| 4 |
|
/* |
| 5 |
|
* Routines to compute "ambient" values using Monte Carlo |
| 6 |
|
* |
| 7 |
+ |
* Hessian calculations based on "Practical Hessian-Based Error Control |
| 8 |
+ |
* for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz |
| 9 |
+ |
* from ACM SIGGRAPH Asia 2012 conference proceedings. |
| 10 |
+ |
* |
| 11 |
+ |
* Added book-keeping optimization to avoid calculations that would |
| 12 |
+ |
* cancel due to traversal both directions on edges that are adjacent |
| 13 |
+ |
* to same-valued triangles. This cuts about half of Hessian math. |
| 14 |
+ |
* |
| 15 |
|
* Declarations of external symbols in ambient.h |
| 16 |
|
*/ |
| 17 |
|
|
| 18 |
|
#include "copyright.h" |
| 19 |
|
|
| 20 |
|
#include "ray.h" |
| 13 |
– |
|
| 21 |
|
#include "ambient.h" |
| 15 |
– |
|
| 22 |
|
#include "random.h" |
| 23 |
|
|
| 24 |
+ |
#ifndef OLDAMB |
| 25 |
|
|
| 26 |
+ |
extern void SDsquare2disk(double ds[2], double seedx, double seedy); |
| 27 |
+ |
|
| 28 |
+ |
typedef struct { |
| 29 |
+ |
COLOR v; /* hemisphere sample value */ |
| 30 |
+ |
float d; /* reciprocal distance */ |
| 31 |
+ |
FVECT p; /* intersection point */ |
| 32 |
+ |
} AMBSAMP; /* sample value */ |
| 33 |
+ |
|
| 34 |
+ |
typedef struct { |
| 35 |
+ |
RAY *rp; /* originating ray sample */ |
| 36 |
+ |
int ns; /* number of samples per axis */ |
| 37 |
+ |
int sampOK; /* acquired full sample set? */ |
| 38 |
+ |
COLOR acoef; /* division contribution coefficient */ |
| 39 |
+ |
double acol[3]; /* accumulated color */ |
| 40 |
+ |
FVECT ux, uy; /* tangent axis unit vectors */ |
| 41 |
+ |
AMBSAMP sa[1]; /* sample array (extends struct) */ |
| 42 |
+ |
} AMBHEMI; /* ambient sample hemisphere */ |
| 43 |
+ |
|
| 44 |
+ |
#define AI(h,i,j) ((i)*(h)->ns + (j)) |
| 45 |
+ |
#define ambsam(h,i,j) (h)->sa[AI(h,i,j)] |
| 46 |
+ |
|
| 47 |
+ |
typedef struct { |
| 48 |
+ |
FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; |
| 49 |
+ |
double I1, I2; |
| 50 |
+ |
} FFTRI; /* vectors and coefficients for Hessian calculation */ |
| 51 |
+ |
|
| 52 |
+ |
|
| 53 |
+ |
static int |
| 54 |
+ |
ambcollision( /* proposed direciton collides? */ |
| 55 |
+ |
AMBHEMI *hp, |
| 56 |
+ |
int i, |
| 57 |
+ |
int j, |
| 58 |
+ |
FVECT dv |
| 59 |
+ |
) |
| 60 |
+ |
{ |
| 61 |
+ |
double cos_thresh; |
| 62 |
+ |
int ii, jj; |
| 63 |
+ |
/* min. spacing = 1/4th division */ |
| 64 |
+ |
cos_thresh = (PI/4.)/(double)hp->ns; |
| 65 |
+ |
cos_thresh = 1. - .5*cos_thresh*cos_thresh; |
| 66 |
+ |
/* check existing neighbors */ |
| 67 |
+ |
for (ii = i-1; ii <= i+1; ii++) { |
| 68 |
+ |
if (ii < 0) continue; |
| 69 |
+ |
if (ii >= hp->ns) break; |
| 70 |
+ |
for (jj = j-1; jj <= j+1; jj++) { |
| 71 |
+ |
AMBSAMP *ap; |
| 72 |
+ |
FVECT avec; |
| 73 |
+ |
double dprod; |
| 74 |
+ |
if (jj < 0) continue; |
| 75 |
+ |
if (jj >= hp->ns) break; |
| 76 |
+ |
if ((ii==i) & (jj==j)) continue; |
| 77 |
+ |
ap = &ambsam(hp,ii,jj); |
| 78 |
+ |
if (ap->d <= .5/FHUGE) |
| 79 |
+ |
continue; /* no one home */ |
| 80 |
+ |
VSUB(avec, ap->p, hp->rp->rop); |
| 81 |
+ |
dprod = DOT(avec, dv); |
| 82 |
+ |
if (dprod >= cos_thresh*VLEN(avec)) |
| 83 |
+ |
return(1); /* collision */ |
| 84 |
+ |
} |
| 85 |
+ |
} |
| 86 |
+ |
return(0); /* nothing to worry about */ |
| 87 |
+ |
} |
| 88 |
+ |
|
| 89 |
+ |
|
| 90 |
+ |
static int |
| 91 |
+ |
ambsample( /* initial ambient division sample */ |
| 92 |
+ |
AMBHEMI *hp, |
| 93 |
+ |
int i, |
| 94 |
+ |
int j, |
| 95 |
+ |
int n |
| 96 |
+ |
) |
| 97 |
+ |
{ |
| 98 |
+ |
AMBSAMP *ap = &ambsam(hp,i,j); |
| 99 |
+ |
RAY ar; |
| 100 |
+ |
int hlist[3], ii; |
| 101 |
+ |
double spt[2], zd; |
| 102 |
+ |
/* generate hemispherical sample */ |
| 103 |
+ |
/* ambient coefficient for weight */ |
| 104 |
+ |
if (ambacc > FTINY) |
| 105 |
+ |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
| 106 |
+ |
else |
| 107 |
+ |
copycolor(ar.rcoef, hp->acoef); |
| 108 |
+ |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) |
| 109 |
+ |
return(0); |
| 110 |
+ |
if (ambacc > FTINY) { |
| 111 |
+ |
multcolor(ar.rcoef, hp->acoef); |
| 112 |
+ |
scalecolor(ar.rcoef, 1./AVGREFL); |
| 113 |
+ |
} |
| 114 |
+ |
hlist[0] = hp->rp->rno; |
| 115 |
+ |
hlist[1] = j; |
| 116 |
+ |
hlist[2] = i; |
| 117 |
+ |
multisamp(spt, 2, urand(ilhash(hlist,3)+n)); |
| 118 |
+ |
resample: |
| 119 |
+ |
SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns); |
| 120 |
+ |
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
| 121 |
+ |
for (ii = 3; ii--; ) |
| 122 |
+ |
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
| 123 |
+ |
spt[1]*hp->uy[ii] + |
| 124 |
+ |
zd*hp->rp->ron[ii]; |
| 125 |
+ |
checknorm(ar.rdir); |
| 126 |
+ |
/* avoid coincident samples */ |
| 127 |
+ |
if (!n && ambcollision(hp, i, j, ar.rdir)) { |
| 128 |
+ |
spt[0] = frandom(); spt[1] = frandom(); |
| 129 |
+ |
goto resample; /* reject this sample */ |
| 130 |
+ |
} |
| 131 |
+ |
dimlist[ndims++] = AI(hp,i,j) + 90171; |
| 132 |
+ |
rayvalue(&ar); /* evaluate ray */ |
| 133 |
+ |
ndims--; |
| 134 |
+ |
zd = raydistance(&ar); |
| 135 |
+ |
if (zd <= FTINY) |
| 136 |
+ |
return(0); /* should never happen */ |
| 137 |
+ |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
| 138 |
+ |
if (zd*ap->d < 1.0) /* new/closer distance? */ |
| 139 |
+ |
ap->d = 1.0/zd; |
| 140 |
+ |
if (!n) { /* record first vertex & value */ |
| 141 |
+ |
if (zd > 10.0*thescene.cusize + 1000.) |
| 142 |
+ |
zd = 10.0*thescene.cusize + 1000.; |
| 143 |
+ |
VSUM(ap->p, ar.rorg, ar.rdir, zd); |
| 144 |
+ |
copycolor(ap->v, ar.rcol); |
| 145 |
+ |
} else { /* else update recorded value */ |
| 146 |
+ |
hp->acol[RED] -= colval(ap->v,RED); |
| 147 |
+ |
hp->acol[GRN] -= colval(ap->v,GRN); |
| 148 |
+ |
hp->acol[BLU] -= colval(ap->v,BLU); |
| 149 |
+ |
zd = 1.0/(double)(n+1); |
| 150 |
+ |
scalecolor(ar.rcol, zd); |
| 151 |
+ |
zd *= (double)n; |
| 152 |
+ |
scalecolor(ap->v, zd); |
| 153 |
+ |
addcolor(ap->v, ar.rcol); |
| 154 |
+ |
} |
| 155 |
+ |
addcolor(hp->acol, ap->v); /* add to our sum */ |
| 156 |
+ |
return(1); |
| 157 |
+ |
} |
| 158 |
+ |
|
| 159 |
+ |
|
| 160 |
+ |
/* Estimate variance based on ambient division differences */ |
| 161 |
+ |
static float * |
| 162 |
+ |
getambdiffs(AMBHEMI *hp) |
| 163 |
+ |
{ |
| 164 |
+ |
const double normf = 1./bright(hp->acoef); |
| 165 |
+ |
float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float)); |
| 166 |
+ |
float *ep; |
| 167 |
+ |
AMBSAMP *ap; |
| 168 |
+ |
double b, b1, d2; |
| 169 |
+ |
int i, j; |
| 170 |
+ |
|
| 171 |
+ |
if (earr == NULL) /* out of memory? */ |
| 172 |
+ |
return(NULL); |
| 173 |
+ |
/* sum squared neighbor diffs */ |
| 174 |
+ |
for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) |
| 175 |
+ |
for (j = 0; j < hp->ns; j++, ap++, ep++) { |
| 176 |
+ |
b = bright(ap[0].v); |
| 177 |
+ |
if (i) { /* from above */ |
| 178 |
+ |
b1 = bright(ap[-hp->ns].v); |
| 179 |
+ |
d2 = b - b1; |
| 180 |
+ |
d2 *= d2*normf/(b + b1); |
| 181 |
+ |
ep[0] += d2; |
| 182 |
+ |
ep[-hp->ns] += d2; |
| 183 |
+ |
} |
| 184 |
+ |
if (!j) continue; |
| 185 |
+ |
/* from behind */ |
| 186 |
+ |
b1 = bright(ap[-1].v); |
| 187 |
+ |
d2 = b - b1; |
| 188 |
+ |
d2 *= d2*normf/(b + b1); |
| 189 |
+ |
ep[0] += d2; |
| 190 |
+ |
ep[-1] += d2; |
| 191 |
+ |
if (!i) continue; |
| 192 |
+ |
/* diagonal */ |
| 193 |
+ |
b1 = bright(ap[-hp->ns-1].v); |
| 194 |
+ |
d2 = b - b1; |
| 195 |
+ |
d2 *= d2*normf/(b + b1); |
| 196 |
+ |
ep[0] += d2; |
| 197 |
+ |
ep[-hp->ns-1] += d2; |
| 198 |
+ |
} |
| 199 |
+ |
/* correct for number of neighbors */ |
| 200 |
+ |
earr[0] *= 8./3.; |
| 201 |
+ |
earr[hp->ns-1] *= 8./3.; |
| 202 |
+ |
earr[(hp->ns-1)*hp->ns] *= 8./3.; |
| 203 |
+ |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.; |
| 204 |
+ |
for (i = 1; i < hp->ns-1; i++) { |
| 205 |
+ |
earr[i*hp->ns] *= 8./5.; |
| 206 |
+ |
earr[i*hp->ns + hp->ns-1] *= 8./5.; |
| 207 |
+ |
} |
| 208 |
+ |
for (j = 1; j < hp->ns-1; j++) { |
| 209 |
+ |
earr[j] *= 8./5.; |
| 210 |
+ |
earr[(hp->ns-1)*hp->ns + j] *= 8./5.; |
| 211 |
+ |
} |
| 212 |
+ |
return(earr); |
| 213 |
+ |
} |
| 214 |
+ |
|
| 215 |
+ |
|
| 216 |
+ |
/* Perform super-sampling on hemisphere (introduces bias) */ |
| 217 |
+ |
static void |
| 218 |
+ |
ambsupersamp(AMBHEMI *hp, int cnt) |
| 219 |
+ |
{ |
| 220 |
+ |
float *earr = getambdiffs(hp); |
| 221 |
+ |
double e2rem = 0; |
| 222 |
+ |
float *ep; |
| 223 |
+ |
int i, j, n, nss; |
| 224 |
+ |
|
| 225 |
+ |
if (earr == NULL) /* just skip calc. if no memory */ |
| 226 |
+ |
return; |
| 227 |
+ |
/* accumulate estimated variances */ |
| 228 |
+ |
for (ep = earr + hp->ns*hp->ns; ep > earr; ) |
| 229 |
+ |
e2rem += *--ep; |
| 230 |
+ |
ep = earr; /* perform super-sampling */ |
| 231 |
+ |
for (i = 0; i < hp->ns; i++) |
| 232 |
+ |
for (j = 0; j < hp->ns; j++) { |
| 233 |
+ |
if (e2rem <= FTINY) |
| 234 |
+ |
goto done; /* nothing left to do */ |
| 235 |
+ |
nss = *ep/e2rem*cnt + frandom(); |
| 236 |
+ |
for (n = 1; n <= nss && ambsample(hp,i,j,n); n++) |
| 237 |
+ |
if (!--cnt) goto done; |
| 238 |
+ |
e2rem -= *ep++; /* update remainder */ |
| 239 |
+ |
} |
| 240 |
+ |
done: |
| 241 |
+ |
free(earr); |
| 242 |
+ |
} |
| 243 |
+ |
|
| 244 |
+ |
|
| 245 |
+ |
static AMBHEMI * |
| 246 |
+ |
samp_hemi( /* sample indirect hemisphere */ |
| 247 |
+ |
COLOR rcol, |
| 248 |
+ |
RAY *r, |
| 249 |
+ |
double wt |
| 250 |
+ |
) |
| 251 |
+ |
{ |
| 252 |
+ |
AMBHEMI *hp; |
| 253 |
+ |
double d; |
| 254 |
+ |
int n, i, j; |
| 255 |
+ |
/* insignificance check */ |
| 256 |
+ |
if (bright(rcol) <= FTINY) |
| 257 |
+ |
return(NULL); |
| 258 |
+ |
/* set number of divisions */ |
| 259 |
+ |
if (ambacc <= FTINY && |
| 260 |
+ |
wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight))) |
| 261 |
+ |
wt = d; /* avoid ray termination */ |
| 262 |
+ |
n = sqrt(ambdiv * wt) + 0.5; |
| 263 |
+ |
i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ |
| 264 |
+ |
if (n < i) |
| 265 |
+ |
n = i; |
| 266 |
+ |
/* allocate sampling array */ |
| 267 |
+ |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
| 268 |
+ |
if (hp == NULL) |
| 269 |
+ |
error(SYSTEM, "out of memory in samp_hemi"); |
| 270 |
+ |
hp->rp = r; |
| 271 |
+ |
hp->ns = n; |
| 272 |
+ |
hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0; |
| 273 |
+ |
memset(hp->sa, 0, sizeof(AMBSAMP)*n*n); |
| 274 |
+ |
hp->sampOK = 0; |
| 275 |
+ |
/* assign coefficient */ |
| 276 |
+ |
copycolor(hp->acoef, rcol); |
| 277 |
+ |
d = 1.0/(n*n); |
| 278 |
+ |
scalecolor(hp->acoef, d); |
| 279 |
+ |
/* make tangent plane axes */ |
| 280 |
+ |
if (!getperpendicular(hp->ux, r->ron, 1)) |
| 281 |
+ |
error(CONSISTENCY, "bad ray direction in samp_hemi"); |
| 282 |
+ |
VCROSS(hp->uy, r->ron, hp->ux); |
| 283 |
+ |
/* sample divisions */ |
| 284 |
+ |
for (i = hp->ns; i--; ) |
| 285 |
+ |
for (j = hp->ns; j--; ) |
| 286 |
+ |
hp->sampOK += ambsample(hp, i, j, 0); |
| 287 |
+ |
copycolor(rcol, hp->acol); |
| 288 |
+ |
if (!hp->sampOK) { /* utter failure? */ |
| 289 |
+ |
free(hp); |
| 290 |
+ |
return(NULL); |
| 291 |
+ |
} |
| 292 |
+ |
if (hp->sampOK < hp->ns*hp->ns) { |
| 293 |
+ |
hp->sampOK *= -1; /* soft failure */ |
| 294 |
+ |
return(hp); |
| 295 |
+ |
} |
| 296 |
+ |
if (hp->sampOK < 64) |
| 297 |
+ |
return(hp); /* insufficient for super-sampling */ |
| 298 |
+ |
n = ambssamp*wt + 0.5; |
| 299 |
+ |
if (n > 8) { /* perform super-sampling? */ |
| 300 |
+ |
ambsupersamp(hp, n); |
| 301 |
+ |
copycolor(rcol, hp->acol); |
| 302 |
+ |
} |
| 303 |
+ |
return(hp); /* all is well */ |
| 304 |
+ |
} |
| 305 |
+ |
|
| 306 |
+ |
|
| 307 |
+ |
/* Return brightness of farthest ambient sample */ |
| 308 |
+ |
static double |
| 309 |
+ |
back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3) |
| 310 |
+ |
{ |
| 311 |
+ |
if (hp->sa[n1].d <= hp->sa[n2].d) { |
| 312 |
+ |
if (hp->sa[n1].d <= hp->sa[n3].d) |
| 313 |
+ |
return(colval(hp->sa[n1].v,CIEY)); |
| 314 |
+ |
return(colval(hp->sa[n3].v,CIEY)); |
| 315 |
+ |
} |
| 316 |
+ |
if (hp->sa[n2].d <= hp->sa[n3].d) |
| 317 |
+ |
return(colval(hp->sa[n2].v,CIEY)); |
| 318 |
+ |
return(colval(hp->sa[n3].v,CIEY)); |
| 319 |
+ |
} |
| 320 |
+ |
|
| 321 |
+ |
|
| 322 |
+ |
/* Compute vectors and coefficients for Hessian/gradient calcs */ |
| 323 |
+ |
static void |
| 324 |
+ |
comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1) |
| 325 |
+ |
{ |
| 326 |
+ |
double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; |
| 327 |
+ |
int ii; |
| 328 |
+ |
|
| 329 |
+ |
VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop); |
| 330 |
+ |
VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop); |
| 331 |
+ |
VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p); |
| 332 |
+ |
VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); |
| 333 |
+ |
rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); |
| 334 |
+ |
dot_e = DOT(ftp->e_i,ftp->e_i); |
| 335 |
+ |
dot_er = DOT(ftp->e_i, ftp->r_i); |
| 336 |
+ |
rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i); |
| 337 |
+ |
rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
| 338 |
+ |
ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) * |
| 339 |
+ |
sqrt( rdot_cp ); |
| 340 |
+ |
ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r + |
| 341 |
+ |
dot_e*ftp->I1 )*0.5*rdot_cp; |
| 342 |
+ |
J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; |
| 343 |
+ |
for (ii = 3; ii--; ) |
| 344 |
+ |
ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii]; |
| 345 |
+ |
} |
| 346 |
+ |
|
| 347 |
+ |
|
| 348 |
+ |
/* Compose 3x3 matrix from two vectors */ |
| 349 |
+ |
static void |
| 350 |
+ |
compose_matrix(FVECT mat[3], FVECT va, FVECT vb) |
| 351 |
+ |
{ |
| 352 |
+ |
mat[0][0] = 2.0*va[0]*vb[0]; |
| 353 |
+ |
mat[1][1] = 2.0*va[1]*vb[1]; |
| 354 |
+ |
mat[2][2] = 2.0*va[2]*vb[2]; |
| 355 |
+ |
mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0]; |
| 356 |
+ |
mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0]; |
| 357 |
+ |
mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1]; |
| 358 |
+ |
} |
| 359 |
+ |
|
| 360 |
+ |
|
| 361 |
+ |
/* Compute partial 3x3 Hessian matrix for edge */ |
| 362 |
+ |
static void |
| 363 |
+ |
comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) |
| 364 |
+ |
{ |
| 365 |
+ |
FVECT ncp; |
| 366 |
+ |
FVECT m1[3], m2[3], m3[3], m4[3]; |
| 367 |
+ |
double d1, d2, d3, d4; |
| 368 |
+ |
double I3, J3, K3; |
| 369 |
+ |
int i, j; |
| 370 |
+ |
/* compute intermediate coefficients */ |
| 371 |
+ |
d1 = 1.0/DOT(ftp->r_i,ftp->r_i); |
| 372 |
+ |
d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
| 373 |
+ |
d3 = 1.0/DOT(ftp->e_i,ftp->e_i); |
| 374 |
+ |
d4 = DOT(ftp->e_i, ftp->r_i); |
| 375 |
+ |
I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 ) |
| 376 |
+ |
/ ( 4.0*DOT(ftp->rcp,ftp->rcp) ); |
| 377 |
+ |
J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3; |
| 378 |
+ |
K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3); |
| 379 |
+ |
/* intermediate matrices */ |
| 380 |
+ |
VCROSS(ncp, nrm, ftp->e_i); |
| 381 |
+ |
compose_matrix(m1, ncp, ftp->rI2_eJ2); |
| 382 |
+ |
compose_matrix(m2, ftp->r_i, ftp->r_i); |
| 383 |
+ |
compose_matrix(m3, ftp->e_i, ftp->e_i); |
| 384 |
+ |
compose_matrix(m4, ftp->r_i, ftp->e_i); |
| 385 |
+ |
d1 = DOT(nrm, ftp->rcp); |
| 386 |
+ |
d2 = -d1*ftp->I2; |
| 387 |
+ |
d1 *= 2.0; |
| 388 |
+ |
for (i = 3; i--; ) /* final matrix sum */ |
| 389 |
+ |
for (j = 3; j--; ) { |
| 390 |
+ |
hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] + |
| 391 |
+ |
2.0*J3*m4[i][j] ); |
| 392 |
+ |
hess[i][j] += d2*(i==j); |
| 393 |
+ |
hess[i][j] *= -1.0/PI; |
| 394 |
+ |
} |
| 395 |
+ |
} |
| 396 |
+ |
|
| 397 |
+ |
|
| 398 |
+ |
/* Reverse hessian calculation result for edge in other direction */ |
| 399 |
+ |
static void |
| 400 |
+ |
rev_hessian(FVECT hess[3]) |
| 401 |
+ |
{ |
| 402 |
+ |
int i; |
| 403 |
+ |
|
| 404 |
+ |
for (i = 3; i--; ) { |
| 405 |
+ |
hess[i][0] = -hess[i][0]; |
| 406 |
+ |
hess[i][1] = -hess[i][1]; |
| 407 |
+ |
hess[i][2] = -hess[i][2]; |
| 408 |
+ |
} |
| 409 |
+ |
} |
| 410 |
+ |
|
| 411 |
+ |
|
| 412 |
+ |
/* Add to radiometric Hessian from the given triangle */ |
| 413 |
+ |
static void |
| 414 |
+ |
add2hessian(FVECT hess[3], FVECT ehess1[3], |
| 415 |
+ |
FVECT ehess2[3], FVECT ehess3[3], double v) |
| 416 |
+ |
{ |
| 417 |
+ |
int i, j; |
| 418 |
+ |
|
| 419 |
+ |
for (i = 3; i--; ) |
| 420 |
+ |
for (j = 3; j--; ) |
| 421 |
+ |
hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] ); |
| 422 |
+ |
} |
| 423 |
+ |
|
| 424 |
+ |
|
| 425 |
+ |
/* Compute partial displacement form factor gradient for edge */ |
| 426 |
+ |
static void |
| 427 |
+ |
comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm) |
| 428 |
+ |
{ |
| 429 |
+ |
FVECT ncp; |
| 430 |
+ |
double f1; |
| 431 |
+ |
int i; |
| 432 |
+ |
|
| 433 |
+ |
f1 = 2.0*DOT(nrm, ftp->rcp); |
| 434 |
+ |
VCROSS(ncp, nrm, ftp->e_i); |
| 435 |
+ |
for (i = 3; i--; ) |
| 436 |
+ |
grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); |
| 437 |
+ |
} |
| 438 |
+ |
|
| 439 |
+ |
|
| 440 |
+ |
/* Reverse gradient calculation result for edge in other direction */ |
| 441 |
+ |
static void |
| 442 |
+ |
rev_gradient(FVECT grad) |
| 443 |
+ |
{ |
| 444 |
+ |
grad[0] = -grad[0]; |
| 445 |
+ |
grad[1] = -grad[1]; |
| 446 |
+ |
grad[2] = -grad[2]; |
| 447 |
+ |
} |
| 448 |
+ |
|
| 449 |
+ |
|
| 450 |
+ |
/* Add to displacement gradient from the given triangle */ |
| 451 |
+ |
static void |
| 452 |
+ |
add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v) |
| 453 |
+ |
{ |
| 454 |
+ |
int i; |
| 455 |
+ |
|
| 456 |
+ |
for (i = 3; i--; ) |
| 457 |
+ |
grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] ); |
| 458 |
+ |
} |
| 459 |
+ |
|
| 460 |
+ |
|
| 461 |
+ |
/* Compute anisotropic radii and eigenvector directions */ |
| 462 |
+ |
static void |
| 463 |
+ |
eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3]) |
| 464 |
+ |
{ |
| 465 |
+ |
double hess2[2][2]; |
| 466 |
+ |
FVECT a, b; |
| 467 |
+ |
double evalue[2], slope1, xmag1; |
| 468 |
+ |
int i; |
| 469 |
+ |
/* project Hessian to sample plane */ |
| 470 |
+ |
for (i = 3; i--; ) { |
| 471 |
+ |
a[i] = DOT(hessian[i], uv[0]); |
| 472 |
+ |
b[i] = DOT(hessian[i], uv[1]); |
| 473 |
+ |
} |
| 474 |
+ |
hess2[0][0] = DOT(uv[0], a); |
| 475 |
+ |
hess2[0][1] = DOT(uv[0], b); |
| 476 |
+ |
hess2[1][0] = DOT(uv[1], a); |
| 477 |
+ |
hess2[1][1] = DOT(uv[1], b); |
| 478 |
+ |
/* compute eigenvalue(s) */ |
| 479 |
+ |
i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], |
| 480 |
+ |
hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]); |
| 481 |
+ |
if (i == 1) /* double-root (circle) */ |
| 482 |
+ |
evalue[1] = evalue[0]; |
| 483 |
+ |
if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | |
| 484 |
+ |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) { |
| 485 |
+ |
ra[0] = ra[1] = maxarad; |
| 486 |
+ |
return; |
| 487 |
+ |
} |
| 488 |
+ |
if (evalue[0] > evalue[1]) { |
| 489 |
+ |
ra[0] = sqrt(sqrt(4.0/evalue[0])); |
| 490 |
+ |
ra[1] = sqrt(sqrt(4.0/evalue[1])); |
| 491 |
+ |
slope1 = evalue[1]; |
| 492 |
+ |
} else { |
| 493 |
+ |
ra[0] = sqrt(sqrt(4.0/evalue[1])); |
| 494 |
+ |
ra[1] = sqrt(sqrt(4.0/evalue[0])); |
| 495 |
+ |
slope1 = evalue[0]; |
| 496 |
+ |
} |
| 497 |
+ |
/* compute unit eigenvectors */ |
| 498 |
+ |
if (fabs(hess2[0][1]) <= FTINY) |
| 499 |
+ |
return; /* uv OK as is */ |
| 500 |
+ |
slope1 = (slope1 - hess2[0][0]) / hess2[0][1]; |
| 501 |
+ |
xmag1 = sqrt(1.0/(1.0 + slope1*slope1)); |
| 502 |
+ |
for (i = 3; i--; ) { |
| 503 |
+ |
b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i]; |
| 504 |
+ |
a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i]; |
| 505 |
+ |
} |
| 506 |
+ |
VCOPY(uv[0], a); |
| 507 |
+ |
VCOPY(uv[1], b); |
| 508 |
+ |
} |
| 509 |
+ |
|
| 510 |
+ |
|
| 511 |
+ |
static void |
| 512 |
+ |
ambHessian( /* anisotropic radii & pos. gradient */ |
| 513 |
+ |
AMBHEMI *hp, |
| 514 |
+ |
FVECT uv[2], /* returned */ |
| 515 |
+ |
float ra[2], /* returned (optional) */ |
| 516 |
+ |
float pg[2] /* returned (optional) */ |
| 517 |
+ |
) |
| 518 |
+ |
{ |
| 519 |
+ |
static char memerrmsg[] = "out of memory in ambHessian()"; |
| 520 |
+ |
FVECT (*hessrow)[3] = NULL; |
| 521 |
+ |
FVECT *gradrow = NULL; |
| 522 |
+ |
FVECT hessian[3]; |
| 523 |
+ |
FVECT gradient; |
| 524 |
+ |
FFTRI fftr; |
| 525 |
+ |
int i, j; |
| 526 |
+ |
/* be sure to assign unit vectors */ |
| 527 |
+ |
VCOPY(uv[0], hp->ux); |
| 528 |
+ |
VCOPY(uv[1], hp->uy); |
| 529 |
+ |
/* clock-wise vertex traversal from sample POV */ |
| 530 |
+ |
if (ra != NULL) { /* initialize Hessian row buffer */ |
| 531 |
+ |
hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1)); |
| 532 |
+ |
if (hessrow == NULL) |
| 533 |
+ |
error(SYSTEM, memerrmsg); |
| 534 |
+ |
memset(hessian, 0, sizeof(hessian)); |
| 535 |
+ |
} else if (pg == NULL) /* bogus call? */ |
| 536 |
+ |
return; |
| 537 |
+ |
if (pg != NULL) { /* initialize form factor row buffer */ |
| 538 |
+ |
gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1)); |
| 539 |
+ |
if (gradrow == NULL) |
| 540 |
+ |
error(SYSTEM, memerrmsg); |
| 541 |
+ |
memset(gradient, 0, sizeof(gradient)); |
| 542 |
+ |
} |
| 543 |
+ |
/* compute first row of edges */ |
| 544 |
+ |
for (j = 0; j < hp->ns-1; j++) { |
| 545 |
+ |
comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1)); |
| 546 |
+ |
if (hessrow != NULL) |
| 547 |
+ |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
| 548 |
+ |
if (gradrow != NULL) |
| 549 |
+ |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
| 550 |
+ |
} |
| 551 |
+ |
/* sum each row of triangles */ |
| 552 |
+ |
for (i = 0; i < hp->ns-1; i++) { |
| 553 |
+ |
FVECT hesscol[3]; /* compute first vertical edge */ |
| 554 |
+ |
FVECT gradcol; |
| 555 |
+ |
comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0)); |
| 556 |
+ |
if (hessrow != NULL) |
| 557 |
+ |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
| 558 |
+ |
if (gradrow != NULL) |
| 559 |
+ |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
| 560 |
+ |
for (j = 0; j < hp->ns-1; j++) { |
| 561 |
+ |
FVECT hessdia[3]; /* compute triangle contributions */ |
| 562 |
+ |
FVECT graddia; |
| 563 |
+ |
double backg; |
| 564 |
+ |
backg = back_ambval(hp, AI(hp,i,j), |
| 565 |
+ |
AI(hp,i,j+1), AI(hp,i+1,j)); |
| 566 |
+ |
/* diagonal (inner) edge */ |
| 567 |
+ |
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j)); |
| 568 |
+ |
if (hessrow != NULL) { |
| 569 |
+ |
comp_hessian(hessdia, &fftr, hp->rp->ron); |
| 570 |
+ |
rev_hessian(hesscol); |
| 571 |
+ |
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
| 572 |
+ |
} |
| 573 |
+ |
if (gradrow != NULL) { |
| 574 |
+ |
comp_gradient(graddia, &fftr, hp->rp->ron); |
| 575 |
+ |
rev_gradient(gradcol); |
| 576 |
+ |
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
| 577 |
+ |
} |
| 578 |
+ |
/* initialize edge in next row */ |
| 579 |
+ |
comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j)); |
| 580 |
+ |
if (hessrow != NULL) |
| 581 |
+ |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
| 582 |
+ |
if (gradrow != NULL) |
| 583 |
+ |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
| 584 |
+ |
/* new column edge & paired triangle */ |
| 585 |
+ |
backg = back_ambval(hp, AI(hp,i+1,j+1), |
| 586 |
+ |
AI(hp,i+1,j), AI(hp,i,j+1)); |
| 587 |
+ |
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1)); |
| 588 |
+ |
if (hessrow != NULL) { |
| 589 |
+ |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
| 590 |
+ |
rev_hessian(hessdia); |
| 591 |
+ |
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
| 592 |
+ |
if (i < hp->ns-2) |
| 593 |
+ |
rev_hessian(hessrow[j]); |
| 594 |
+ |
} |
| 595 |
+ |
if (gradrow != NULL) { |
| 596 |
+ |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
| 597 |
+ |
rev_gradient(graddia); |
| 598 |
+ |
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
| 599 |
+ |
if (i < hp->ns-2) |
| 600 |
+ |
rev_gradient(gradrow[j]); |
| 601 |
+ |
} |
| 602 |
+ |
} |
| 603 |
+ |
} |
| 604 |
+ |
/* release row buffers */ |
| 605 |
+ |
if (hessrow != NULL) free(hessrow); |
| 606 |
+ |
if (gradrow != NULL) free(gradrow); |
| 607 |
+ |
|
| 608 |
+ |
if (ra != NULL) /* extract eigenvectors & radii */ |
| 609 |
+ |
eigenvectors(uv, ra, hessian); |
| 610 |
+ |
if (pg != NULL) { /* tangential position gradient */ |
| 611 |
+ |
pg[0] = DOT(gradient, uv[0]); |
| 612 |
+ |
pg[1] = DOT(gradient, uv[1]); |
| 613 |
+ |
} |
| 614 |
+ |
} |
| 615 |
+ |
|
| 616 |
+ |
|
| 617 |
+ |
/* Compute direction gradient from a hemispherical sampling */ |
| 618 |
+ |
static void |
| 619 |
+ |
ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) |
| 620 |
+ |
{ |
| 621 |
+ |
AMBSAMP *ap; |
| 622 |
+ |
double dgsum[2]; |
| 623 |
+ |
int n; |
| 624 |
+ |
FVECT vd; |
| 625 |
+ |
double gfact; |
| 626 |
+ |
|
| 627 |
+ |
dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */ |
| 628 |
+ |
for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) { |
| 629 |
+ |
/* use vector for azimuth + 90deg */ |
| 630 |
+ |
VSUB(vd, ap->p, hp->rp->rop); |
| 631 |
+ |
/* brightness over cosine factor */ |
| 632 |
+ |
gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); |
| 633 |
+ |
/* sine = proj_radius/vd_length */ |
| 634 |
+ |
dgsum[0] -= DOT(uv[1], vd) * gfact; |
| 635 |
+ |
dgsum[1] += DOT(uv[0], vd) * gfact; |
| 636 |
+ |
} |
| 637 |
+ |
dg[0] = dgsum[0] / (hp->ns*hp->ns); |
| 638 |
+ |
dg[1] = dgsum[1] / (hp->ns*hp->ns); |
| 639 |
+ |
} |
| 640 |
+ |
|
| 641 |
+ |
|
| 642 |
+ |
/* Compute potential light leak direction flags for cache value */ |
| 643 |
+ |
static uint32 |
| 644 |
+ |
ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1) |
| 645 |
+ |
{ |
| 646 |
+ |
const double max_d = 1.0/(minarad*ambacc + 0.001); |
| 647 |
+ |
const double ang_res = 0.5*PI/hp->ns; |
| 648 |
+ |
const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01); |
| 649 |
+ |
double avg_d = 0; |
| 650 |
+ |
uint32 flgs = 0; |
| 651 |
+ |
FVECT vec; |
| 652 |
+ |
double u, v; |
| 653 |
+ |
double ang, a1; |
| 654 |
+ |
int i, j; |
| 655 |
+ |
/* don't bother for a few samples */ |
| 656 |
+ |
if (hp->ns < 8) |
| 657 |
+ |
return(0); |
| 658 |
+ |
/* check distances overhead */ |
| 659 |
+ |
for (i = hp->ns*3/4; i-- > hp->ns>>2; ) |
| 660 |
+ |
for (j = hp->ns*3/4; j-- > hp->ns>>2; ) |
| 661 |
+ |
avg_d += ambsam(hp,i,j).d; |
| 662 |
+ |
avg_d *= 4.0/(hp->ns*hp->ns); |
| 663 |
+ |
if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */ |
| 664 |
+ |
return(0); |
| 665 |
+ |
if (avg_d >= max_d) /* insurance */ |
| 666 |
+ |
return(0); |
| 667 |
+ |
/* else circle around perimeter */ |
| 668 |
+ |
for (i = 0; i < hp->ns; i++) |
| 669 |
+ |
for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) { |
| 670 |
+ |
AMBSAMP *ap = &ambsam(hp,i,j); |
| 671 |
+ |
if ((ap->d <= FTINY) | (ap->d >= max_d)) |
| 672 |
+ |
continue; /* too far or too near */ |
| 673 |
+ |
VSUB(vec, ap->p, hp->rp->rop); |
| 674 |
+ |
u = DOT(vec, uv[0]); |
| 675 |
+ |
v = DOT(vec, uv[1]); |
| 676 |
+ |
if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v) |
| 677 |
+ |
continue; /* occluder outside ellipse */ |
| 678 |
+ |
ang = atan2a(v, u); /* else set direction flags */ |
| 679 |
+ |
for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step) |
| 680 |
+ |
flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0))); |
| 681 |
+ |
} |
| 682 |
+ |
return(flgs); |
| 683 |
+ |
} |
| 684 |
+ |
|
| 685 |
+ |
|
| 686 |
+ |
int |
| 687 |
+ |
doambient( /* compute ambient component */ |
| 688 |
+ |
COLOR rcol, /* input/output color */ |
| 689 |
+ |
RAY *r, |
| 690 |
+ |
double wt, |
| 691 |
+ |
FVECT uv[2], /* returned (optional) */ |
| 692 |
+ |
float ra[2], /* returned (optional) */ |
| 693 |
+ |
float pg[2], /* returned (optional) */ |
| 694 |
+ |
float dg[2], /* returned (optional) */ |
| 695 |
+ |
uint32 *crlp /* returned (optional) */ |
| 696 |
+ |
) |
| 697 |
+ |
{ |
| 698 |
+ |
AMBHEMI *hp = samp_hemi(rcol, r, wt); |
| 699 |
+ |
FVECT my_uv[2]; |
| 700 |
+ |
double d, K; |
| 701 |
+ |
AMBSAMP *ap; |
| 702 |
+ |
int i; |
| 703 |
+ |
/* clear return values */ |
| 704 |
+ |
if (uv != NULL) |
| 705 |
+ |
memset(uv, 0, sizeof(FVECT)*2); |
| 706 |
+ |
if (ra != NULL) |
| 707 |
+ |
ra[0] = ra[1] = 0.0; |
| 708 |
+ |
if (pg != NULL) |
| 709 |
+ |
pg[0] = pg[1] = 0.0; |
| 710 |
+ |
if (dg != NULL) |
| 711 |
+ |
dg[0] = dg[1] = 0.0; |
| 712 |
+ |
if (crlp != NULL) |
| 713 |
+ |
*crlp = 0; |
| 714 |
+ |
if (hp == NULL) /* sampling falure? */ |
| 715 |
+ |
return(0); |
| 716 |
+ |
|
| 717 |
+ |
if ((ra == NULL) & (pg == NULL) & (dg == NULL) || |
| 718 |
+ |
(hp->sampOK < 0) | (hp->ns < 6)) { |
| 719 |
+ |
free(hp); /* Hessian not requested/possible */ |
| 720 |
+ |
return(-1); /* value-only return value */ |
| 721 |
+ |
} |
| 722 |
+ |
if ((d = bright(rcol)) > FTINY) { /* normalize Y values */ |
| 723 |
+ |
d = 0.99*(hp->ns*hp->ns)/d; |
| 724 |
+ |
K = 0.01; |
| 725 |
+ |
} else { /* or fall back on geometric Hessian */ |
| 726 |
+ |
K = 1.0; |
| 727 |
+ |
pg = NULL; |
| 728 |
+ |
dg = NULL; |
| 729 |
+ |
crlp = NULL; |
| 730 |
+ |
} |
| 731 |
+ |
ap = hp->sa; /* relative Y channel from here on... */ |
| 732 |
+ |
for (i = hp->ns*hp->ns; i--; ap++) |
| 733 |
+ |
colval(ap->v,CIEY) = bright(ap->v)*d + K; |
| 734 |
+ |
|
| 735 |
+ |
if (uv == NULL) /* make sure we have axis pointers */ |
| 736 |
+ |
uv = my_uv; |
| 737 |
+ |
/* compute radii & pos. gradient */ |
| 738 |
+ |
ambHessian(hp, uv, ra, pg); |
| 739 |
+ |
|
| 740 |
+ |
if (dg != NULL) /* compute direction gradient */ |
| 741 |
+ |
ambdirgrad(hp, uv, dg); |
| 742 |
+ |
|
| 743 |
+ |
if (ra != NULL) { /* scale/clamp radii */ |
| 744 |
+ |
if (pg != NULL) { |
| 745 |
+ |
if (ra[0]*(d = fabs(pg[0])) > 1.0) |
| 746 |
+ |
ra[0] = 1.0/d; |
| 747 |
+ |
if (ra[1]*(d = fabs(pg[1])) > 1.0) |
| 748 |
+ |
ra[1] = 1.0/d; |
| 749 |
+ |
if (ra[0] > ra[1]) |
| 750 |
+ |
ra[0] = ra[1]; |
| 751 |
+ |
} |
| 752 |
+ |
if (ra[0] < minarad) { |
| 753 |
+ |
ra[0] = minarad; |
| 754 |
+ |
if (ra[1] < minarad) |
| 755 |
+ |
ra[1] = minarad; |
| 756 |
+ |
} |
| 757 |
+ |
ra[0] *= d = 1.0/sqrt(wt); |
| 758 |
+ |
if ((ra[1] *= d) > 2.0*ra[0]) |
| 759 |
+ |
ra[1] = 2.0*ra[0]; |
| 760 |
+ |
if (ra[1] > maxarad) { |
| 761 |
+ |
ra[1] = maxarad; |
| 762 |
+ |
if (ra[0] > maxarad) |
| 763 |
+ |
ra[0] = maxarad; |
| 764 |
+ |
} |
| 765 |
+ |
/* flag encroached directions */ |
| 766 |
+ |
if (crlp != NULL) |
| 767 |
+ |
*crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc); |
| 768 |
+ |
if (pg != NULL) { /* cap gradient if necessary */ |
| 769 |
+ |
d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; |
| 770 |
+ |
if (d > 1.0) { |
| 771 |
+ |
d = 1.0/sqrt(d); |
| 772 |
+ |
pg[0] *= d; |
| 773 |
+ |
pg[1] *= d; |
| 774 |
+ |
} |
| 775 |
+ |
} |
| 776 |
+ |
} |
| 777 |
+ |
free(hp); /* clean up and return */ |
| 778 |
+ |
return(1); |
| 779 |
+ |
} |
| 780 |
+ |
|
| 781 |
+ |
|
| 782 |
+ |
#else /* ! NEWAMB */ |
| 783 |
+ |
|
| 784 |
+ |
|
| 785 |
|
void |
| 786 |
|
inithemi( /* initialize sampling hemisphere */ |
| 787 |
< |
register AMBHEMI *hp, |
| 787 |
> |
AMBHEMI *hp, |
| 788 |
|
COLOR ac, |
| 789 |
|
RAY *r, |
| 790 |
|
double wt |
| 791 |
|
) |
| 792 |
|
{ |
| 793 |
|
double d; |
| 794 |
< |
register int i; |
| 794 |
> |
int i; |
| 795 |
|
/* set number of divisions */ |
| 796 |
|
if (ambacc <= FTINY && |
| 797 |
|
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) |
| 824 |
|
|
| 825 |
|
int |
| 826 |
|
divsample( /* sample a division */ |
| 827 |
< |
register AMBSAMP *dp, |
| 827 |
> |
AMBSAMP *dp, |
| 828 |
|
AMBHEMI *h, |
| 829 |
|
RAY *r |
| 830 |
|
) |
| 835 |
|
double xd, yd, zd; |
| 836 |
|
double b2; |
| 837 |
|
double phi; |
| 838 |
< |
register int i; |
| 838 |
> |
int i; |
| 839 |
|
/* ambient coefficient for weight */ |
| 840 |
|
if (ambacc > FTINY) |
| 841 |
|
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
| 860 |
|
ar.rdir[i] = xd*h->ux[i] + |
| 861 |
|
yd*h->uy[i] + |
| 862 |
|
zd*h->uz[i]; |
| 863 |
+ |
checknorm(ar.rdir); |
| 864 |
|
dimlist[ndims++] = dp->t*h->np + dp->p + 90171; |
| 865 |
|
rayvalue(&ar); |
| 866 |
|
ndims--; |
| 867 |
|
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
| 868 |
|
addcolor(dp->v, ar.rcol); |
| 869 |
< |
/* use rt to improve gradient calc */ |
| 870 |
< |
if (ar.rt > FTINY && ar.rt < FHUGE) |
| 871 |
< |
dp->r += 1.0/ar.rt; |
| 869 |
> |
/* use rxt to improve gradient calc */ |
| 870 |
> |
if (ar.rxt > FTINY && ar.rxt < FHUGE) |
| 871 |
> |
dp->r += 1.0/ar.rxt; |
| 872 |
|
/* (re)initialize error */ |
| 873 |
|
if (dp->n++) { |
| 874 |
|
b2 = bright(dp->v)/dp->n - bright(ar.rcol); |
| 905 |
|
{ |
| 906 |
|
const AMBSAMP *d1 = (const AMBSAMP *)p1; |
| 907 |
|
const AMBSAMP *d2 = (const AMBSAMP *)p2; |
| 908 |
< |
register int c; |
| 908 |
> |
int c; |
| 909 |
|
|
| 910 |
|
if ( (c = d1->t - d2->t) ) |
| 911 |
|
return(c); |
| 915 |
|
|
| 916 |
|
double |
| 917 |
|
doambient( /* compute ambient component */ |
| 918 |
< |
COLOR acol, |
| 918 |
> |
COLOR rcol, |
| 919 |
|
RAY *r, |
| 920 |
|
double wt, |
| 921 |
|
FVECT pg, |
| 922 |
|
FVECT dg |
| 923 |
|
) |
| 924 |
|
{ |
| 925 |
< |
double b, d; |
| 925 |
> |
double b, d=0; |
| 926 |
|
AMBHEMI hemi; |
| 927 |
|
AMBSAMP *div; |
| 928 |
|
AMBSAMP dnew; |
| 929 |
< |
register AMBSAMP *dp; |
| 929 |
> |
double acol[3]; |
| 930 |
> |
AMBSAMP *dp; |
| 931 |
|
double arad; |
| 932 |
|
int divcnt; |
| 933 |
< |
register int i, j; |
| 933 |
> |
int i, j; |
| 934 |
|
/* initialize hemisphere */ |
| 935 |
< |
inithemi(&hemi, acol, r, wt); |
| 935 |
> |
inithemi(&hemi, rcol, r, wt); |
| 936 |
|
divcnt = hemi.nt * hemi.np; |
| 937 |
|
/* initialize */ |
| 938 |
|
if (pg != NULL) |
| 939 |
|
pg[0] = pg[1] = pg[2] = 0.0; |
| 940 |
|
if (dg != NULL) |
| 941 |
|
dg[0] = dg[1] = dg[2] = 0.0; |
| 942 |
< |
setcolor(acol, 0.0, 0.0, 0.0); |
| 942 |
> |
setcolor(rcol, 0.0, 0.0, 0.0); |
| 943 |
|
if (divcnt == 0) |
| 944 |
|
return(0.0); |
| 945 |
|
/* allocate super-samples */ |
| 951 |
|
div = NULL; |
| 952 |
|
/* sample the divisions */ |
| 953 |
|
arad = 0.0; |
| 954 |
+ |
acol[0] = acol[1] = acol[2] = 0.0; |
| 955 |
|
if ((dp = div) == NULL) |
| 956 |
|
dp = &dnew; |
| 957 |
|
divcnt = 0; |
| 973 |
|
else |
| 974 |
|
addcolor(acol, dp->v); |
| 975 |
|
} |
| 976 |
< |
if (!divcnt) |
| 976 |
> |
if (!divcnt) { |
| 977 |
> |
if (div != NULL) |
| 978 |
> |
free((void *)div); |
| 979 |
|
return(0.0); /* no samples taken */ |
| 980 |
+ |
} |
| 981 |
|
if (divcnt < hemi.nt*hemi.np) { |
| 982 |
|
pg = dg = NULL; /* incomplete sampling */ |
| 983 |
|
hemi.ns = 0; |
| 1033 |
|
} |
| 1034 |
|
free((void *)div); |
| 1035 |
|
} |
| 1036 |
+ |
copycolor(rcol, acol); |
| 1037 |
|
if (arad <= FTINY) |
| 1038 |
|
arad = maxarad; |
| 1039 |
|
else |
| 1060 |
|
void |
| 1061 |
|
comperrs( /* compute initial error estimates */ |
| 1062 |
|
AMBSAMP *da, /* assumes standard ordering */ |
| 1063 |
< |
register AMBHEMI *hp |
| 1063 |
> |
AMBHEMI *hp |
| 1064 |
|
) |
| 1065 |
|
{ |
| 1066 |
|
double b, b2; |
| 1067 |
|
int i, j; |
| 1068 |
< |
register AMBSAMP *dp; |
| 1068 |
> |
AMBSAMP *dp; |
| 1069 |
|
/* sum differences from neighbors */ |
| 1070 |
|
dp = da; |
| 1071 |
|
for (i = 0; i < hp->nt; i++) |
| 1113 |
|
posgradient( /* compute position gradient */ |
| 1114 |
|
FVECT gv, |
| 1115 |
|
AMBSAMP *da, /* assumes standard ordering */ |
| 1116 |
< |
register AMBHEMI *hp |
| 1116 |
> |
AMBHEMI *hp |
| 1117 |
|
) |
| 1118 |
|
{ |
| 1119 |
< |
register int i, j; |
| 1119 |
> |
int i, j; |
| 1120 |
|
double nextsine, lastsine, b, d; |
| 1121 |
|
double mag0, mag1; |
| 1122 |
|
double phi, cosp, sinp, xd, yd; |
| 1123 |
< |
register AMBSAMP *dp; |
| 1123 |
> |
AMBSAMP *dp; |
| 1124 |
|
|
| 1125 |
|
xd = yd = 0.0; |
| 1126 |
|
for (j = 0; j < hp->np; j++) { |
| 1171 |
|
dirgradient( /* compute direction gradient */ |
| 1172 |
|
FVECT gv, |
| 1173 |
|
AMBSAMP *da, /* assumes standard ordering */ |
| 1174 |
< |
register AMBHEMI *hp |
| 1174 |
> |
AMBHEMI *hp |
| 1175 |
|
) |
| 1176 |
|
{ |
| 1177 |
< |
register int i, j; |
| 1177 |
> |
int i, j; |
| 1178 |
|
double mag; |
| 1179 |
|
double phi, xd, yd; |
| 1180 |
< |
register AMBSAMP *dp; |
| 1180 |
> |
AMBSAMP *dp; |
| 1181 |
|
|
| 1182 |
|
xd = yd = 0.0; |
| 1183 |
|
for (j = 0; j < hp->np; j++) { |
| 1200 |
|
for (i = 0; i < 3; i++) |
| 1201 |
|
gv[i] = xd*hp->ux[i] + yd*hp->uy[i]; |
| 1202 |
|
} |
| 1203 |
+ |
|
| 1204 |
+ |
#endif /* ! NEWAMB */ |