24 |
|
#ifndef MINADIV |
25 |
|
#define MINADIV 7 /* minimum # divisions in each dimension */ |
26 |
|
#endif |
27 |
+ |
#ifndef MINSDIST |
28 |
+ |
#define MINSDIST 0.25 /* def. min. spacing = 1/4th division */ |
29 |
+ |
#endif |
30 |
|
|
31 |
|
typedef struct { |
32 |
|
FVECT p; /* intersection point */ |
38 |
|
RAY *rp; /* originating ray sample */ |
39 |
|
int ns; /* number of samples per axis */ |
40 |
|
int sampOK; /* acquired full sample set? */ |
41 |
+ |
int atyp; /* RAMBIENT or TAMBIENT */ |
42 |
|
SCOLOR acoef; /* division contribution coefficient */ |
43 |
|
SCOLOR acol; /* accumulated color */ |
44 |
+ |
FVECT onrm; /* oriented unperturbed surface normal */ |
45 |
|
FVECT ux, uy; /* tangent axis unit vectors */ |
46 |
|
AMBSAMP sa[1]; /* sample array (extends struct) */ |
47 |
|
} AMBHEMI; /* ambient sample hemisphere */ |
55 |
|
} FFTRI; /* vectors and coefficients for Hessian calculation */ |
56 |
|
|
57 |
|
|
58 |
+ |
#define XLOTSIZ 512 /* size of used car lot */ |
59 |
+ |
#define CFIRST 0 /* first corner */ |
60 |
+ |
#define COTHER (CFIRST+4) /* non-corner sample */ |
61 |
+ |
#define CMAXTARGET (int)(XLOTSIZ*MINSDIST/(1-MINSDIST)) |
62 |
+ |
|
63 |
|
static int |
64 |
< |
ambcollision( /* proposed direciton collides? */ |
64 |
> |
psample_class(double ss[2]) /* classify patch sample */ |
65 |
> |
{ |
66 |
> |
if (ss[0] < MINSDIST) { |
67 |
> |
if (ss[1] < MINSDIST) |
68 |
> |
return(CFIRST); |
69 |
> |
if (ss[1] > 1.-MINSDIST) |
70 |
> |
return(CFIRST+2); |
71 |
> |
} else if (ss[0] > 1.-MINSDIST) { |
72 |
> |
if (ss[1] < MINSDIST) |
73 |
> |
return(CFIRST+1); |
74 |
> |
if (ss[1] > 1.-MINSDIST) |
75 |
> |
return(CFIRST+3); |
76 |
> |
} |
77 |
> |
return(COTHER); /* not in a corner */ |
78 |
> |
} |
79 |
> |
|
80 |
> |
static void |
81 |
> |
trade_patchsamp(double ss[2]) /* trade in problem patch position */ |
82 |
> |
{ |
83 |
> |
static float tradelot[XLOTSIZ][2]; |
84 |
> |
static short gterm[COTHER+1]; |
85 |
> |
double repl[2]; |
86 |
> |
int sclass, rclass; |
87 |
> |
int x; |
88 |
> |
/* initialize lot? */ |
89 |
> |
while (gterm[COTHER] < XLOTSIZ) { |
90 |
> |
tradelot[gterm[COTHER]][0] = frandom(); |
91 |
> |
tradelot[gterm[COTHER]][1] = frandom(); |
92 |
> |
++gterm[COTHER]; |
93 |
> |
} |
94 |
> |
/* get trade-in candidate... */ |
95 |
> |
sclass = psample_class(ss); /* submitted corner or not? */ |
96 |
> |
switch (sclass) { |
97 |
> |
case COTHER: /* trade mid-edge with corner/any */ |
98 |
> |
x = irandom( gterm[COTHER-1] > CMAXTARGET |
99 |
> |
? gterm[COTHER-1] : XLOTSIZ ); |
100 |
> |
break; |
101 |
> |
case CFIRST: /* kick out of first corner */ |
102 |
> |
x = gterm[CFIRST] + irandom(XLOTSIZ - gterm[CFIRST]); |
103 |
> |
break; |
104 |
> |
default: /* kick out of 2nd-4th corner */ |
105 |
> |
x = irandom(XLOTSIZ - (gterm[sclass] - gterm[sclass-1])); |
106 |
> |
x += (x >= gterm[sclass-1])*(gterm[sclass] - gterm[sclass-1]); |
107 |
> |
break; |
108 |
> |
} |
109 |
> |
repl[0] = tradelot[x][0]; /* save selected replacement (result) */ |
110 |
> |
repl[1] = tradelot[x][1]; |
111 |
> |
/* identify replacement class */ |
112 |
> |
for (rclass = CFIRST; rclass < COTHER; rclass++) |
113 |
> |
if (x < gterm[rclass]) |
114 |
> |
break; /* repark to keep classes grouped */ |
115 |
> |
while (rclass > sclass) { /* replacement group after submitted? */ |
116 |
> |
tradelot[x][0] = tradelot[gterm[rclass-1]][0]; |
117 |
> |
tradelot[x][1] = tradelot[gterm[rclass-1]][1]; |
118 |
> |
x = gterm[--rclass]++; |
119 |
> |
} |
120 |
> |
while (rclass < sclass) { /* replacement group before submitted? */ |
121 |
> |
tradelot[x][0] = tradelot[--gterm[rclass]][0]; |
122 |
> |
tradelot[x][1] = tradelot[gterm[rclass]][1]; |
123 |
> |
x = gterm[rclass++]; |
124 |
> |
} |
125 |
> |
tradelot[x][0] = ss[0]; /* complete the trade-in */ |
126 |
> |
tradelot[x][1] = ss[1]; |
127 |
> |
ss[0] = repl[0]; |
128 |
> |
ss[1] = repl[1]; |
129 |
> |
} |
130 |
> |
|
131 |
> |
#undef XLOTSIZ |
132 |
> |
#undef COTHER |
133 |
> |
#undef CFIRST |
134 |
> |
|
135 |
> |
|
136 |
> |
static int |
137 |
> |
ambcollision( /* proposed direction collides? */ |
138 |
|
AMBHEMI *hp, |
139 |
|
int i, |
140 |
|
int j, |
141 |
< |
FVECT dv |
141 |
> |
RREAL spt[2] |
142 |
|
) |
143 |
|
{ |
61 |
– |
double cos_thresh; |
144 |
|
int ii, jj; |
63 |
– |
/* min. spacing = 1/4th division */ |
64 |
– |
cos_thresh = (PI/4.)/(double)hp->ns; |
65 |
– |
cos_thresh = 1. - .5*cos_thresh*cos_thresh; |
145 |
|
/* check existing neighbors */ |
146 |
|
for (ii = i-1; ii <= i+1; ii++) { |
147 |
|
if (ii < 0) continue; |
149 |
|
for (jj = j-1; jj <= j+1; jj++) { |
150 |
|
AMBSAMP *ap; |
151 |
|
FVECT avec; |
152 |
< |
double dprod; |
152 |
> |
double dx, dy; |
153 |
|
if (jj < 0) continue; |
154 |
|
if (jj >= hp->ns) break; |
155 |
|
if ((ii==i) & (jj==j)) continue; |
157 |
|
if (ap->d <= .5/FHUGE) |
158 |
|
continue; /* no one home */ |
159 |
|
VSUB(avec, ap->p, hp->rp->rop); |
160 |
< |
dprod = DOT(avec, dv); |
161 |
< |
if (dprod >= cos_thresh*VLEN(avec)) |
162 |
< |
return(1); /* collision */ |
160 |
> |
normalize(avec); /* use diskworld distance */ |
161 |
> |
dx = DOT(avec, hp->ux) - spt[0]; |
162 |
> |
dy = DOT(avec, hp->uy) - spt[1]; |
163 |
> |
if ((dx*dx + dy*dy)*(hp->ns*hp->ns) < |
164 |
> |
PI*MINSDIST*MINSDIST) |
165 |
> |
return(1); /* too close */ |
166 |
|
} |
167 |
|
} |
168 |
|
return(0); /* nothing to worry about */ |
177 |
|
int n |
178 |
|
) |
179 |
|
{ |
180 |
+ |
int trade_ok = (!n & (hp->ns >= 4))*21; |
181 |
|
AMBSAMP *ap = &ambsam(hp,i,j); |
182 |
|
RAY ar; |
183 |
|
int hlist[3], ii; |
184 |
+ |
double ss[2]; |
185 |
|
RREAL spt[2]; |
186 |
|
double zd; |
187 |
|
/* generate hemispherical sample */ |
190 |
|
setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
191 |
|
else |
192 |
|
copyscolor(ar.rcoef, hp->acoef); |
193 |
< |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) |
193 |
> |
if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0) |
194 |
|
return(0); |
195 |
|
if (ambacc > FTINY) { |
196 |
|
smultscolor(ar.rcoef, hp->acoef); |
197 |
|
scalescolor(ar.rcoef, 1./AVGREFL); |
198 |
|
} |
199 |
|
hlist[0] = hp->rp->rno; |
200 |
< |
hlist[1] = j; |
201 |
< |
hlist[2] = i; |
202 |
< |
multisamp(spt, 2, urand(ilhash(hlist,3)+n)); |
203 |
< |
resample: |
204 |
< |
square2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns); |
200 |
> |
hlist[1] = AI(hp,i,j); |
201 |
> |
hlist[2] = samplendx; |
202 |
> |
multisamp(ss, 2, urand(ilhash(hlist,3)+n)); |
203 |
> |
square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns); |
204 |
> |
/* avoid coincident samples? */ |
205 |
> |
while (trade_ok-- && ambcollision(hp, i, j, spt)) { |
206 |
> |
if (trade_ok) { |
207 |
> |
trade_patchsamp(ss); |
208 |
> |
} else { /* punting... */ |
209 |
> |
ss[0] = MINSDIST + (1-2*MINSDIST)*frandom(); |
210 |
> |
ss[1] = MINSDIST + (1-2*MINSDIST)*frandom(); |
211 |
> |
} |
212 |
> |
square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns); |
213 |
> |
} |
214 |
|
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
215 |
|
for (ii = 3; ii--; ) |
216 |
|
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
217 |
|
spt[1]*hp->uy[ii] + |
218 |
< |
zd*hp->rp->ron[ii]; |
218 |
> |
zd*hp->onrm[ii]; |
219 |
|
checknorm(ar.rdir); |
127 |
– |
/* avoid coincident samples */ |
128 |
– |
if (!n && ambcollision(hp, i, j, ar.rdir)) { |
129 |
– |
spt[0] = frandom(); spt[1] = frandom(); |
130 |
– |
goto resample; /* reject this sample */ |
131 |
– |
} |
220 |
|
dimlist[ndims++] = AI(hp,i,j) + 90171; |
221 |
|
rayvalue(&ar); /* evaluate ray */ |
222 |
|
ndims--; |
248 |
|
static float * |
249 |
|
getambdiffs(AMBHEMI *hp) |
250 |
|
{ |
251 |
< |
const double normf = 1./bright(hp->acoef); |
252 |
< |
float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float)); |
251 |
> |
const double normf = 1./(pbright(hp->acoef) + FTINY); |
252 |
> |
float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float)); |
253 |
|
float *ep; |
254 |
|
AMBSAMP *ap; |
255 |
|
double b, b1, d2; |
258 |
|
if (earr == NULL) /* out of memory? */ |
259 |
|
return(NULL); |
260 |
|
/* sum squared neighbor diffs */ |
261 |
< |
for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) |
261 |
> |
ap = hp->sa; |
262 |
> |
ep = earr + hp->ns*hp->ns; /* original estimates to scratch */ |
263 |
> |
for (i = 0; i < hp->ns; i++) |
264 |
|
for (j = 0; j < hp->ns; j++, ap++, ep++) { |
265 |
|
b = pbright(ap[0].v); |
266 |
|
if (i) { /* from above */ |
286 |
|
ep[-hp->ns-1] += d2; |
287 |
|
} |
288 |
|
/* correct for number of neighbors */ |
289 |
< |
earr[0] *= 8./3.; |
290 |
< |
earr[hp->ns-1] *= 8./3.; |
291 |
< |
earr[(hp->ns-1)*hp->ns] *= 8./3.; |
292 |
< |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.; |
289 |
> |
ep = earr + hp->ns*hp->ns; |
290 |
> |
ep[0] *= 6./3.; |
291 |
> |
ep[hp->ns-1] *= 6./3.; |
292 |
> |
ep[(hp->ns-1)*hp->ns] *= 6./3.; |
293 |
> |
ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.; |
294 |
|
for (i = 1; i < hp->ns-1; i++) { |
295 |
< |
earr[i*hp->ns] *= 8./5.; |
296 |
< |
earr[i*hp->ns + hp->ns-1] *= 8./5.; |
295 |
> |
ep[i*hp->ns] *= 6./5.; |
296 |
> |
ep[i*hp->ns + hp->ns-1] *= 6./5.; |
297 |
|
} |
298 |
|
for (j = 1; j < hp->ns-1; j++) { |
299 |
< |
earr[j] *= 8./5.; |
300 |
< |
earr[(hp->ns-1)*hp->ns + j] *= 8./5.; |
299 |
> |
ep[j] *= 6./5.; |
300 |
> |
ep[(hp->ns-1)*hp->ns + j] *= 6./5.; |
301 |
|
} |
302 |
+ |
/* blur final map to reduce bias */ |
303 |
+ |
for (i = 0; i < hp->ns-1; i++) { |
304 |
+ |
float *ep2; |
305 |
+ |
ep = earr + i*hp->ns; |
306 |
+ |
ep2 = ep + hp->ns*hp->ns; |
307 |
+ |
for (j = 0; j < hp->ns-1; j++, ep++, ep2++) { |
308 |
+ |
ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]); |
309 |
+ |
ep[1] += .125*ep2[0]; |
310 |
+ |
ep[hp->ns] += .125*ep2[0]; |
311 |
+ |
} |
312 |
+ |
} |
313 |
|
return(earr); |
314 |
|
} |
315 |
|
|
350 |
|
double wt |
351 |
|
) |
352 |
|
{ |
353 |
+ |
int backside = (wt < 0); |
354 |
|
AMBHEMI *hp; |
355 |
|
double d; |
356 |
|
int n, i, j; |
359 |
|
if (d <= FTINY) |
360 |
|
return(NULL); |
361 |
|
/* set number of divisions */ |
362 |
+ |
if (backside) wt = -wt; |
363 |
|
if (ambacc <= FTINY && |
364 |
< |
wt > (d *= 0.8*r->rweight/(ambdiv*minweight))) |
364 |
> |
wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20))) |
365 |
|
wt = d; /* avoid ray termination */ |
366 |
|
n = sqrt(ambdiv * wt) + 0.5; |
367 |
|
i = 1 + (MINADIV-1)*(ambacc > FTINY); |
371 |
|
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
372 |
|
if (hp == NULL) |
373 |
|
error(SYSTEM, "out of memory in samp_hemi"); |
374 |
+ |
|
375 |
+ |
if (backside) { |
376 |
+ |
hp->atyp = TAMBIENT; |
377 |
+ |
hp->onrm[0] = -r->ron[0]; |
378 |
+ |
hp->onrm[1] = -r->ron[1]; |
379 |
+ |
hp->onrm[2] = -r->ron[2]; |
380 |
+ |
} else { |
381 |
+ |
hp->atyp = RAMBIENT; |
382 |
+ |
VCOPY(hp->onrm, r->ron); |
383 |
+ |
} |
384 |
|
hp->rp = r; |
385 |
|
hp->ns = n; |
386 |
|
scolorblack(hp->acol); |
391 |
|
d = 1.0/(n*n); |
392 |
|
scalescolor(hp->acoef, d); |
393 |
|
/* make tangent plane axes */ |
394 |
< |
if (!getperpendicular(hp->ux, r->ron, 1)) |
394 |
> |
if (!getperpendicular(hp->ux, hp->onrm, 1)) |
395 |
|
error(CONSISTENCY, "bad ray direction in samp_hemi"); |
396 |
< |
VCROSS(hp->uy, r->ron, hp->ux); |
396 |
> |
VCROSS(hp->uy, hp->onrm, hp->ux); |
397 |
|
/* sample divisions */ |
398 |
|
for (i = hp->ns; i--; ) |
399 |
|
for (j = hp->ns; j--; ) |
410 |
|
if (hp->sampOK <= MINADIV*MINADIV) |
411 |
|
return(hp); /* don't bother super-sampling */ |
412 |
|
n = ambssamp*wt + 0.5; |
413 |
< |
if (n > 8) { /* perform super-sampling? */ |
413 |
> |
if (n >= 4*hp->ns) { /* perform super-sampling? */ |
414 |
|
ambsupersamp(hp, n); |
415 |
|
copyscolor(rcol, hp->acol); |
416 |
|
} |
658 |
|
for (j = 0; j < hp->ns-1; j++) { |
659 |
|
comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1)); |
660 |
|
if (hessrow != NULL) |
661 |
< |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
661 |
> |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
662 |
|
if (gradrow != NULL) |
663 |
< |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
663 |
> |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
664 |
|
} |
665 |
|
/* sum each row of triangles */ |
666 |
|
for (i = 0; i < hp->ns-1; i++) { |
668 |
|
FVECT gradcol; |
669 |
|
comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0)); |
670 |
|
if (hessrow != NULL) |
671 |
< |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
671 |
> |
comp_hessian(hesscol, &fftr, hp->onrm); |
672 |
|
if (gradrow != NULL) |
673 |
< |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
673 |
> |
comp_gradient(gradcol, &fftr, hp->onrm); |
674 |
|
for (j = 0; j < hp->ns-1; j++) { |
675 |
|
FVECT hessdia[3]; /* compute triangle contributions */ |
676 |
|
FVECT graddia; |
680 |
|
/* diagonal (inner) edge */ |
681 |
|
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j)); |
682 |
|
if (hessrow != NULL) { |
683 |
< |
comp_hessian(hessdia, &fftr, hp->rp->ron); |
683 |
> |
comp_hessian(hessdia, &fftr, hp->onrm); |
684 |
|
rev_hessian(hesscol); |
685 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
686 |
|
} |
687 |
|
if (gradrow != NULL) { |
688 |
< |
comp_gradient(graddia, &fftr, hp->rp->ron); |
688 |
> |
comp_gradient(graddia, &fftr, hp->onrm); |
689 |
|
rev_gradient(gradcol); |
690 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
691 |
|
} |
692 |
|
/* initialize edge in next row */ |
693 |
|
comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j)); |
694 |
|
if (hessrow != NULL) |
695 |
< |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
695 |
> |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
696 |
|
if (gradrow != NULL) |
697 |
< |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
697 |
> |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
698 |
|
/* new column edge & paired triangle */ |
699 |
|
backg = back_ambval(hp, AI(hp,i+1,j+1), |
700 |
|
AI(hp,i+1,j), AI(hp,i,j+1)); |
701 |
|
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1)); |
702 |
|
if (hessrow != NULL) { |
703 |
< |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
703 |
> |
comp_hessian(hesscol, &fftr, hp->onrm); |
704 |
|
rev_hessian(hessdia); |
705 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
706 |
|
if (i < hp->ns-2) |
707 |
|
rev_hessian(hessrow[j]); |
708 |
|
} |
709 |
|
if (gradrow != NULL) { |
710 |
< |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
710 |
> |
comp_gradient(gradcol, &fftr, hp->onrm); |
711 |
|
rev_gradient(graddia); |
712 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
713 |
|
if (i < hp->ns-2) |
743 |
|
/* use vector for azimuth + 90deg */ |
744 |
|
VSUB(vd, ap->p, hp->rp->rop); |
745 |
|
/* brightness over cosine factor */ |
746 |
< |
gfact = ap->v[0] / DOT(hp->rp->ron, vd); |
746 |
> |
gfact = ap->v[0] / DOT(hp->onrm, vd); |
747 |
|
/* sine = proj_radius/vd_length */ |
748 |
|
dgsum[0] -= DOT(uv[1], vd) * gfact; |
749 |
|
dgsum[1] += DOT(uv[0], vd) * gfact; |
801 |
|
doambient( /* compute ambient component */ |
802 |
|
SCOLOR rcol, /* input/output color */ |
803 |
|
RAY *r, |
804 |
< |
double wt, |
804 |
> |
double wt, /* negative for back side */ |
805 |
|
FVECT uv[2], /* returned (optional) */ |
806 |
|
float ra[2], /* returned (optional) */ |
807 |
|
float pg[2], /* returned (optional) */ |
833 |
|
free(hp); /* Hessian not requested/possible */ |
834 |
|
return(-1); /* value-only return value */ |
835 |
|
} |
836 |
< |
if ((d = scolor_photopic(rcol)) > FTINY) { |
837 |
< |
d = 0.99*(hp->ns*hp->ns)/d; /* normalize Y values */ |
836 |
> |
if ((d = scolor_mean(rcol)) > FTINY) { |
837 |
> |
d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */ |
838 |
|
K = 0.01; |
839 |
|
} else { /* or fall back on geometric Hessian */ |
840 |
|
K = 1.0; |
868 |
|
if (ra[1] < minarad) |
869 |
|
ra[1] = minarad; |
870 |
|
} |
871 |
< |
ra[0] *= d = 1.0/sqrt(wt); |
871 |
> |
ra[0] *= d = 1.0/sqrt(fabs(wt)); |
872 |
|
if ((ra[1] *= d) > 2.0*ra[0]) |
873 |
|
ra[1] = 2.0*ra[0]; |
874 |
|
if (ra[1] > maxarad) { |