| 20 |
|
#include "ray.h" |
| 21 |
|
#include "ambient.h" |
| 22 |
|
#include "random.h" |
| 23 |
– |
#include "source.h" |
| 24 |
– |
#include "otypes.h" |
| 25 |
– |
#include "otspecial.h" |
| 23 |
|
|
| 24 |
< |
#ifndef OLDAMB |
| 24 |
> |
#ifndef MINADIV |
| 25 |
> |
#define MINADIV 7 /* minimum # divisions in each dimension */ |
| 26 |
> |
#endif |
| 27 |
> |
#ifndef MINSDIST |
| 28 |
> |
#define MINSDIST 0.25 /* def. min. spacing = 1/4th division */ |
| 29 |
> |
#endif |
| 30 |
|
|
| 29 |
– |
extern void SDsquare2disk(double ds[2], double seedx, double seedy); |
| 30 |
– |
|
| 31 |
|
typedef struct { |
| 32 |
– |
COLOR v; /* hemisphere sample value */ |
| 33 |
– |
float d; /* reciprocal distance (1/rt) */ |
| 32 |
|
FVECT p; /* intersection point */ |
| 33 |
+ |
float d; /* reciprocal distance */ |
| 34 |
+ |
SCOLOR v; /* hemisphere sample value */ |
| 35 |
|
} AMBSAMP; /* sample value */ |
| 36 |
|
|
| 37 |
|
typedef struct { |
| 38 |
|
RAY *rp; /* originating ray sample */ |
| 39 |
|
int ns; /* number of samples per axis */ |
| 40 |
|
int sampOK; /* acquired full sample set? */ |
| 41 |
< |
COLOR acoef; /* division contribution coefficient */ |
| 42 |
< |
double acol[3]; /* accumulated color */ |
| 41 |
> |
int atyp; /* RAMBIENT or TAMBIENT */ |
| 42 |
> |
SCOLOR acoef; /* division contribution coefficient */ |
| 43 |
> |
SCOLOR acol; /* accumulated color */ |
| 44 |
> |
FVECT onrm; /* oriented unperturbed surface normal */ |
| 45 |
|
FVECT ux, uy; /* tangent axis unit vectors */ |
| 46 |
|
AMBSAMP sa[1]; /* sample array (extends struct) */ |
| 47 |
|
} AMBHEMI; /* ambient sample hemisphere */ |
| 65 |
|
{ |
| 66 |
|
double cos_thresh; |
| 67 |
|
int ii, jj; |
| 68 |
< |
/* min. spacing = 1/4th division */ |
| 69 |
< |
cos_thresh = (PI/4.)/(double)hp->ns; |
| 68 |
> |
|
| 69 |
> |
cos_thresh = (PI*MINSDIST)/(double)hp->ns; |
| 70 |
|
cos_thresh = 1. - .5*cos_thresh*cos_thresh; |
| 71 |
|
/* check existing neighbors */ |
| 72 |
|
for (ii = i-1; ii <= i+1; ii++) { |
| 92 |
|
} |
| 93 |
|
|
| 94 |
|
|
| 95 |
+ |
#define XLOTSIZ 251 /* size of used car lot */ |
| 96 |
+ |
#define CFIRST 0 /* first corner */ |
| 97 |
+ |
#define COTHER (CFIRST+4) /* non-corner sample */ |
| 98 |
+ |
#define CMAXTARGET (int)(XLOTSIZ*MINSDIST/(1-MINSDIST)) |
| 99 |
+ |
#define CXCOPY(d,s) (excharr[d][0]=excharr[s][0], excharr[d][1]=excharr[s][1]) |
| 100 |
+ |
|
| 101 |
|
static int |
| 102 |
+ |
psample_class(double ss[2]) /* classify patch sample */ |
| 103 |
+ |
{ |
| 104 |
+ |
if (ss[0] < MINSDIST) { |
| 105 |
+ |
if (ss[1] < MINSDIST) |
| 106 |
+ |
return(CFIRST); |
| 107 |
+ |
if (ss[1] > 1.-MINSDIST) |
| 108 |
+ |
return(CFIRST+2); |
| 109 |
+ |
} else if (ss[0] > 1.-MINSDIST) { |
| 110 |
+ |
if (ss[1] < MINSDIST) |
| 111 |
+ |
return(CFIRST+1); |
| 112 |
+ |
if (ss[1] > 1.-MINSDIST) |
| 113 |
+ |
return(CFIRST+3); |
| 114 |
+ |
} |
| 115 |
+ |
return(COTHER); /* not in a corner */ |
| 116 |
+ |
} |
| 117 |
+ |
|
| 118 |
+ |
static void |
| 119 |
+ |
trade_patchsamp(double ss[2]) /* trade in problem patch position */ |
| 120 |
+ |
{ |
| 121 |
+ |
static float excharr[XLOTSIZ][2]; |
| 122 |
+ |
static short gterm[COTHER+1]; |
| 123 |
+ |
double srep[2]; |
| 124 |
+ |
int sclass, rclass; |
| 125 |
+ |
int x; |
| 126 |
+ |
/* reset on corner overload */ |
| 127 |
+ |
if (gterm[COTHER-1] >= (CMAXTARGET+XLOTSIZ)/2) |
| 128 |
+ |
memset(gterm, 0, sizeof(gterm)); |
| 129 |
+ |
/* (re-)initialize? */ |
| 130 |
+ |
while (gterm[COTHER] < XLOTSIZ) { |
| 131 |
+ |
excharr[gterm[COTHER]][0] = frandom(); |
| 132 |
+ |
excharr[gterm[COTHER]][1] = frandom(); |
| 133 |
+ |
++gterm[COTHER]; |
| 134 |
+ |
} /* get trade-in candidate... */ |
| 135 |
+ |
sclass = psample_class(ss); /* submitted corner or not? */ |
| 136 |
+ |
switch (sclass) { |
| 137 |
+ |
case COTHER: /* trade mid-edge with corner/any */ |
| 138 |
+ |
x = irandom( gterm[COTHER-1] > CMAXTARGET |
| 139 |
+ |
? gterm[COTHER-1] : XLOTSIZ ); |
| 140 |
+ |
break; |
| 141 |
+ |
case CFIRST: /* kick out of first corner */ |
| 142 |
+ |
x = gterm[CFIRST] + irandom(XLOTSIZ - gterm[CFIRST]); |
| 143 |
+ |
break; |
| 144 |
+ |
default: /* kick out of 2nd-4th corner */ |
| 145 |
+ |
x = irandom(XLOTSIZ - (gterm[sclass] - gterm[sclass-1])); |
| 146 |
+ |
x += (x >= gterm[sclass-1])*(gterm[sclass] - gterm[sclass-1]); |
| 147 |
+ |
break; |
| 148 |
+ |
} |
| 149 |
+ |
srep[0] = excharr[x][0]; /* save selected replacement (result) */ |
| 150 |
+ |
srep[1] = excharr[x][1]; |
| 151 |
+ |
/* identify replacement class */ |
| 152 |
+ |
for (rclass = CFIRST; rclass < COTHER; rclass++) |
| 153 |
+ |
if (x < gterm[rclass]) |
| 154 |
+ |
break; /* repark to keep classes grouped */ |
| 155 |
+ |
while (rclass > sclass) { /* replacement group after submitted? */ |
| 156 |
+ |
CXCOPY(x, gterm[rclass-1]); |
| 157 |
+ |
x = gterm[--rclass]++; |
| 158 |
+ |
} |
| 159 |
+ |
while (rclass < sclass) { /* replacement group before submitted? */ |
| 160 |
+ |
--gterm[rclass]; |
| 161 |
+ |
CXCOPY(x, gterm[rclass]); |
| 162 |
+ |
x = gterm[rclass++]; |
| 163 |
+ |
} |
| 164 |
+ |
excharr[x][0] = ss[0]; /* complete the trade-in */ |
| 165 |
+ |
excharr[x][1] = ss[1]; |
| 166 |
+ |
ss[0] = srep[0]; |
| 167 |
+ |
ss[1] = srep[1]; |
| 168 |
+ |
} |
| 169 |
+ |
|
| 170 |
+ |
#undef CXCOPY |
| 171 |
+ |
#undef XLOTSIZ |
| 172 |
+ |
#undef COTHER |
| 173 |
+ |
#undef CFIRST |
| 174 |
+ |
|
| 175 |
+ |
|
| 176 |
+ |
static int |
| 177 |
|
ambsample( /* initial ambient division sample */ |
| 178 |
|
AMBHEMI *hp, |
| 179 |
|
int i, |
| 184 |
|
AMBSAMP *ap = &ambsam(hp,i,j); |
| 185 |
|
RAY ar; |
| 186 |
|
int hlist[3], ii; |
| 187 |
< |
double spt[2], zd; |
| 187 |
> |
double ss[2]; |
| 188 |
> |
RREAL spt[2]; |
| 189 |
> |
double zd; |
| 190 |
|
/* generate hemispherical sample */ |
| 191 |
|
/* ambient coefficient for weight */ |
| 192 |
|
if (ambacc > FTINY) |
| 193 |
< |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
| 193 |
> |
setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
| 194 |
|
else |
| 195 |
< |
copycolor(ar.rcoef, hp->acoef); |
| 196 |
< |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) |
| 195 |
> |
copyscolor(ar.rcoef, hp->acoef); |
| 196 |
> |
if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0) |
| 197 |
|
return(0); |
| 198 |
|
if (ambacc > FTINY) { |
| 199 |
< |
multcolor(ar.rcoef, hp->acoef); |
| 200 |
< |
scalecolor(ar.rcoef, 1./AVGREFL); |
| 199 |
> |
smultscolor(ar.rcoef, hp->acoef); |
| 200 |
> |
scalescolor(ar.rcoef, 1./AVGREFL); |
| 201 |
|
} |
| 202 |
|
hlist[0] = hp->rp->rno; |
| 203 |
< |
hlist[1] = j; |
| 204 |
< |
hlist[2] = i; |
| 205 |
< |
multisamp(spt, 2, urand(ilhash(hlist,3)+n)); |
| 206 |
< |
resample: |
| 207 |
< |
SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns); |
| 203 |
> |
hlist[1] = AI(hp,i,j); |
| 204 |
> |
hlist[2] = samplendx; |
| 205 |
> |
multisamp(ss, 2, urand(ilhash(hlist,3)+n)); |
| 206 |
> |
patch_redo: |
| 207 |
> |
square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns); |
| 208 |
|
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
| 209 |
|
for (ii = 3; ii--; ) |
| 210 |
|
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
| 211 |
|
spt[1]*hp->uy[ii] + |
| 212 |
< |
zd*hp->rp->ron[ii]; |
| 212 |
> |
zd*hp->onrm[ii]; |
| 213 |
|
checknorm(ar.rdir); |
| 214 |
|
/* avoid coincident samples */ |
| 215 |
< |
if (!n && ambcollision(hp, i, j, ar.rdir)) { |
| 216 |
< |
spt[0] = frandom(); spt[1] = frandom(); |
| 217 |
< |
goto resample; /* reject this sample */ |
| 215 |
> |
if (!n & (hp->ns >= 4) && ambcollision(hp, i, j, ar.rdir)) { |
| 216 |
> |
trade_patchsamp(ss); |
| 217 |
> |
goto patch_redo; |
| 218 |
|
} |
| 219 |
|
dimlist[ndims++] = AI(hp,i,j) + 90171; |
| 220 |
|
rayvalue(&ar); /* evaluate ray */ |
| 221 |
|
ndims--; |
| 222 |
< |
if (ar.rt <= FTINY) |
| 222 |
> |
zd = raydistance(&ar); |
| 223 |
> |
if (zd <= FTINY) |
| 224 |
|
return(0); /* should never happen */ |
| 225 |
< |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
| 226 |
< |
if (ar.rt*ap->d < 1.0) /* new/closer distance? */ |
| 227 |
< |
ap->d = 1.0/ar.rt; |
| 225 |
> |
smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
| 226 |
> |
if (zd*ap->d < 1.0) /* new/closer distance? */ |
| 227 |
> |
ap->d = 1.0/zd; |
| 228 |
|
if (!n) { /* record first vertex & value */ |
| 229 |
< |
if (ar.rt > 10.0*thescene.cusize + 1000.) |
| 230 |
< |
ar.rt = 10.0*thescene.cusize + 1000.; |
| 231 |
< |
VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); |
| 232 |
< |
copycolor(ap->v, ar.rcol); |
| 229 |
> |
if (zd > 10.0*thescene.cusize + 1000.) |
| 230 |
> |
zd = 10.0*thescene.cusize + 1000.; |
| 231 |
> |
VSUM(ap->p, ar.rorg, ar.rdir, zd); |
| 232 |
> |
copyscolor(ap->v, ar.rcol); |
| 233 |
|
} else { /* else update recorded value */ |
| 234 |
< |
hp->acol[RED] -= colval(ap->v,RED); |
| 149 |
< |
hp->acol[GRN] -= colval(ap->v,GRN); |
| 150 |
< |
hp->acol[BLU] -= colval(ap->v,BLU); |
| 234 |
> |
sopscolor(hp->acol, -=, ap->v); |
| 235 |
|
zd = 1.0/(double)(n+1); |
| 236 |
< |
scalecolor(ar.rcol, zd); |
| 236 |
> |
scalescolor(ar.rcol, zd); |
| 237 |
|
zd *= (double)n; |
| 238 |
< |
scalecolor(ap->v, zd); |
| 239 |
< |
addcolor(ap->v, ar.rcol); |
| 238 |
> |
scalescolor(ap->v, zd); |
| 239 |
> |
saddscolor(ap->v, ar.rcol); |
| 240 |
|
} |
| 241 |
< |
addcolor(hp->acol, ap->v); /* add to our sum */ |
| 241 |
> |
saddscolor(hp->acol, ap->v); /* add to our sum */ |
| 242 |
|
return(1); |
| 243 |
|
} |
| 244 |
|
|
| 245 |
|
|
| 246 |
< |
/* Estimate errors based on ambient division differences */ |
| 246 |
> |
/* Estimate variance based on ambient division differences */ |
| 247 |
|
static float * |
| 248 |
|
getambdiffs(AMBHEMI *hp) |
| 249 |
|
{ |
| 250 |
< |
const double normf = 1./bright(hp->acoef); |
| 251 |
< |
float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float)); |
| 250 |
> |
const double normf = 1./(pbright(hp->acoef) + FTINY); |
| 251 |
> |
float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float)); |
| 252 |
|
float *ep; |
| 253 |
|
AMBSAMP *ap; |
| 254 |
< |
double b, d2; |
| 254 |
> |
double b, b1, d2; |
| 255 |
|
int i, j; |
| 256 |
|
|
| 257 |
|
if (earr == NULL) /* out of memory? */ |
| 258 |
|
return(NULL); |
| 259 |
< |
/* compute squared neighbor diffs */ |
| 260 |
< |
for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) |
| 259 |
> |
/* sum squared neighbor diffs */ |
| 260 |
> |
ap = hp->sa; |
| 261 |
> |
ep = earr + hp->ns*hp->ns; /* original estimates to scratch */ |
| 262 |
> |
for (i = 0; i < hp->ns; i++) |
| 263 |
|
for (j = 0; j < hp->ns; j++, ap++, ep++) { |
| 264 |
< |
b = bright(ap[0].v); |
| 264 |
> |
b = pbright(ap[0].v); |
| 265 |
|
if (i) { /* from above */ |
| 266 |
< |
d2 = normf*(b - bright(ap[-hp->ns].v)); |
| 267 |
< |
d2 *= d2; |
| 266 |
> |
b1 = pbright(ap[-hp->ns].v); |
| 267 |
> |
d2 = b - b1; |
| 268 |
> |
d2 *= d2*normf/(b + b1 + FTINY); |
| 269 |
|
ep[0] += d2; |
| 270 |
|
ep[-hp->ns] += d2; |
| 271 |
|
} |
| 272 |
|
if (!j) continue; |
| 273 |
|
/* from behind */ |
| 274 |
< |
d2 = normf*(b - bright(ap[-1].v)); |
| 275 |
< |
d2 *= d2; |
| 274 |
> |
b1 = pbright(ap[-1].v); |
| 275 |
> |
d2 = b - b1; |
| 276 |
> |
d2 *= d2*normf/(b + b1 + FTINY); |
| 277 |
|
ep[0] += d2; |
| 278 |
|
ep[-1] += d2; |
| 279 |
|
if (!i) continue; |
| 280 |
|
/* diagonal */ |
| 281 |
< |
d2 = normf*(b - bright(ap[-hp->ns-1].v)); |
| 282 |
< |
d2 *= d2; |
| 281 |
> |
b1 = pbright(ap[-hp->ns-1].v); |
| 282 |
> |
d2 = b - b1; |
| 283 |
> |
d2 *= d2*normf/(b + b1 + FTINY); |
| 284 |
|
ep[0] += d2; |
| 285 |
|
ep[-hp->ns-1] += d2; |
| 286 |
|
} |
| 287 |
|
/* correct for number of neighbors */ |
| 288 |
< |
earr[0] *= 8./3.; |
| 289 |
< |
earr[hp->ns-1] *= 8./3.; |
| 290 |
< |
earr[(hp->ns-1)*hp->ns] *= 8./3.; |
| 291 |
< |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.; |
| 288 |
> |
ep = earr + hp->ns*hp->ns; |
| 289 |
> |
ep[0] *= 6./3.; |
| 290 |
> |
ep[hp->ns-1] *= 6./3.; |
| 291 |
> |
ep[(hp->ns-1)*hp->ns] *= 6./3.; |
| 292 |
> |
ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.; |
| 293 |
|
for (i = 1; i < hp->ns-1; i++) { |
| 294 |
< |
earr[i*hp->ns] *= 8./5.; |
| 295 |
< |
earr[i*hp->ns + hp->ns-1] *= 8./5.; |
| 294 |
> |
ep[i*hp->ns] *= 6./5.; |
| 295 |
> |
ep[i*hp->ns + hp->ns-1] *= 6./5.; |
| 296 |
|
} |
| 297 |
|
for (j = 1; j < hp->ns-1; j++) { |
| 298 |
< |
earr[j] *= 8./5.; |
| 299 |
< |
earr[(hp->ns-1)*hp->ns + j] *= 8./5.; |
| 298 |
> |
ep[j] *= 6./5.; |
| 299 |
> |
ep[(hp->ns-1)*hp->ns + j] *= 6./5.; |
| 300 |
|
} |
| 301 |
+ |
/* blur final map to reduce bias */ |
| 302 |
+ |
for (i = 0; i < hp->ns-1; i++) { |
| 303 |
+ |
float *ep2; |
| 304 |
+ |
ep = earr + i*hp->ns; |
| 305 |
+ |
ep2 = ep + hp->ns*hp->ns; |
| 306 |
+ |
for (j = 0; j < hp->ns-1; j++, ep++, ep2++) { |
| 307 |
+ |
ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]); |
| 308 |
+ |
ep[1] += .125*ep2[0]; |
| 309 |
+ |
ep[hp->ns] += .125*ep2[0]; |
| 310 |
+ |
} |
| 311 |
+ |
} |
| 312 |
|
return(earr); |
| 313 |
|
} |
| 314 |
|
|
| 319 |
|
{ |
| 320 |
|
float *earr = getambdiffs(hp); |
| 321 |
|
double e2rem = 0; |
| 221 |
– |
AMBSAMP *ap; |
| 322 |
|
float *ep; |
| 323 |
|
int i, j, n, nss; |
| 324 |
|
|
| 328 |
|
for (ep = earr + hp->ns*hp->ns; ep > earr; ) |
| 329 |
|
e2rem += *--ep; |
| 330 |
|
ep = earr; /* perform super-sampling */ |
| 331 |
< |
for (ap = hp->sa, i = 0; i < hp->ns; i++) |
| 332 |
< |
for (j = 0; j < hp->ns; j++, ap++) { |
| 331 |
> |
for (i = 0; i < hp->ns; i++) |
| 332 |
> |
for (j = 0; j < hp->ns; j++) { |
| 333 |
|
if (e2rem <= FTINY) |
| 334 |
|
goto done; /* nothing left to do */ |
| 335 |
|
nss = *ep/e2rem*cnt + frandom(); |
| 344 |
|
|
| 345 |
|
static AMBHEMI * |
| 346 |
|
samp_hemi( /* sample indirect hemisphere */ |
| 347 |
< |
COLOR rcol, |
| 347 |
> |
SCOLOR rcol, |
| 348 |
|
RAY *r, |
| 349 |
|
double wt |
| 350 |
|
) |
| 351 |
|
{ |
| 352 |
+ |
int backside = (wt < 0); |
| 353 |
|
AMBHEMI *hp; |
| 354 |
|
double d; |
| 355 |
|
int n, i, j; |
| 356 |
|
/* insignificance check */ |
| 357 |
< |
if (bright(rcol) <= FTINY) |
| 357 |
> |
d = sintens(rcol); |
| 358 |
> |
if (d <= FTINY) |
| 359 |
|
return(NULL); |
| 360 |
|
/* set number of divisions */ |
| 361 |
+ |
if (backside) wt = -wt; |
| 362 |
|
if (ambacc <= FTINY && |
| 363 |
< |
wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight))) |
| 363 |
> |
wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20))) |
| 364 |
|
wt = d; /* avoid ray termination */ |
| 365 |
|
n = sqrt(ambdiv * wt) + 0.5; |
| 366 |
< |
i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ |
| 367 |
< |
if (n < i) |
| 366 |
> |
i = 1 + (MINADIV-1)*(ambacc > FTINY); |
| 367 |
> |
if (n < i) /* use minimum number of samples? */ |
| 368 |
|
n = i; |
| 369 |
|
/* allocate sampling array */ |
| 370 |
|
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
| 371 |
|
if (hp == NULL) |
| 372 |
|
error(SYSTEM, "out of memory in samp_hemi"); |
| 373 |
+ |
|
| 374 |
+ |
if (backside) { |
| 375 |
+ |
hp->atyp = TAMBIENT; |
| 376 |
+ |
hp->onrm[0] = -r->ron[0]; |
| 377 |
+ |
hp->onrm[1] = -r->ron[1]; |
| 378 |
+ |
hp->onrm[2] = -r->ron[2]; |
| 379 |
+ |
} else { |
| 380 |
+ |
hp->atyp = RAMBIENT; |
| 381 |
+ |
VCOPY(hp->onrm, r->ron); |
| 382 |
+ |
} |
| 383 |
|
hp->rp = r; |
| 384 |
|
hp->ns = n; |
| 385 |
< |
hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0; |
| 385 |
> |
scolorblack(hp->acol); |
| 386 |
|
memset(hp->sa, 0, sizeof(AMBSAMP)*n*n); |
| 387 |
|
hp->sampOK = 0; |
| 388 |
|
/* assign coefficient */ |
| 389 |
< |
copycolor(hp->acoef, rcol); |
| 389 |
> |
copyscolor(hp->acoef, rcol); |
| 390 |
|
d = 1.0/(n*n); |
| 391 |
< |
scalecolor(hp->acoef, d); |
| 391 |
> |
scalescolor(hp->acoef, d); |
| 392 |
|
/* make tangent plane axes */ |
| 393 |
< |
if (!getperpendicular(hp->ux, r->ron, 1)) |
| 393 |
> |
if (!getperpendicular(hp->ux, hp->onrm, 1)) |
| 394 |
|
error(CONSISTENCY, "bad ray direction in samp_hemi"); |
| 395 |
< |
VCROSS(hp->uy, r->ron, hp->ux); |
| 395 |
> |
VCROSS(hp->uy, hp->onrm, hp->ux); |
| 396 |
|
/* sample divisions */ |
| 397 |
|
for (i = hp->ns; i--; ) |
| 398 |
|
for (j = hp->ns; j--; ) |
| 399 |
|
hp->sampOK += ambsample(hp, i, j, 0); |
| 400 |
< |
copycolor(rcol, hp->acol); |
| 400 |
> |
copyscolor(rcol, hp->acol); |
| 401 |
|
if (!hp->sampOK) { /* utter failure? */ |
| 402 |
|
free(hp); |
| 403 |
|
return(NULL); |
| 406 |
|
hp->sampOK *= -1; /* soft failure */ |
| 407 |
|
return(hp); |
| 408 |
|
} |
| 409 |
+ |
if (hp->sampOK <= MINADIV*MINADIV) |
| 410 |
+ |
return(hp); /* don't bother super-sampling */ |
| 411 |
|
n = ambssamp*wt + 0.5; |
| 412 |
< |
if (n > 8) { /* perform super-sampling? */ |
| 412 |
> |
if (n >= 4*hp->ns) { /* perform super-sampling? */ |
| 413 |
|
ambsupersamp(hp, n); |
| 414 |
< |
copycolor(rcol, hp->acol); |
| 414 |
> |
copyscolor(rcol, hp->acol); |
| 415 |
|
} |
| 416 |
|
return(hp); /* all is well */ |
| 417 |
|
} |
| 423 |
|
{ |
| 424 |
|
if (hp->sa[n1].d <= hp->sa[n2].d) { |
| 425 |
|
if (hp->sa[n1].d <= hp->sa[n3].d) |
| 426 |
< |
return(colval(hp->sa[n1].v,CIEY)); |
| 427 |
< |
return(colval(hp->sa[n3].v,CIEY)); |
| 426 |
> |
return(hp->sa[n1].v[0]); |
| 427 |
> |
return(hp->sa[n3].v[0]); |
| 428 |
|
} |
| 429 |
|
if (hp->sa[n2].d <= hp->sa[n3].d) |
| 430 |
< |
return(colval(hp->sa[n2].v,CIEY)); |
| 431 |
< |
return(colval(hp->sa[n3].v,CIEY)); |
| 430 |
> |
return(hp->sa[n2].v[0]); |
| 431 |
> |
return(hp->sa[n3].v[0]); |
| 432 |
|
} |
| 433 |
|
|
| 434 |
|
|
| 657 |
|
for (j = 0; j < hp->ns-1; j++) { |
| 658 |
|
comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1)); |
| 659 |
|
if (hessrow != NULL) |
| 660 |
< |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
| 660 |
> |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
| 661 |
|
if (gradrow != NULL) |
| 662 |
< |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
| 662 |
> |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
| 663 |
|
} |
| 664 |
|
/* sum each row of triangles */ |
| 665 |
|
for (i = 0; i < hp->ns-1; i++) { |
| 667 |
|
FVECT gradcol; |
| 668 |
|
comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0)); |
| 669 |
|
if (hessrow != NULL) |
| 670 |
< |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
| 670 |
> |
comp_hessian(hesscol, &fftr, hp->onrm); |
| 671 |
|
if (gradrow != NULL) |
| 672 |
< |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
| 672 |
> |
comp_gradient(gradcol, &fftr, hp->onrm); |
| 673 |
|
for (j = 0; j < hp->ns-1; j++) { |
| 674 |
|
FVECT hessdia[3]; /* compute triangle contributions */ |
| 675 |
|
FVECT graddia; |
| 679 |
|
/* diagonal (inner) edge */ |
| 680 |
|
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j)); |
| 681 |
|
if (hessrow != NULL) { |
| 682 |
< |
comp_hessian(hessdia, &fftr, hp->rp->ron); |
| 682 |
> |
comp_hessian(hessdia, &fftr, hp->onrm); |
| 683 |
|
rev_hessian(hesscol); |
| 684 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
| 685 |
|
} |
| 686 |
|
if (gradrow != NULL) { |
| 687 |
< |
comp_gradient(graddia, &fftr, hp->rp->ron); |
| 687 |
> |
comp_gradient(graddia, &fftr, hp->onrm); |
| 688 |
|
rev_gradient(gradcol); |
| 689 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
| 690 |
|
} |
| 691 |
|
/* initialize edge in next row */ |
| 692 |
|
comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j)); |
| 693 |
|
if (hessrow != NULL) |
| 694 |
< |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
| 694 |
> |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
| 695 |
|
if (gradrow != NULL) |
| 696 |
< |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
| 696 |
> |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
| 697 |
|
/* new column edge & paired triangle */ |
| 698 |
|
backg = back_ambval(hp, AI(hp,i+1,j+1), |
| 699 |
|
AI(hp,i+1,j), AI(hp,i,j+1)); |
| 700 |
|
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1)); |
| 701 |
|
if (hessrow != NULL) { |
| 702 |
< |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
| 702 |
> |
comp_hessian(hesscol, &fftr, hp->onrm); |
| 703 |
|
rev_hessian(hessdia); |
| 704 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
| 705 |
|
if (i < hp->ns-2) |
| 706 |
|
rev_hessian(hessrow[j]); |
| 707 |
|
} |
| 708 |
|
if (gradrow != NULL) { |
| 709 |
< |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
| 709 |
> |
comp_gradient(gradcol, &fftr, hp->onrm); |
| 710 |
|
rev_gradient(graddia); |
| 711 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
| 712 |
|
if (i < hp->ns-2) |
| 742 |
|
/* use vector for azimuth + 90deg */ |
| 743 |
|
VSUB(vd, ap->p, hp->rp->rop); |
| 744 |
|
/* brightness over cosine factor */ |
| 745 |
< |
gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); |
| 745 |
> |
gfact = ap->v[0] / DOT(hp->onrm, vd); |
| 746 |
|
/* sine = proj_radius/vd_length */ |
| 747 |
|
dgsum[0] -= DOT(uv[1], vd) * gfact; |
| 748 |
|
dgsum[1] += DOT(uv[0], vd) * gfact; |
| 764 |
|
FVECT vec; |
| 765 |
|
double u, v; |
| 766 |
|
double ang, a1; |
| 652 |
– |
OBJREC *m; |
| 767 |
|
int i, j; |
| 768 |
|
/* don't bother for a few samples */ |
| 769 |
|
if (hp->ns < 8) |
| 792 |
|
for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step) |
| 793 |
|
flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0))); |
| 794 |
|
} |
| 681 |
– |
/* add low-angle incident (< 20deg) */ |
| 682 |
– |
if (fabs(hp->rp->rod) <= 0.342 && hp->rp->parent != NULL && |
| 683 |
– |
(m = findmaterial(hp->rp->parent->ro)) != NULL && |
| 684 |
– |
isopaque(m->otype)) { |
| 685 |
– |
u = -DOT(hp->rp->rdir, uv[0]); |
| 686 |
– |
v = -DOT(hp->rp->rdir, uv[1]); |
| 687 |
– |
if ((r0*r0*u*u + r1*r1*v*v) > hp->rp->rot*hp->rp->rot) { |
| 688 |
– |
ang = atan2a(v, u); |
| 689 |
– |
ang += 2.*PI*(ang < 0); |
| 690 |
– |
ang *= 16/PI; |
| 691 |
– |
if ((ang < .5) | (ang >= 31.5)) |
| 692 |
– |
flgs |= 0x80000001; |
| 693 |
– |
else |
| 694 |
– |
flgs |= 3L<<(int)(ang-.5); |
| 695 |
– |
} |
| 696 |
– |
} |
| 795 |
|
return(flgs); |
| 796 |
|
} |
| 797 |
|
|
| 798 |
|
|
| 799 |
|
int |
| 800 |
|
doambient( /* compute ambient component */ |
| 801 |
< |
COLOR rcol, /* input/output color */ |
| 801 |
> |
SCOLOR rcol, /* input/output color */ |
| 802 |
|
RAY *r, |
| 803 |
< |
double wt, |
| 803 |
> |
double wt, /* negative for back side */ |
| 804 |
|
FVECT uv[2], /* returned (optional) */ |
| 805 |
|
float ra[2], /* returned (optional) */ |
| 806 |
|
float pg[2], /* returned (optional) */ |
| 828 |
|
return(0); |
| 829 |
|
|
| 830 |
|
if ((ra == NULL) & (pg == NULL) & (dg == NULL) || |
| 831 |
< |
(hp->sampOK < 0) | (hp->ns < 6)) { |
| 831 |
> |
(hp->sampOK < 0) | (hp->ns < MINADIV)) { |
| 832 |
|
free(hp); /* Hessian not requested/possible */ |
| 833 |
|
return(-1); /* value-only return value */ |
| 834 |
|
} |
| 835 |
< |
if ((d = bright(rcol)) > FTINY) { /* normalize Y values */ |
| 836 |
< |
d = 0.99*(hp->ns*hp->ns)/d; |
| 835 |
> |
if ((d = scolor_mean(rcol)) > FTINY) { |
| 836 |
> |
d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */ |
| 837 |
|
K = 0.01; |
| 838 |
|
} else { /* or fall back on geometric Hessian */ |
| 839 |
|
K = 1.0; |
| 841 |
|
dg = NULL; |
| 842 |
|
crlp = NULL; |
| 843 |
|
} |
| 844 |
< |
ap = hp->sa; /* relative Y channel from here on... */ |
| 844 |
> |
ap = hp->sa; /* single channel from here on... */ |
| 845 |
|
for (i = hp->ns*hp->ns; i--; ap++) |
| 846 |
< |
colval(ap->v,CIEY) = bright(ap->v)*d + K; |
| 846 |
> |
ap->v[0] = scolor_mean(ap->v)*d + K; |
| 847 |
|
|
| 848 |
|
if (uv == NULL) /* make sure we have axis pointers */ |
| 849 |
|
uv = my_uv; |
| 867 |
|
if (ra[1] < minarad) |
| 868 |
|
ra[1] = minarad; |
| 869 |
|
} |
| 870 |
< |
ra[0] *= d = 1.0/sqrt(wt); |
| 870 |
> |
ra[0] *= d = 1.0/sqrt(fabs(wt)); |
| 871 |
|
if ((ra[1] *= d) > 2.0*ra[0]) |
| 872 |
|
ra[1] = 2.0*ra[0]; |
| 873 |
|
if (ra[1] > maxarad) { |
| 876 |
|
ra[0] = maxarad; |
| 877 |
|
} |
| 878 |
|
/* flag encroached directions */ |
| 879 |
< |
if (crlp != NULL) |
| 879 |
> |
if (crlp != NULL) /* XXX doesn't update with changes to ambacc */ |
| 880 |
|
*crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc); |
| 881 |
|
if (pg != NULL) { /* cap gradient if necessary */ |
| 882 |
|
d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; |
| 890 |
|
free(hp); /* clean up and return */ |
| 891 |
|
return(1); |
| 892 |
|
} |
| 795 |
– |
|
| 796 |
– |
|
| 797 |
– |
#else /* ! NEWAMB */ |
| 798 |
– |
|
| 799 |
– |
|
| 800 |
– |
void |
| 801 |
– |
inithemi( /* initialize sampling hemisphere */ |
| 802 |
– |
AMBHEMI *hp, |
| 803 |
– |
COLOR ac, |
| 804 |
– |
RAY *r, |
| 805 |
– |
double wt |
| 806 |
– |
) |
| 807 |
– |
{ |
| 808 |
– |
double d; |
| 809 |
– |
int i; |
| 810 |
– |
/* set number of divisions */ |
| 811 |
– |
if (ambacc <= FTINY && |
| 812 |
– |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) |
| 813 |
– |
wt = d; /* avoid ray termination */ |
| 814 |
– |
hp->nt = sqrt(ambdiv * wt / PI) + 0.5; |
| 815 |
– |
i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */ |
| 816 |
– |
if (hp->nt < i) |
| 817 |
– |
hp->nt = i; |
| 818 |
– |
hp->np = PI * hp->nt + 0.5; |
| 819 |
– |
/* set number of super-samples */ |
| 820 |
– |
hp->ns = ambssamp * wt + 0.5; |
| 821 |
– |
/* assign coefficient */ |
| 822 |
– |
copycolor(hp->acoef, ac); |
| 823 |
– |
d = 1.0/(hp->nt*hp->np); |
| 824 |
– |
scalecolor(hp->acoef, d); |
| 825 |
– |
/* make axes */ |
| 826 |
– |
VCOPY(hp->uz, r->ron); |
| 827 |
– |
hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; |
| 828 |
– |
for (i = 0; i < 3; i++) |
| 829 |
– |
if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6) |
| 830 |
– |
break; |
| 831 |
– |
if (i >= 3) |
| 832 |
– |
error(CONSISTENCY, "bad ray direction in inithemi"); |
| 833 |
– |
hp->uy[i] = 1.0; |
| 834 |
– |
fcross(hp->ux, hp->uy, hp->uz); |
| 835 |
– |
normalize(hp->ux); |
| 836 |
– |
fcross(hp->uy, hp->uz, hp->ux); |
| 837 |
– |
} |
| 838 |
– |
|
| 839 |
– |
|
| 840 |
– |
int |
| 841 |
– |
divsample( /* sample a division */ |
| 842 |
– |
AMBSAMP *dp, |
| 843 |
– |
AMBHEMI *h, |
| 844 |
– |
RAY *r |
| 845 |
– |
) |
| 846 |
– |
{ |
| 847 |
– |
RAY ar; |
| 848 |
– |
int hlist[3]; |
| 849 |
– |
double spt[2]; |
| 850 |
– |
double xd, yd, zd; |
| 851 |
– |
double b2; |
| 852 |
– |
double phi; |
| 853 |
– |
int i; |
| 854 |
– |
/* ambient coefficient for weight */ |
| 855 |
– |
if (ambacc > FTINY) |
| 856 |
– |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
| 857 |
– |
else |
| 858 |
– |
copycolor(ar.rcoef, h->acoef); |
| 859 |
– |
if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0) |
| 860 |
– |
return(-1); |
| 861 |
– |
if (ambacc > FTINY) { |
| 862 |
– |
multcolor(ar.rcoef, h->acoef); |
| 863 |
– |
scalecolor(ar.rcoef, 1./AVGREFL); |
| 864 |
– |
} |
| 865 |
– |
hlist[0] = r->rno; |
| 866 |
– |
hlist[1] = dp->t; |
| 867 |
– |
hlist[2] = dp->p; |
| 868 |
– |
multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n)); |
| 869 |
– |
zd = sqrt((dp->t + spt[0])/h->nt); |
| 870 |
– |
phi = 2.0*PI * (dp->p + spt[1])/h->np; |
| 871 |
– |
xd = tcos(phi) * zd; |
| 872 |
– |
yd = tsin(phi) * zd; |
| 873 |
– |
zd = sqrt(1.0 - zd*zd); |
| 874 |
– |
for (i = 0; i < 3; i++) |
| 875 |
– |
ar.rdir[i] = xd*h->ux[i] + |
| 876 |
– |
yd*h->uy[i] + |
| 877 |
– |
zd*h->uz[i]; |
| 878 |
– |
checknorm(ar.rdir); |
| 879 |
– |
dimlist[ndims++] = dp->t*h->np + dp->p + 90171; |
| 880 |
– |
rayvalue(&ar); |
| 881 |
– |
ndims--; |
| 882 |
– |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
| 883 |
– |
addcolor(dp->v, ar.rcol); |
| 884 |
– |
/* use rt to improve gradient calc */ |
| 885 |
– |
if (ar.rt > FTINY && ar.rt < FHUGE) |
| 886 |
– |
dp->r += 1.0/ar.rt; |
| 887 |
– |
/* (re)initialize error */ |
| 888 |
– |
if (dp->n++) { |
| 889 |
– |
b2 = bright(dp->v)/dp->n - bright(ar.rcol); |
| 890 |
– |
b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1)); |
| 891 |
– |
dp->k = b2/(dp->n*dp->n); |
| 892 |
– |
} else |
| 893 |
– |
dp->k = 0.0; |
| 894 |
– |
return(0); |
| 895 |
– |
} |
| 896 |
– |
|
| 897 |
– |
|
| 898 |
– |
static int |
| 899 |
– |
ambcmp( /* decreasing order */ |
| 900 |
– |
const void *p1, |
| 901 |
– |
const void *p2 |
| 902 |
– |
) |
| 903 |
– |
{ |
| 904 |
– |
const AMBSAMP *d1 = (const AMBSAMP *)p1; |
| 905 |
– |
const AMBSAMP *d2 = (const AMBSAMP *)p2; |
| 906 |
– |
|
| 907 |
– |
if (d1->k < d2->k) |
| 908 |
– |
return(1); |
| 909 |
– |
if (d1->k > d2->k) |
| 910 |
– |
return(-1); |
| 911 |
– |
return(0); |
| 912 |
– |
} |
| 913 |
– |
|
| 914 |
– |
|
| 915 |
– |
static int |
| 916 |
– |
ambnorm( /* standard order */ |
| 917 |
– |
const void *p1, |
| 918 |
– |
const void *p2 |
| 919 |
– |
) |
| 920 |
– |
{ |
| 921 |
– |
const AMBSAMP *d1 = (const AMBSAMP *)p1; |
| 922 |
– |
const AMBSAMP *d2 = (const AMBSAMP *)p2; |
| 923 |
– |
int c; |
| 924 |
– |
|
| 925 |
– |
if ( (c = d1->t - d2->t) ) |
| 926 |
– |
return(c); |
| 927 |
– |
return(d1->p - d2->p); |
| 928 |
– |
} |
| 929 |
– |
|
| 930 |
– |
|
| 931 |
– |
double |
| 932 |
– |
doambient( /* compute ambient component */ |
| 933 |
– |
COLOR rcol, |
| 934 |
– |
RAY *r, |
| 935 |
– |
double wt, |
| 936 |
– |
FVECT pg, |
| 937 |
– |
FVECT dg |
| 938 |
– |
) |
| 939 |
– |
{ |
| 940 |
– |
double b, d=0; |
| 941 |
– |
AMBHEMI hemi; |
| 942 |
– |
AMBSAMP *div; |
| 943 |
– |
AMBSAMP dnew; |
| 944 |
– |
double acol[3]; |
| 945 |
– |
AMBSAMP *dp; |
| 946 |
– |
double arad; |
| 947 |
– |
int divcnt; |
| 948 |
– |
int i, j; |
| 949 |
– |
/* initialize hemisphere */ |
| 950 |
– |
inithemi(&hemi, rcol, r, wt); |
| 951 |
– |
divcnt = hemi.nt * hemi.np; |
| 952 |
– |
/* initialize */ |
| 953 |
– |
if (pg != NULL) |
| 954 |
– |
pg[0] = pg[1] = pg[2] = 0.0; |
| 955 |
– |
if (dg != NULL) |
| 956 |
– |
dg[0] = dg[1] = dg[2] = 0.0; |
| 957 |
– |
setcolor(rcol, 0.0, 0.0, 0.0); |
| 958 |
– |
if (divcnt == 0) |
| 959 |
– |
return(0.0); |
| 960 |
– |
/* allocate super-samples */ |
| 961 |
– |
if (hemi.ns > 0 || pg != NULL || dg != NULL) { |
| 962 |
– |
div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP)); |
| 963 |
– |
if (div == NULL) |
| 964 |
– |
error(SYSTEM, "out of memory in doambient"); |
| 965 |
– |
} else |
| 966 |
– |
div = NULL; |
| 967 |
– |
/* sample the divisions */ |
| 968 |
– |
arad = 0.0; |
| 969 |
– |
acol[0] = acol[1] = acol[2] = 0.0; |
| 970 |
– |
if ((dp = div) == NULL) |
| 971 |
– |
dp = &dnew; |
| 972 |
– |
divcnt = 0; |
| 973 |
– |
for (i = 0; i < hemi.nt; i++) |
| 974 |
– |
for (j = 0; j < hemi.np; j++) { |
| 975 |
– |
dp->t = i; dp->p = j; |
| 976 |
– |
setcolor(dp->v, 0.0, 0.0, 0.0); |
| 977 |
– |
dp->r = 0.0; |
| 978 |
– |
dp->n = 0; |
| 979 |
– |
if (divsample(dp, &hemi, r) < 0) { |
| 980 |
– |
if (div != NULL) |
| 981 |
– |
dp++; |
| 982 |
– |
continue; |
| 983 |
– |
} |
| 984 |
– |
arad += dp->r; |
| 985 |
– |
divcnt++; |
| 986 |
– |
if (div != NULL) |
| 987 |
– |
dp++; |
| 988 |
– |
else |
| 989 |
– |
addcolor(acol, dp->v); |
| 990 |
– |
} |
| 991 |
– |
if (!divcnt) { |
| 992 |
– |
if (div != NULL) |
| 993 |
– |
free((void *)div); |
| 994 |
– |
return(0.0); /* no samples taken */ |
| 995 |
– |
} |
| 996 |
– |
if (divcnt < hemi.nt*hemi.np) { |
| 997 |
– |
pg = dg = NULL; /* incomplete sampling */ |
| 998 |
– |
hemi.ns = 0; |
| 999 |
– |
} else if (arad > FTINY && divcnt/arad < minarad) { |
| 1000 |
– |
hemi.ns = 0; /* close enough */ |
| 1001 |
– |
} else if (hemi.ns > 0) { /* else perform super-sampling? */ |
| 1002 |
– |
comperrs(div, &hemi); /* compute errors */ |
| 1003 |
– |
qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */ |
| 1004 |
– |
/* super-sample */ |
| 1005 |
– |
for (i = hemi.ns; i > 0; i--) { |
| 1006 |
– |
dnew = *div; |
| 1007 |
– |
if (divsample(&dnew, &hemi, r) < 0) { |
| 1008 |
– |
dp++; |
| 1009 |
– |
continue; |
| 1010 |
– |
} |
| 1011 |
– |
dp = div; /* reinsert */ |
| 1012 |
– |
j = divcnt < i ? divcnt : i; |
| 1013 |
– |
while (--j > 0 && dnew.k < dp[1].k) { |
| 1014 |
– |
*dp = *(dp+1); |
| 1015 |
– |
dp++; |
| 1016 |
– |
} |
| 1017 |
– |
*dp = dnew; |
| 1018 |
– |
} |
| 1019 |
– |
if (pg != NULL || dg != NULL) /* restore order */ |
| 1020 |
– |
qsort(div, divcnt, sizeof(AMBSAMP), ambnorm); |
| 1021 |
– |
} |
| 1022 |
– |
/* compute returned values */ |
| 1023 |
– |
if (div != NULL) { |
| 1024 |
– |
arad = 0.0; /* note: divcnt may be < nt*np */ |
| 1025 |
– |
for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) { |
| 1026 |
– |
arad += dp->r; |
| 1027 |
– |
if (dp->n > 1) { |
| 1028 |
– |
b = 1.0/dp->n; |
| 1029 |
– |
scalecolor(dp->v, b); |
| 1030 |
– |
dp->r *= b; |
| 1031 |
– |
dp->n = 1; |
| 1032 |
– |
} |
| 1033 |
– |
addcolor(acol, dp->v); |
| 1034 |
– |
} |
| 1035 |
– |
b = bright(acol); |
| 1036 |
– |
if (b > FTINY) { |
| 1037 |
– |
b = 1.0/b; /* compute & normalize gradient(s) */ |
| 1038 |
– |
if (pg != NULL) { |
| 1039 |
– |
posgradient(pg, div, &hemi); |
| 1040 |
– |
for (i = 0; i < 3; i++) |
| 1041 |
– |
pg[i] *= b; |
| 1042 |
– |
} |
| 1043 |
– |
if (dg != NULL) { |
| 1044 |
– |
dirgradient(dg, div, &hemi); |
| 1045 |
– |
for (i = 0; i < 3; i++) |
| 1046 |
– |
dg[i] *= b; |
| 1047 |
– |
} |
| 1048 |
– |
} |
| 1049 |
– |
free((void *)div); |
| 1050 |
– |
} |
| 1051 |
– |
copycolor(rcol, acol); |
| 1052 |
– |
if (arad <= FTINY) |
| 1053 |
– |
arad = maxarad; |
| 1054 |
– |
else |
| 1055 |
– |
arad = (divcnt+hemi.ns)/arad; |
| 1056 |
– |
if (pg != NULL) { /* reduce radius if gradient large */ |
| 1057 |
– |
d = DOT(pg,pg); |
| 1058 |
– |
if (d*arad*arad > 1.0) |
| 1059 |
– |
arad = 1.0/sqrt(d); |
| 1060 |
– |
} |
| 1061 |
– |
if (arad < minarad) { |
| 1062 |
– |
arad = minarad; |
| 1063 |
– |
if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */ |
| 1064 |
– |
d = 1.0/arad/sqrt(d); |
| 1065 |
– |
for (i = 0; i < 3; i++) |
| 1066 |
– |
pg[i] *= d; |
| 1067 |
– |
} |
| 1068 |
– |
} |
| 1069 |
– |
if ((arad /= sqrt(wt)) > maxarad) |
| 1070 |
– |
arad = maxarad; |
| 1071 |
– |
return(arad); |
| 1072 |
– |
} |
| 1073 |
– |
|
| 1074 |
– |
|
| 1075 |
– |
void |
| 1076 |
– |
comperrs( /* compute initial error estimates */ |
| 1077 |
– |
AMBSAMP *da, /* assumes standard ordering */ |
| 1078 |
– |
AMBHEMI *hp |
| 1079 |
– |
) |
| 1080 |
– |
{ |
| 1081 |
– |
double b, b2; |
| 1082 |
– |
int i, j; |
| 1083 |
– |
AMBSAMP *dp; |
| 1084 |
– |
/* sum differences from neighbors */ |
| 1085 |
– |
dp = da; |
| 1086 |
– |
for (i = 0; i < hp->nt; i++) |
| 1087 |
– |
for (j = 0; j < hp->np; j++) { |
| 1088 |
– |
#ifdef DEBUG |
| 1089 |
– |
if (dp->t != i || dp->p != j) |
| 1090 |
– |
error(CONSISTENCY, |
| 1091 |
– |
"division order in comperrs"); |
| 1092 |
– |
#endif |
| 1093 |
– |
b = bright(dp[0].v); |
| 1094 |
– |
if (i > 0) { /* from above */ |
| 1095 |
– |
b2 = bright(dp[-hp->np].v) - b; |
| 1096 |
– |
b2 *= b2 * 0.25; |
| 1097 |
– |
dp[0].k += b2; |
| 1098 |
– |
dp[-hp->np].k += b2; |
| 1099 |
– |
} |
| 1100 |
– |
if (j > 0) { /* from behind */ |
| 1101 |
– |
b2 = bright(dp[-1].v) - b; |
| 1102 |
– |
b2 *= b2 * 0.25; |
| 1103 |
– |
dp[0].k += b2; |
| 1104 |
– |
dp[-1].k += b2; |
| 1105 |
– |
} else { /* around */ |
| 1106 |
– |
b2 = bright(dp[hp->np-1].v) - b; |
| 1107 |
– |
b2 *= b2 * 0.25; |
| 1108 |
– |
dp[0].k += b2; |
| 1109 |
– |
dp[hp->np-1].k += b2; |
| 1110 |
– |
} |
| 1111 |
– |
dp++; |
| 1112 |
– |
} |
| 1113 |
– |
/* divide by number of neighbors */ |
| 1114 |
– |
dp = da; |
| 1115 |
– |
for (j = 0; j < hp->np; j++) /* top row */ |
| 1116 |
– |
(dp++)->k *= 1.0/3.0; |
| 1117 |
– |
if (hp->nt < 2) |
| 1118 |
– |
return; |
| 1119 |
– |
for (i = 1; i < hp->nt-1; i++) /* central region */ |
| 1120 |
– |
for (j = 0; j < hp->np; j++) |
| 1121 |
– |
(dp++)->k *= 0.25; |
| 1122 |
– |
for (j = 0; j < hp->np; j++) /* bottom row */ |
| 1123 |
– |
(dp++)->k *= 1.0/3.0; |
| 1124 |
– |
} |
| 1125 |
– |
|
| 1126 |
– |
|
| 1127 |
– |
void |
| 1128 |
– |
posgradient( /* compute position gradient */ |
| 1129 |
– |
FVECT gv, |
| 1130 |
– |
AMBSAMP *da, /* assumes standard ordering */ |
| 1131 |
– |
AMBHEMI *hp |
| 1132 |
– |
) |
| 1133 |
– |
{ |
| 1134 |
– |
int i, j; |
| 1135 |
– |
double nextsine, lastsine, b, d; |
| 1136 |
– |
double mag0, mag1; |
| 1137 |
– |
double phi, cosp, sinp, xd, yd; |
| 1138 |
– |
AMBSAMP *dp; |
| 1139 |
– |
|
| 1140 |
– |
xd = yd = 0.0; |
| 1141 |
– |
for (j = 0; j < hp->np; j++) { |
| 1142 |
– |
dp = da + j; |
| 1143 |
– |
mag0 = mag1 = 0.0; |
| 1144 |
– |
lastsine = 0.0; |
| 1145 |
– |
for (i = 0; i < hp->nt; i++) { |
| 1146 |
– |
#ifdef DEBUG |
| 1147 |
– |
if (dp->t != i || dp->p != j) |
| 1148 |
– |
error(CONSISTENCY, |
| 1149 |
– |
"division order in posgradient"); |
| 1150 |
– |
#endif |
| 1151 |
– |
b = bright(dp->v); |
| 1152 |
– |
if (i > 0) { |
| 1153 |
– |
d = dp[-hp->np].r; |
| 1154 |
– |
if (dp[0].r > d) d = dp[0].r; |
| 1155 |
– |
/* sin(t)*cos(t)^2 */ |
| 1156 |
– |
d *= lastsine * (1.0 - (double)i/hp->nt); |
| 1157 |
– |
mag0 += d*(b - bright(dp[-hp->np].v)); |
| 1158 |
– |
} |
| 1159 |
– |
nextsine = sqrt((double)(i+1)/hp->nt); |
| 1160 |
– |
if (j > 0) { |
| 1161 |
– |
d = dp[-1].r; |
| 1162 |
– |
if (dp[0].r > d) d = dp[0].r; |
| 1163 |
– |
mag1 += d * (nextsine - lastsine) * |
| 1164 |
– |
(b - bright(dp[-1].v)); |
| 1165 |
– |
} else { |
| 1166 |
– |
d = dp[hp->np-1].r; |
| 1167 |
– |
if (dp[0].r > d) d = dp[0].r; |
| 1168 |
– |
mag1 += d * (nextsine - lastsine) * |
| 1169 |
– |
(b - bright(dp[hp->np-1].v)); |
| 1170 |
– |
} |
| 1171 |
– |
dp += hp->np; |
| 1172 |
– |
lastsine = nextsine; |
| 1173 |
– |
} |
| 1174 |
– |
mag0 *= 2.0*PI / hp->np; |
| 1175 |
– |
phi = 2.0*PI * (double)j/hp->np; |
| 1176 |
– |
cosp = tcos(phi); sinp = tsin(phi); |
| 1177 |
– |
xd += mag0*cosp - mag1*sinp; |
| 1178 |
– |
yd += mag0*sinp + mag1*cosp; |
| 1179 |
– |
} |
| 1180 |
– |
for (i = 0; i < 3; i++) |
| 1181 |
– |
gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI; |
| 1182 |
– |
} |
| 1183 |
– |
|
| 1184 |
– |
|
| 1185 |
– |
void |
| 1186 |
– |
dirgradient( /* compute direction gradient */ |
| 1187 |
– |
FVECT gv, |
| 1188 |
– |
AMBSAMP *da, /* assumes standard ordering */ |
| 1189 |
– |
AMBHEMI *hp |
| 1190 |
– |
) |
| 1191 |
– |
{ |
| 1192 |
– |
int i, j; |
| 1193 |
– |
double mag; |
| 1194 |
– |
double phi, xd, yd; |
| 1195 |
– |
AMBSAMP *dp; |
| 1196 |
– |
|
| 1197 |
– |
xd = yd = 0.0; |
| 1198 |
– |
for (j = 0; j < hp->np; j++) { |
| 1199 |
– |
dp = da + j; |
| 1200 |
– |
mag = 0.0; |
| 1201 |
– |
for (i = 0; i < hp->nt; i++) { |
| 1202 |
– |
#ifdef DEBUG |
| 1203 |
– |
if (dp->t != i || dp->p != j) |
| 1204 |
– |
error(CONSISTENCY, |
| 1205 |
– |
"division order in dirgradient"); |
| 1206 |
– |
#endif |
| 1207 |
– |
/* tan(t) */ |
| 1208 |
– |
mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0); |
| 1209 |
– |
dp += hp->np; |
| 1210 |
– |
} |
| 1211 |
– |
phi = 2.0*PI * (j+.5)/hp->np + PI/2.0; |
| 1212 |
– |
xd += mag * tcos(phi); |
| 1213 |
– |
yd += mag * tsin(phi); |
| 1214 |
– |
} |
| 1215 |
– |
for (i = 0; i < 3; i++) |
| 1216 |
– |
gv[i] = xd*hp->ux[i] + yd*hp->uy[i]; |
| 1217 |
– |
} |
| 1218 |
– |
|
| 1219 |
– |
#endif /* ! NEWAMB */ |