bright(dp[hp->np-1].v) - b; b2 *= b2 * 0.25; dp[0].k += b2; dp[hp->np-1].k += b2; } dp++; } /* divide by number of neighbors */ dp = da; for (j = 0; j < hp->np; j++) /* top row */ (dp++)->k *= 1.0/3.0; if (hp->nt < 2) return; for (i = 1; i < hp->nt-1; i++) /* central region */ for (j = 0; j < hp->np; j++) (dp++)->k *= 0.25; for (j = 0; j < hp->np; j++) /* bottom row */ (dp++)->k *= 1.0/3.0; } posgradient(gv, da, hp) /* compute position gradient */ FVECT gv; AMBSAMP *da; /* assumes standard ordering */ AMBHEMI *hp; { register int i, j; double b, d; double mag0, mag1; double phi, cosp, sinp, xd, yd; register AMBSAMP *dp; xd = yd = 0.0; for (j = 0; j < hp->np; j++) { dp = da + j; mag0 = mag1 = 0.0; for (i = 0; i < hp->nt; i++) { #ifdef DEBUG if (dp->t != i || dp->p != j) error(CONSISTENCY, "division order in posgradient"); #endif b = bright(dp->v); if (i > 0) { d = dp[-hp->np].r; if (dp[0].r > d) d = dp[0].r; d *= 1.0 - (double)i/hp->nt; /* cos(t)^2 */ mag0 += d*(b - bright(dp[-hp->np].v)); } if (j > 0) { d = dp[-1].r; if (dp[0].r > d) d = dp[0].r; mag1 += d*(b - bright(dp[-1].v)); } else { d = dp[hp->np-1].r; if (dp[0].r > d) d = dp[0].r; mag1 += d*(b - bright(dp[hp->np-1].v)); } dp += hp->np; } if (hp->nt > 1) { mag0 /= (double)hp->np; mag1 /= (double)hp->nt; } phi = 2.0*PI * (double)j/hp->np; cosp = cos(phi); sinp = sin(phi); xd += mag0*cosp - mag1*sinp; yd += mag0*sinp + mag1*cosp; } for (i = 0; i < 3; i++) gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/PI; } dirgradient(gv, da, hp) /* compute direction gradient */ FVECT gv; AMBSAMP *da; /* assumes standard ordering */ AMBHEMI *hp; { register int i, j; double mag; double phi, xd, yd; register AMBSAMP *dp; xd = yd = 0.0; for (j = 0; j < hp->np; j++) { dp = da + j; mag = 0.0; for (i = 0; i < hp->nt; i++) { #ifdef DEBUG if (dp->t != i || dp->p != j) error(CONSISTENCY, "division order in dirgradient"); #endif mag += sqrt((i+.5)/hp->nt)*bright(dp->v); /* sin(t) */ dp += hp->np; } phi = 2.0*PI * (j+.5)/hp->np + PI/2.0; xd += mag * cos(phi); yd += mag * sin(phi); } for (i = 0; i < 3; i++) gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*PI/(hp->nt*hp->np); }