| 35 |
|
RAY *rp; /* originating ray sample */ |
| 36 |
|
int ns; /* number of samples per axis */ |
| 37 |
|
int sampOK; /* acquired full sample set? */ |
| 38 |
+ |
int atyp; /* RAMBIENT or TAMBIENT */ |
| 39 |
|
SCOLOR acoef; /* division contribution coefficient */ |
| 40 |
|
SCOLOR acol; /* accumulated color */ |
| 41 |
+ |
FVECT onrm; /* oriented unperturbed surface normal */ |
| 42 |
|
FVECT ux, uy; /* tangent axis unit vectors */ |
| 43 |
|
AMBSAMP sa[1]; /* sample array (extends struct) */ |
| 44 |
|
} AMBHEMI; /* ambient sample hemisphere */ |
| 108 |
|
setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
| 109 |
|
else |
| 110 |
|
copyscolor(ar.rcoef, hp->acoef); |
| 111 |
< |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) |
| 111 |
> |
if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0) |
| 112 |
|
return(0); |
| 113 |
|
if (ambacc > FTINY) { |
| 114 |
|
smultscolor(ar.rcoef, hp->acoef); |
| 124 |
|
for (ii = 3; ii--; ) |
| 125 |
|
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
| 126 |
|
spt[1]*hp->uy[ii] + |
| 127 |
< |
zd*hp->rp->ron[ii]; |
| 127 |
> |
zd*hp->onrm[ii]; |
| 128 |
|
checknorm(ar.rdir); |
| 129 |
|
/* avoid coincident samples */ |
| 130 |
|
if (!n && ambcollision(hp, i, j, ar.rdir)) { |
| 250 |
|
double wt |
| 251 |
|
) |
| 252 |
|
{ |
| 253 |
+ |
int backside = (wt < 0); |
| 254 |
|
AMBHEMI *hp; |
| 255 |
|
double d; |
| 256 |
|
int n, i, j; |
| 259 |
|
if (d <= FTINY) |
| 260 |
|
return(NULL); |
| 261 |
|
/* set number of divisions */ |
| 262 |
+ |
if (backside) wt = -wt; |
| 263 |
|
if (ambacc <= FTINY && |
| 264 |
|
wt > (d *= 0.8*r->rweight/(ambdiv*minweight))) |
| 265 |
|
wt = d; /* avoid ray termination */ |
| 271 |
|
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
| 272 |
|
if (hp == NULL) |
| 273 |
|
error(SYSTEM, "out of memory in samp_hemi"); |
| 274 |
+ |
|
| 275 |
+ |
if (backside) { |
| 276 |
+ |
hp->atyp = TAMBIENT; |
| 277 |
+ |
hp->onrm[0] = -r->ron[0]; |
| 278 |
+ |
hp->onrm[1] = -r->ron[1]; |
| 279 |
+ |
hp->onrm[2] = -r->ron[2]; |
| 280 |
+ |
} else { |
| 281 |
+ |
hp->atyp = RAMBIENT; |
| 282 |
+ |
VCOPY(hp->onrm, r->ron); |
| 283 |
+ |
} |
| 284 |
|
hp->rp = r; |
| 285 |
|
hp->ns = n; |
| 286 |
|
scolorblack(hp->acol); |
| 291 |
|
d = 1.0/(n*n); |
| 292 |
|
scalescolor(hp->acoef, d); |
| 293 |
|
/* make tangent plane axes */ |
| 294 |
< |
if (!getperpendicular(hp->ux, r->ron, 1)) |
| 294 |
> |
if (!getperpendicular(hp->ux, hp->onrm, 1)) |
| 295 |
|
error(CONSISTENCY, "bad ray direction in samp_hemi"); |
| 296 |
< |
VCROSS(hp->uy, r->ron, hp->ux); |
| 296 |
> |
VCROSS(hp->uy, hp->onrm, hp->ux); |
| 297 |
|
/* sample divisions */ |
| 298 |
|
for (i = hp->ns; i--; ) |
| 299 |
|
for (j = hp->ns; j--; ) |
| 558 |
|
for (j = 0; j < hp->ns-1; j++) { |
| 559 |
|
comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1)); |
| 560 |
|
if (hessrow != NULL) |
| 561 |
< |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
| 561 |
> |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
| 562 |
|
if (gradrow != NULL) |
| 563 |
< |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
| 563 |
> |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
| 564 |
|
} |
| 565 |
|
/* sum each row of triangles */ |
| 566 |
|
for (i = 0; i < hp->ns-1; i++) { |
| 568 |
|
FVECT gradcol; |
| 569 |
|
comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0)); |
| 570 |
|
if (hessrow != NULL) |
| 571 |
< |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
| 571 |
> |
comp_hessian(hesscol, &fftr, hp->onrm); |
| 572 |
|
if (gradrow != NULL) |
| 573 |
< |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
| 573 |
> |
comp_gradient(gradcol, &fftr, hp->onrm); |
| 574 |
|
for (j = 0; j < hp->ns-1; j++) { |
| 575 |
|
FVECT hessdia[3]; /* compute triangle contributions */ |
| 576 |
|
FVECT graddia; |
| 580 |
|
/* diagonal (inner) edge */ |
| 581 |
|
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j)); |
| 582 |
|
if (hessrow != NULL) { |
| 583 |
< |
comp_hessian(hessdia, &fftr, hp->rp->ron); |
| 583 |
> |
comp_hessian(hessdia, &fftr, hp->onrm); |
| 584 |
|
rev_hessian(hesscol); |
| 585 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
| 586 |
|
} |
| 587 |
|
if (gradrow != NULL) { |
| 588 |
< |
comp_gradient(graddia, &fftr, hp->rp->ron); |
| 588 |
> |
comp_gradient(graddia, &fftr, hp->onrm); |
| 589 |
|
rev_gradient(gradcol); |
| 590 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
| 591 |
|
} |
| 592 |
|
/* initialize edge in next row */ |
| 593 |
|
comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j)); |
| 594 |
|
if (hessrow != NULL) |
| 595 |
< |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
| 595 |
> |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
| 596 |
|
if (gradrow != NULL) |
| 597 |
< |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
| 597 |
> |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
| 598 |
|
/* new column edge & paired triangle */ |
| 599 |
|
backg = back_ambval(hp, AI(hp,i+1,j+1), |
| 600 |
|
AI(hp,i+1,j), AI(hp,i,j+1)); |
| 601 |
|
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1)); |
| 602 |
|
if (hessrow != NULL) { |
| 603 |
< |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
| 603 |
> |
comp_hessian(hesscol, &fftr, hp->onrm); |
| 604 |
|
rev_hessian(hessdia); |
| 605 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
| 606 |
|
if (i < hp->ns-2) |
| 607 |
|
rev_hessian(hessrow[j]); |
| 608 |
|
} |
| 609 |
|
if (gradrow != NULL) { |
| 610 |
< |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
| 610 |
> |
comp_gradient(gradcol, &fftr, hp->onrm); |
| 611 |
|
rev_gradient(graddia); |
| 612 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
| 613 |
|
if (i < hp->ns-2) |
| 643 |
|
/* use vector for azimuth + 90deg */ |
| 644 |
|
VSUB(vd, ap->p, hp->rp->rop); |
| 645 |
|
/* brightness over cosine factor */ |
| 646 |
< |
gfact = ap->v[0] / DOT(hp->rp->ron, vd); |
| 646 |
> |
gfact = ap->v[0] / DOT(hp->onrm, vd); |
| 647 |
|
/* sine = proj_radius/vd_length */ |
| 648 |
|
dgsum[0] -= DOT(uv[1], vd) * gfact; |
| 649 |
|
dgsum[1] += DOT(uv[0], vd) * gfact; |
| 701 |
|
doambient( /* compute ambient component */ |
| 702 |
|
SCOLOR rcol, /* input/output color */ |
| 703 |
|
RAY *r, |
| 704 |
< |
double wt, |
| 704 |
> |
double wt, /* negative for back side */ |
| 705 |
|
FVECT uv[2], /* returned (optional) */ |
| 706 |
|
float ra[2], /* returned (optional) */ |
| 707 |
|
float pg[2], /* returned (optional) */ |
| 733 |
|
free(hp); /* Hessian not requested/possible */ |
| 734 |
|
return(-1); /* value-only return value */ |
| 735 |
|
} |
| 736 |
< |
if ((d = scolor_photopic(rcol)) > FTINY) { |
| 737 |
< |
d = 0.99*(hp->ns*hp->ns)/d; /* normalize Y values */ |
| 736 |
> |
if ((d = scolor_mean(rcol)) > FTINY) { |
| 737 |
> |
d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */ |
| 738 |
|
K = 0.01; |
| 739 |
|
} else { /* or fall back on geometric Hessian */ |
| 740 |
|
K = 1.0; |
| 768 |
|
if (ra[1] < minarad) |
| 769 |
|
ra[1] = minarad; |
| 770 |
|
} |
| 771 |
< |
ra[0] *= d = 1.0/sqrt(wt); |
| 771 |
> |
ra[0] *= d = 1.0/sqrt(fabs(wt)); |
| 772 |
|
if ((ra[1] *= d) > 2.0*ra[0]) |
| 773 |
|
ra[1] = 2.0*ra[0]; |
| 774 |
|
if (ra[1] > maxarad) { |