35 |
|
RAY *rp; /* originating ray sample */ |
36 |
|
int ns; /* number of samples per axis */ |
37 |
|
int sampOK; /* acquired full sample set? */ |
38 |
+ |
int atyp; /* RAMBIENT or TAMBIENT */ |
39 |
|
SCOLOR acoef; /* division contribution coefficient */ |
40 |
|
SCOLOR acol; /* accumulated color */ |
41 |
+ |
FVECT onrm; /* oriented unperturbed surface normal */ |
42 |
|
FVECT ux, uy; /* tangent axis unit vectors */ |
43 |
|
AMBSAMP sa[1]; /* sample array (extends struct) */ |
44 |
|
} AMBHEMI; /* ambient sample hemisphere */ |
100 |
|
AMBSAMP *ap = &ambsam(hp,i,j); |
101 |
|
RAY ar; |
102 |
|
int hlist[3], ii; |
103 |
+ |
double ss[2]; |
104 |
|
RREAL spt[2]; |
105 |
|
double zd; |
106 |
|
/* generate hemispherical sample */ |
109 |
|
setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
110 |
|
else |
111 |
|
copyscolor(ar.rcoef, hp->acoef); |
112 |
< |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) |
112 |
> |
if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0) |
113 |
|
return(0); |
114 |
|
if (ambacc > FTINY) { |
115 |
+ |
#ifdef SSKIPOPT |
116 |
+ |
ar.rsrc = -1; /* protect cache from source opt. */ |
117 |
+ |
ar.scorr = 1.f; |
118 |
+ |
#endif |
119 |
|
smultscolor(ar.rcoef, hp->acoef); |
120 |
|
scalescolor(ar.rcoef, 1./AVGREFL); |
121 |
|
} |
122 |
|
hlist[0] = hp->rp->rno; |
123 |
< |
hlist[1] = j; |
124 |
< |
hlist[2] = i; |
125 |
< |
multisamp(spt, 2, urand(ilhash(hlist,3)+n)); |
123 |
> |
hlist[1] = AI(hp,i,j); |
124 |
> |
hlist[2] = samplendx; |
125 |
> |
multisamp(ss, 2, urand(ilhash(hlist,3)+n)); |
126 |
|
resample: |
127 |
< |
square2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns); |
127 |
> |
square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns); |
128 |
|
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
129 |
|
for (ii = 3; ii--; ) |
130 |
|
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
131 |
|
spt[1]*hp->uy[ii] + |
132 |
< |
zd*hp->rp->ron[ii]; |
132 |
> |
zd*hp->onrm[ii]; |
133 |
|
checknorm(ar.rdir); |
134 |
|
/* avoid coincident samples */ |
135 |
< |
if (!n && ambcollision(hp, i, j, ar.rdir)) { |
136 |
< |
spt[0] = frandom(); spt[1] = frandom(); |
135 |
> |
if (!n && hp->ns >= 4 && ambcollision(hp, i, j, ar.rdir)) { |
136 |
> |
ss[0] = frandom(); ss[1] = frandom(); |
137 |
|
goto resample; /* reject this sample */ |
138 |
|
} |
139 |
|
dimlist[ndims++] = AI(hp,i,j) + 90171; |
167 |
|
static float * |
168 |
|
getambdiffs(AMBHEMI *hp) |
169 |
|
{ |
170 |
< |
const double normf = 1./bright(hp->acoef); |
171 |
< |
float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float)); |
170 |
> |
const double normf = 1./(pbright(hp->acoef) + FTINY); |
171 |
> |
float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float)); |
172 |
|
float *ep; |
173 |
|
AMBSAMP *ap; |
174 |
|
double b, b1, d2; |
177 |
|
if (earr == NULL) /* out of memory? */ |
178 |
|
return(NULL); |
179 |
|
/* sum squared neighbor diffs */ |
180 |
< |
for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) |
180 |
> |
ap = hp->sa; |
181 |
> |
ep = earr + hp->ns*hp->ns; /* original estimates to scratch */ |
182 |
> |
for (i = 0; i < hp->ns; i++) |
183 |
|
for (j = 0; j < hp->ns; j++, ap++, ep++) { |
184 |
|
b = pbright(ap[0].v); |
185 |
|
if (i) { /* from above */ |
205 |
|
ep[-hp->ns-1] += d2; |
206 |
|
} |
207 |
|
/* correct for number of neighbors */ |
208 |
< |
earr[0] *= 8./3.; |
209 |
< |
earr[hp->ns-1] *= 8./3.; |
210 |
< |
earr[(hp->ns-1)*hp->ns] *= 8./3.; |
211 |
< |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.; |
208 |
> |
ep = earr + hp->ns*hp->ns; |
209 |
> |
ep[0] *= 6./3.; |
210 |
> |
ep[hp->ns-1] *= 6./3.; |
211 |
> |
ep[(hp->ns-1)*hp->ns] *= 6./3.; |
212 |
> |
ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.; |
213 |
|
for (i = 1; i < hp->ns-1; i++) { |
214 |
< |
earr[i*hp->ns] *= 8./5.; |
215 |
< |
earr[i*hp->ns + hp->ns-1] *= 8./5.; |
214 |
> |
ep[i*hp->ns] *= 6./5.; |
215 |
> |
ep[i*hp->ns + hp->ns-1] *= 6./5.; |
216 |
|
} |
217 |
|
for (j = 1; j < hp->ns-1; j++) { |
218 |
< |
earr[j] *= 8./5.; |
219 |
< |
earr[(hp->ns-1)*hp->ns + j] *= 8./5.; |
218 |
> |
ep[j] *= 6./5.; |
219 |
> |
ep[(hp->ns-1)*hp->ns + j] *= 6./5.; |
220 |
|
} |
221 |
+ |
/* blur final map to reduce bias */ |
222 |
+ |
for (i = 0; i < hp->ns-1; i++) { |
223 |
+ |
float *ep2; |
224 |
+ |
ep = earr + i*hp->ns; |
225 |
+ |
ep2 = ep + hp->ns*hp->ns; |
226 |
+ |
for (j = 0; j < hp->ns-1; j++, ep++, ep2++) { |
227 |
+ |
ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]); |
228 |
+ |
ep[1] += .125*ep2[0]; |
229 |
+ |
ep[hp->ns] += .125*ep2[0]; |
230 |
+ |
} |
231 |
+ |
} |
232 |
|
return(earr); |
233 |
|
} |
234 |
|
|
269 |
|
double wt |
270 |
|
) |
271 |
|
{ |
272 |
+ |
int backside = (wt < 0); |
273 |
|
AMBHEMI *hp; |
274 |
|
double d; |
275 |
|
int n, i, j; |
278 |
|
if (d <= FTINY) |
279 |
|
return(NULL); |
280 |
|
/* set number of divisions */ |
281 |
+ |
if (backside) wt = -wt; |
282 |
|
if (ambacc <= FTINY && |
283 |
< |
wt > (d *= 0.8*r->rweight/(ambdiv*minweight))) |
283 |
> |
wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20))) |
284 |
|
wt = d; /* avoid ray termination */ |
285 |
|
n = sqrt(ambdiv * wt) + 0.5; |
286 |
|
i = 1 + (MINADIV-1)*(ambacc > FTINY); |
290 |
|
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
291 |
|
if (hp == NULL) |
292 |
|
error(SYSTEM, "out of memory in samp_hemi"); |
293 |
+ |
|
294 |
+ |
if (backside) { |
295 |
+ |
hp->atyp = TAMBIENT; |
296 |
+ |
hp->onrm[0] = -r->ron[0]; |
297 |
+ |
hp->onrm[1] = -r->ron[1]; |
298 |
+ |
hp->onrm[2] = -r->ron[2]; |
299 |
+ |
} else { |
300 |
+ |
hp->atyp = RAMBIENT; |
301 |
+ |
VCOPY(hp->onrm, r->ron); |
302 |
+ |
} |
303 |
|
hp->rp = r; |
304 |
|
hp->ns = n; |
305 |
|
scolorblack(hp->acol); |
310 |
|
d = 1.0/(n*n); |
311 |
|
scalescolor(hp->acoef, d); |
312 |
|
/* make tangent plane axes */ |
313 |
< |
if (!getperpendicular(hp->ux, r->ron, 1)) |
313 |
> |
if (!getperpendicular(hp->ux, hp->onrm, 1)) |
314 |
|
error(CONSISTENCY, "bad ray direction in samp_hemi"); |
315 |
< |
VCROSS(hp->uy, r->ron, hp->ux); |
315 |
> |
VCROSS(hp->uy, hp->onrm, hp->ux); |
316 |
|
/* sample divisions */ |
317 |
|
for (i = hp->ns; i--; ) |
318 |
|
for (j = hp->ns; j--; ) |
329 |
|
if (hp->sampOK <= MINADIV*MINADIV) |
330 |
|
return(hp); /* don't bother super-sampling */ |
331 |
|
n = ambssamp*wt + 0.5; |
332 |
< |
if (n > 8) { /* perform super-sampling? */ |
332 |
> |
if (n >= 4*hp->ns) { /* perform super-sampling? */ |
333 |
|
ambsupersamp(hp, n); |
334 |
|
copyscolor(rcol, hp->acol); |
335 |
|
} |
577 |
|
for (j = 0; j < hp->ns-1; j++) { |
578 |
|
comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1)); |
579 |
|
if (hessrow != NULL) |
580 |
< |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
580 |
> |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
581 |
|
if (gradrow != NULL) |
582 |
< |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
582 |
> |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
583 |
|
} |
584 |
|
/* sum each row of triangles */ |
585 |
|
for (i = 0; i < hp->ns-1; i++) { |
587 |
|
FVECT gradcol; |
588 |
|
comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0)); |
589 |
|
if (hessrow != NULL) |
590 |
< |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
590 |
> |
comp_hessian(hesscol, &fftr, hp->onrm); |
591 |
|
if (gradrow != NULL) |
592 |
< |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
592 |
> |
comp_gradient(gradcol, &fftr, hp->onrm); |
593 |
|
for (j = 0; j < hp->ns-1; j++) { |
594 |
|
FVECT hessdia[3]; /* compute triangle contributions */ |
595 |
|
FVECT graddia; |
599 |
|
/* diagonal (inner) edge */ |
600 |
|
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j)); |
601 |
|
if (hessrow != NULL) { |
602 |
< |
comp_hessian(hessdia, &fftr, hp->rp->ron); |
602 |
> |
comp_hessian(hessdia, &fftr, hp->onrm); |
603 |
|
rev_hessian(hesscol); |
604 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
605 |
|
} |
606 |
|
if (gradrow != NULL) { |
607 |
< |
comp_gradient(graddia, &fftr, hp->rp->ron); |
607 |
> |
comp_gradient(graddia, &fftr, hp->onrm); |
608 |
|
rev_gradient(gradcol); |
609 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
610 |
|
} |
611 |
|
/* initialize edge in next row */ |
612 |
|
comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j)); |
613 |
|
if (hessrow != NULL) |
614 |
< |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
614 |
> |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
615 |
|
if (gradrow != NULL) |
616 |
< |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
616 |
> |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
617 |
|
/* new column edge & paired triangle */ |
618 |
|
backg = back_ambval(hp, AI(hp,i+1,j+1), |
619 |
|
AI(hp,i+1,j), AI(hp,i,j+1)); |
620 |
|
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1)); |
621 |
|
if (hessrow != NULL) { |
622 |
< |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
622 |
> |
comp_hessian(hesscol, &fftr, hp->onrm); |
623 |
|
rev_hessian(hessdia); |
624 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
625 |
|
if (i < hp->ns-2) |
626 |
|
rev_hessian(hessrow[j]); |
627 |
|
} |
628 |
|
if (gradrow != NULL) { |
629 |
< |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
629 |
> |
comp_gradient(gradcol, &fftr, hp->onrm); |
630 |
|
rev_gradient(graddia); |
631 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
632 |
|
if (i < hp->ns-2) |
662 |
|
/* use vector for azimuth + 90deg */ |
663 |
|
VSUB(vd, ap->p, hp->rp->rop); |
664 |
|
/* brightness over cosine factor */ |
665 |
< |
gfact = ap->v[0] / DOT(hp->rp->ron, vd); |
665 |
> |
gfact = ap->v[0] / DOT(hp->onrm, vd); |
666 |
|
/* sine = proj_radius/vd_length */ |
667 |
|
dgsum[0] -= DOT(uv[1], vd) * gfact; |
668 |
|
dgsum[1] += DOT(uv[0], vd) * gfact; |
720 |
|
doambient( /* compute ambient component */ |
721 |
|
SCOLOR rcol, /* input/output color */ |
722 |
|
RAY *r, |
723 |
< |
double wt, |
723 |
> |
double wt, /* negative for back side */ |
724 |
|
FVECT uv[2], /* returned (optional) */ |
725 |
|
float ra[2], /* returned (optional) */ |
726 |
|
float pg[2], /* returned (optional) */ |
787 |
|
if (ra[1] < minarad) |
788 |
|
ra[1] = minarad; |
789 |
|
} |
790 |
< |
ra[0] *= d = 1.0/sqrt(wt); |
790 |
> |
ra[0] *= d = 1.0/sqrt(fabs(wt)); |
791 |
|
if ((ra[1] *= d) > 2.0*ra[0]) |
792 |
|
ra[1] = 2.0*ra[0]; |
793 |
|
if (ra[1] > maxarad) { |