ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 1.14
Committed: Mon Aug 26 10:11:39 1991 UTC (32 years, 8 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 1.13: +5 -1 lines
Log Message:
added pretest for sampling limit to inithemi()

File Contents

# Content
1 /* Copyright (c) 1991 Regents of the University of California */
2
3 #ifndef lint
4 static char SCCSid[] = "$SunId$ LBL";
5 #endif
6
7 /*
8 * Routines to compute "ambient" values using Monte Carlo
9 */
10
11 #include "ray.h"
12
13 #include "ambient.h"
14
15 #include "random.h"
16
17 typedef struct {
18 short t, p; /* theta, phi indices */
19 COLOR v; /* value sum */
20 float r; /* 1/distance sum */
21 float k; /* variance for this division */
22 int n; /* number of subsamples */
23 } AMBSAMP; /* ambient sample division */
24
25 typedef struct {
26 FVECT ux, uy, uz; /* x, y and z axis directions */
27 short nt, np; /* number of theta and phi directions */
28 } AMBHEMI; /* ambient sample hemisphere */
29
30 extern double sin(), cos(), sqrt();
31
32
33 static int
34 ambcmp(d1, d2) /* decreasing order */
35 AMBSAMP *d1, *d2;
36 {
37 if (d1->k < d2->k)
38 return(1);
39 if (d1->k > d2->k)
40 return(-1);
41 return(0);
42 }
43
44
45 static int
46 ambnorm(d1, d2) /* standard order */
47 AMBSAMP *d1, *d2;
48 {
49 register int c;
50
51 if (c = d1->t - d2->t)
52 return(c);
53 return(d1->p - d2->p);
54 }
55
56
57 divsample(dp, h, r) /* sample a division */
58 register AMBSAMP *dp;
59 AMBHEMI *h;
60 RAY *r;
61 {
62 RAY ar;
63 int hlist[3];
64 double spt[2];
65 double xd, yd, zd;
66 double b2;
67 double phi;
68 register int i;
69
70 if (rayorigin(&ar, r, AMBIENT, AVGREFL) < 0)
71 return(-1);
72 hlist[0] = r->rno;
73 hlist[1] = dp->t;
74 hlist[2] = dp->p;
75 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
76 zd = sqrt((dp->t + spt[0])/h->nt);
77 phi = 2.0*PI * (dp->p + spt[1])/h->np;
78 xd = cos(phi) * zd;
79 yd = sin(phi) * zd;
80 zd = sqrt(1.0 - zd*zd);
81 for (i = 0; i < 3; i++)
82 ar.rdir[i] = xd*h->ux[i] +
83 yd*h->uy[i] +
84 zd*h->uz[i];
85 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
86 rayvalue(&ar);
87 ndims--;
88 addcolor(dp->v, ar.rcol);
89 if (ar.rt > FTINY && ar.rt < FHUGE)
90 dp->r += 1.0/ar.rt;
91 /* (re)initialize error */
92 if (dp->n++) {
93 b2 = bright(dp->v)/dp->n - bright(ar.rcol);
94 b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
95 dp->k = b2/(dp->n*dp->n);
96 } else
97 dp->k = 0.0;
98 return(0);
99 }
100
101
102 double
103 doambient(acol, r, wt, pg, dg) /* compute ambient component */
104 COLOR acol;
105 RAY *r;
106 double wt;
107 FVECT pg, dg;
108 {
109 double b, d;
110 AMBHEMI hemi;
111 AMBSAMP *div;
112 AMBSAMP dnew;
113 register AMBSAMP *dp;
114 double arad;
115 int ndivs, ns;
116 register int i, j;
117 /* initialize color */
118 setcolor(acol, 0.0, 0.0, 0.0);
119 /* initialize hemisphere */
120 inithemi(&hemi, r, wt);
121 ndivs = hemi.nt * hemi.np;
122 if (ndivs == 0)
123 return(0.0);
124 /* set number of super-samples */
125 ns = ambssamp * wt + 0.5;
126 if (ns > 0 || pg != NULL || dg != NULL) {
127 div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP));
128 if (div == NULL)
129 error(SYSTEM, "out of memory in doambient");
130 } else
131 div = NULL;
132 /* sample the divisions */
133 arad = 0.0;
134 if ((dp = div) == NULL)
135 dp = &dnew;
136 for (i = 0; i < hemi.nt; i++)
137 for (j = 0; j < hemi.np; j++) {
138 dp->t = i; dp->p = j;
139 setcolor(dp->v, 0.0, 0.0, 0.0);
140 dp->r = 0.0;
141 dp->n = 0;
142 if (divsample(dp, &hemi, r) < 0)
143 goto oopsy;
144 if (div != NULL)
145 dp++;
146 else {
147 addcolor(acol, dp->v);
148 arad += dp->r;
149 }
150 }
151 if (ns > 0) { /* perform super-sampling */
152 comperrs(div, &hemi); /* compute errors */
153 qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */
154 /* super-sample */
155 for (i = ns; i > 0; i--) {
156 copystruct(&dnew, div);
157 if (divsample(&dnew, &hemi, r) < 0)
158 goto oopsy;
159 /* reinsert */
160 dp = div;
161 j = ndivs < i ? ndivs : i;
162 while (--j > 0 && dnew.k < dp[1].k) {
163 copystruct(dp, dp+1);
164 dp++;
165 }
166 copystruct(dp, &dnew);
167 }
168 if (pg != NULL || dg != NULL) /* restore order */
169 qsort(div, ndivs, sizeof(AMBSAMP), ambnorm);
170 }
171 /* compute returned values */
172 if (div != NULL) {
173 for (i = ndivs, dp = div; i-- > 0; dp++) {
174 arad += dp->r;
175 if (dp->n > 1) {
176 b = 1.0/dp->n;
177 scalecolor(dp->v, b);
178 dp->r *= b;
179 dp->n = 1;
180 }
181 addcolor(acol, dp->v);
182 }
183 b = bright(acol);
184 if (b > FTINY) {
185 b = ndivs/b;
186 if (pg != NULL) {
187 posgradient(pg, div, &hemi);
188 for (i = 0; i < 3; i++)
189 pg[i] *= b;
190 }
191 if (dg != NULL) {
192 dirgradient(dg, div, &hemi);
193 for (i = 0; i < 3; i++)
194 dg[i] *= b;
195 }
196 } else {
197 if (pg != NULL)
198 for (i = 0; i < 3; i++)
199 pg[i] = 0.0;
200 if (dg != NULL)
201 for (i = 0; i < 3; i++)
202 dg[i] = 0.0;
203 }
204 free((char *)div);
205 }
206 b = 1.0/ndivs;
207 scalecolor(acol, b);
208 if (arad <= FTINY)
209 arad = FHUGE;
210 else
211 arad = (ndivs+ns)/arad;
212 if (arad > maxarad)
213 arad = maxarad;
214 else if (arad < minarad)
215 arad = minarad;
216 arad /= sqrt(wt);
217 if (pg != NULL) { /* clip pos. gradient if too large */
218 d = 4.0*DOT(pg,pg)*arad*arad;
219 if (d > 1.0) {
220 d = 1.0/sqrt(d);
221 for (i = 0; i < 3; i++)
222 pg[i] *= d;
223 }
224 }
225 return(arad);
226 oopsy:
227 if (div != NULL)
228 free((char *)div);
229 return(0.0);
230 }
231
232
233 inithemi(hp, r, wt) /* initialize sampling hemisphere */
234 register AMBHEMI *hp;
235 RAY *r;
236 double wt;
237 {
238 register int i;
239 /* set number of divisions */
240 if (wt < (.25*PI)/ambdiv+FTINY) {
241 hp->nt = hp->np = 0;
242 return; /* zero samples */
243 }
244 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
245 hp->np = PI * hp->nt + 0.5;
246 /* make axes */
247 VCOPY(hp->uz, r->ron);
248 hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
249 for (i = 0; i < 3; i++)
250 if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
251 break;
252 if (i >= 3)
253 error(CONSISTENCY, "bad ray direction in inithemi");
254 hp->uy[i] = 1.0;
255 fcross(hp->ux, hp->uy, hp->uz);
256 normalize(hp->ux);
257 fcross(hp->uy, hp->uz, hp->ux);
258 }
259
260
261 comperrs(da, hp) /* compute initial error estimates */
262 AMBSAMP *da; /* assumes standard ordering */
263 register AMBHEMI *hp;
264 {
265 double b, b2;
266 int i, j;
267 register AMBSAMP *dp;
268 /* sum differences from neighbors */
269 dp = da;
270 for (i = 0; i < hp->nt; i++)
271 for (j = 0; j < hp->np; j++) {
272 #ifdef DEBUG
273 if (dp->t != i || dp->p != j)
274 error(CONSISTENCY,
275 "division order in comperrs");
276 #endif
277 b = bright(dp[0].v);
278 if (i > 0) { /* from above */
279 b2 = bright(dp[-hp->np].v) - b;
280 b2 *= b2 * 0.25;
281 dp[0].k += b2;
282 dp[-hp->np].k += b2;
283 }
284 if (j > 0) { /* from behind */
285 b2 = bright(dp[-1].v) - b;
286 b2 *= b2 * 0.25;
287 dp[0].k += b2;
288 dp[-1].k += b2;
289 } else { /* around */
290 b2 = bright(dp[hp->np-1].v) - b;
291 b2 *= b2 * 0.25;
292 dp[0].k += b2;
293 dp[hp->np-1].k += b2;
294 }
295 dp++;
296 }
297 /* divide by number of neighbors */
298 dp = da;
299 for (j = 0; j < hp->np; j++) /* top row */
300 (dp++)->k *= 1.0/3.0;
301 if (hp->nt < 2)
302 return;
303 for (i = 1; i < hp->nt-1; i++) /* central region */
304 for (j = 0; j < hp->np; j++)
305 (dp++)->k *= 0.25;
306 for (j = 0; j < hp->np; j++) /* bottom row */
307 (dp++)->k *= 1.0/3.0;
308 }
309
310
311 posgradient(gv, da, hp) /* compute position gradient */
312 FVECT gv;
313 AMBSAMP *da; /* assumes standard ordering */
314 AMBHEMI *hp;
315 {
316 register int i, j;
317 double b, d;
318 double mag0, mag1;
319 double phi, cosp, sinp, xd, yd;
320 register AMBSAMP *dp;
321
322 xd = yd = 0.0;
323 for (j = 0; j < hp->np; j++) {
324 dp = da + j;
325 mag0 = mag1 = 0.0;
326 for (i = 0; i < hp->nt; i++) {
327 #ifdef DEBUG
328 if (dp->t != i || dp->p != j)
329 error(CONSISTENCY,
330 "division order in posgradient");
331 #endif
332 b = bright(dp->v);
333 if (i > 0) {
334 d = dp[-hp->np].r;
335 if (dp[0].r > d) d = dp[0].r;
336 d *= 1.0 - sqrt((double)i/hp->nt);
337 mag0 += d*(b - bright(dp[-hp->np].v));
338 }
339 if (j > 0) {
340 d = dp[-1].r;
341 if (dp[0].r > d) d = dp[0].r;
342 mag1 += d*(b - bright(dp[-1].v));
343 } else {
344 d = dp[hp->np-1].r;
345 if (dp[0].r > d) d = dp[0].r;
346 mag1 += d*(b - bright(dp[hp->np-1].v));
347 }
348 dp += hp->np;
349 }
350 if (hp->nt > 1) {
351 mag0 /= (double)hp->np;
352 mag1 /= (double)hp->nt;
353 }
354 phi = 2.0*PI * (double)j/hp->np;
355 cosp = cos(phi); sinp = sin(phi);
356 xd += mag0*cosp - mag1*sinp;
357 yd += mag0*sinp + mag1*cosp;
358 }
359 for (i = 0; i < 3; i++)
360 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/PI;
361 }
362
363
364 dirgradient(gv, da, hp) /* compute direction gradient */
365 FVECT gv;
366 AMBSAMP *da; /* assumes standard ordering */
367 AMBHEMI *hp;
368 {
369 register int i, j;
370 double mag;
371 double phi, xd, yd;
372 register AMBSAMP *dp;
373
374 xd = yd = 0.0;
375 for (j = 0; j < hp->np; j++) {
376 dp = da + j;
377 mag = 0.0;
378 for (i = 0; i < hp->nt; i++) {
379 #ifdef DEBUG
380 if (dp->t != i || dp->p != j)
381 error(CONSISTENCY,
382 "division order in dirgradient");
383 #endif
384 mag += sqrt((i+.5)/hp->nt)*bright(dp->v);
385 dp += hp->np;
386 }
387 phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
388 xd += mag * cos(phi);
389 yd += mag * sin(phi);
390 }
391 for (i = 0; i < 3; i++)
392 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*PI/(hp->nt*hp->np);
393 }