ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
(Generate patch)

Comparing ray/src/rt/ambcomp.c (file contents):
Revision 2.73 by greg, Fri Oct 14 00:54:21 2016 UTC vs.
Revision 2.99 by greg, Sun Apr 27 20:20:01 2025 UTC

# Line 21 | Line 21 | static const char      RCSid[] = "$Id$";
21   #include  "ambient.h"
22   #include  "random.h"
23  
24 < #ifndef OLDAMB
24 > #ifndef MINADIV
25 > #define MINADIV         7       /* minimum # divisions in each dimension */
26 > #endif
27 > #ifndef MINSDIST
28 > #define MINSDIST        0.25    /* def. min. spacing = 1/4th division */
29 > #endif
30  
26 extern void             SDsquare2disk(double ds[2], double seedx, double seedy);
27
31   typedef struct {
29        COLOR   v;              /* hemisphere sample value */
30        float   d;              /* reciprocal distance (1/rt) */
32          FVECT   p;              /* intersection point */
33 +        float   d;              /* reciprocal distance */
34 +        SCOLOR  v;              /* hemisphere sample value */
35   } AMBSAMP;              /* sample value */
36  
37   typedef struct {
38          RAY     *rp;            /* originating ray sample */
39          int     ns;             /* number of samples per axis */
40          int     sampOK;         /* acquired full sample set? */
41 <        COLOR   acoef;          /* division contribution coefficient */
42 <        double  acol[3];        /* accumulated color */
41 >        int     atyp;           /* RAMBIENT or TAMBIENT */
42 >        SCOLOR  acoef;          /* division contribution coefficient */
43 >        SCOLOR  acol;           /* accumulated color */
44 >        FVECT   onrm;           /* oriented unperturbed surface normal */
45          FVECT   ux, uy;         /* tangent axis unit vectors */
46          AMBSAMP sa[1];          /* sample array (extends struct) */
47   }  AMBHEMI;             /* ambient sample hemisphere */
# Line 58 | Line 63 | ambcollision(                          /* proposed direciton collides? */
63          FVECT   dv
64   )
65   {
66 <        const double    cos_thresh = 0.9999995; /* about 3.44 arcminutes */
67 <        int             ii, jj;
66 >        double  cos_thresh;
67 >        int     ii, jj;
68  
69 +        cos_thresh = (PI*MINSDIST)/(double)hp->ns;
70 +        cos_thresh = 1. - .5*cos_thresh*cos_thresh;
71 +                                        /* check existing neighbors */
72          for (ii = i-1; ii <= i+1; ii++) {
73                  if (ii < 0) continue;
74                  if (ii >= hp->ns) break;
# Line 72 | Line 80 | ambcollision(                          /* proposed direciton collides? */
80                          if (jj >= hp->ns) break;
81                          if ((ii==i) & (jj==j)) continue;
82                          ap = &ambsam(hp,ii,jj);
83 <                        if (ap->d <= .5/FHUGE) continue;
83 >                        if (ap->d <= .5/FHUGE)
84 >                                continue;       /* no one home */
85                          VSUB(avec, ap->p, hp->rp->rop);
86                          dprod = DOT(avec, dv);
87                          if (dprod >= cos_thresh*VLEN(avec))
88                                  return(1);      /* collision */
89                  }
90          }
91 <        return(0);
91 >        return(0);                      /* nothing to worry about */
92   }
93  
94  
95 + #define XLOTSIZ         251             /* size of used car lot */
96 + #define CFIRST          0               /* first corner */
97 + #define COTHER          (CFIRST+4)      /* non-corner sample */
98 + #define CMAXTARGET      (int)(XLOTSIZ*MINSDIST/(1-MINSDIST))
99 + #define CXCOPY(d,s)     (excharr[d][0]=excharr[s][0], excharr[d][1]=excharr[s][1])
100 +
101   static int
102 + psample_class(double ss[2])             /* classify patch sample */
103 + {
104 +        if (ss[0] < MINSDIST) {
105 +                if (ss[1] < MINSDIST)
106 +                        return(CFIRST);
107 +                if (ss[1] > 1.-MINSDIST)
108 +                        return(CFIRST+2);
109 +        } else if (ss[0] > 1.-MINSDIST) {
110 +                if (ss[1] < MINSDIST)
111 +                        return(CFIRST+1);
112 +                if (ss[1] > 1.-MINSDIST)
113 +                        return(CFIRST+3);
114 +        }
115 +        return(COTHER);                 /* not in a corner */
116 + }
117 +
118 + static void
119 + trade_patchsamp(double ss[2])           /* trade in problem patch position */
120 + {
121 +        static float    excharr[XLOTSIZ][2];
122 +        static short    gterm[COTHER+1];
123 +        double          srep[2];
124 +        int             sclass, rclass;
125 +        int             x;
126 +                                        /* reset on corner overload */
127 +        if (gterm[COTHER-1] >= (CMAXTARGET+XLOTSIZ)/2)
128 +                memset(gterm, 0, sizeof(gterm));
129 +                                        /* (re-)initialize? */
130 +        while (gterm[COTHER] < XLOTSIZ) {
131 +                excharr[gterm[COTHER]][0] = frandom();
132 +                excharr[gterm[COTHER]][1] = frandom();
133 +                ++gterm[COTHER];
134 +        }                               /* get trade-in candidate... */
135 +        sclass = psample_class(ss);     /* submitted corner or not? */
136 +        switch (sclass) {
137 +        case COTHER:                    /* trade mid-edge with corner/any */
138 +                x = irandom( gterm[COTHER-1] > CMAXTARGET
139 +                                ? gterm[COTHER-1] : XLOTSIZ );
140 +                break;
141 +        case CFIRST:                    /* kick out of first corner */
142 +                x = gterm[CFIRST] + irandom(XLOTSIZ - gterm[CFIRST]);
143 +                break;
144 +        default:                        /* kick out of 2nd-4th corner */
145 +                x = irandom(XLOTSIZ - (gterm[sclass] - gterm[sclass-1]));
146 +                x += (x >= gterm[sclass-1])*(gterm[sclass] - gterm[sclass-1]);
147 +                break;
148 +        }
149 +        srep[0] = excharr[x][0];        /* save selected trade output */
150 +        srep[1] = excharr[x][1];
151 +                                        /* adjust our lot groups */
152 +        for (rclass = CFIRST; rclass < COTHER; rclass++)
153 +                if (x < gterm[rclass])
154 +                        break;
155 +        if (sclass < rclass) {          /* submitted group before replacement? */
156 +                CXCOPY(x, gterm[rclass-1]);
157 +                while (--rclass > sclass) {
158 +                        CXCOPY(gterm[rclass], gterm[rclass-1]);
159 +                        ++gterm[rclass];
160 +                }
161 +                x = gterm[sclass]++;
162 +        } else if (sclass > rclass) {   /* submitted group after replacement? */
163 +                --gterm[rclass];
164 +                CXCOPY(x, gterm[rclass]);
165 +                while (++rclass < sclass) {
166 +                        --gterm[rclass];
167 +                        CXCOPY(gterm[rclass-1], gterm[rclass]);
168 +                }
169 +                x = gterm[sclass-1];
170 +        }
171 +        excharr[x][0] = ss[0];          /* complete the transaction */
172 +        excharr[x][1] = ss[1];
173 +        ss[0] = srep[0];
174 +        ss[1] = srep[1];
175 + }
176 +
177 + #undef CXCOPY
178 + #undef XLOTSIZ
179 + #undef COTHER
180 + #undef CFIRST
181 +
182 +
183 + static int
184   ambsample(                              /* initial ambient division sample */
185          AMBHEMI *hp,
186          int     i,
# Line 94 | Line 191 | ambsample(                             /* initial ambient division sample */
191          AMBSAMP *ap = &ambsam(hp,i,j);
192          RAY     ar;
193          int     hlist[3], ii;
194 <        double  spt[2], zd;
194 >        double  ss[2];
195 >        RREAL   spt[2];
196 >        double  zd;
197                                          /* generate hemispherical sample */
198                                          /* ambient coefficient for weight */
199          if (ambacc > FTINY)
200 <                setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
200 >                setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
201          else
202 <                copycolor(ar.rcoef, hp->acoef);
203 <        if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
202 >                copyscolor(ar.rcoef, hp->acoef);
203 >        if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0)
204                  return(0);
205          if (ambacc > FTINY) {
206 <                multcolor(ar.rcoef, hp->acoef);
207 <                scalecolor(ar.rcoef, 1./AVGREFL);
206 >                smultscolor(ar.rcoef, hp->acoef);
207 >                scalescolor(ar.rcoef, 1./AVGREFL);
208          }
209          hlist[0] = hp->rp->rno;
210 <        hlist[1] = j;
211 <        hlist[2] = i;
212 <        multisamp(spt, 2, urand(ilhash(hlist,3)+n));
213 < resample:
214 <        SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
210 >        hlist[1] = AI(hp,i,j);
211 >        hlist[2] = samplendx;
212 >        multisamp(ss, 2, urand(ilhash(hlist,3)+n));
213 > patch_redo:
214 >        square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns);
215          zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
216          for (ii = 3; ii--; )
217                  ar.rdir[ii] =   spt[0]*hp->ux[ii] +
218                                  spt[1]*hp->uy[ii] +
219 <                                zd*hp->rp->ron[ii];
219 >                                zd*hp->onrm[ii];
220          checknorm(ar.rdir);
221                                          /* avoid coincident samples */
222 <        if (!n && ambcollision(hp, i, j, ar.rdir)) {
223 <                spt[0] = frandom(); spt[1] = frandom();
224 <                goto resample;
222 >        if (!n & (hp->ns >= 4) && ambcollision(hp, i, j, ar.rdir)) {
223 >                trade_patchsamp(ss);
224 >                goto patch_redo;
225          }
226          dimlist[ndims++] = AI(hp,i,j) + 90171;
227          rayvalue(&ar);                  /* evaluate ray */
228          ndims--;
229 <        if (ar.rt <= FTINY)
229 >        zd = raydistance(&ar);
230 >        if (zd <= FTINY)
231                  return(0);              /* should never happen */
232 <        multcolor(ar.rcol, ar.rcoef);   /* apply coefficient */
233 <        if (ar.rt*ap->d < 1.0)          /* new/closer distance? */
234 <                ap->d = 1.0/ar.rt;
232 >        smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */
233 >        if (zd*ap->d < 1.0)             /* new/closer distance? */
234 >                ap->d = 1.0/zd;
235          if (!n) {                       /* record first vertex & value */
236 <                if (ar.rt > 10.0*thescene.cusize)
237 <                        ar.rt = 10.0*thescene.cusize;
238 <                VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
239 <                copycolor(ap->v, ar.rcol);
236 >                if (zd > 10.0*thescene.cusize + 1000.)
237 >                        zd = 10.0*thescene.cusize + 1000.;
238 >                VSUM(ap->p, ar.rorg, ar.rdir, zd);
239 >                copyscolor(ap->v, ar.rcol);
240          } else {                        /* else update recorded value */
241 <                hp->acol[RED] -= colval(ap->v,RED);
142 <                hp->acol[GRN] -= colval(ap->v,GRN);
143 <                hp->acol[BLU] -= colval(ap->v,BLU);
241 >                sopscolor(hp->acol, -=, ap->v);
242                  zd = 1.0/(double)(n+1);
243 <                scalecolor(ar.rcol, zd);
243 >                scalescolor(ar.rcol, zd);
244                  zd *= (double)n;
245 <                scalecolor(ap->v, zd);
246 <                addcolor(ap->v, ar.rcol);
245 >                scalescolor(ap->v, zd);
246 >                saddscolor(ap->v, ar.rcol);
247          }
248 <        addcolor(hp->acol, ap->v);      /* add to our sum */
248 >        saddscolor(hp->acol, ap->v);    /* add to our sum */
249          return(1);
250   }
251  
252  
253 < /* Estimate errors based on ambient division differences */
253 > /* Estimate variance based on ambient division differences */
254   static float *
255   getambdiffs(AMBHEMI *hp)
256   {
257 <        float   *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
257 >        const double    normf = 1./(pbright(hp->acoef) + FTINY);
258 >        float   *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float));
259          float   *ep;
260          AMBSAMP *ap;
261 <        double  b, d2;
261 >        double  b, b1, d2;
262          int     i, j;
263  
264          if (earr == NULL)               /* out of memory? */
265                  return(NULL);
266 <                                        /* compute squared neighbor diffs */
267 <        for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
266 >                                        /* sum squared neighbor diffs */
267 >        ap = hp->sa;
268 >        ep = earr + hp->ns*hp->ns;      /* original estimates to scratch */
269 >        for (i = 0; i < hp->ns; i++)
270              for (j = 0; j < hp->ns; j++, ap++, ep++) {
271 <                b = bright(ap[0].v);
271 >                b = pbright(ap[0].v);
272                  if (i) {                /* from above */
273 <                        d2 = b - bright(ap[-hp->ns].v);
274 <                        d2 *= d2;
273 >                        b1 = pbright(ap[-hp->ns].v);
274 >                        d2 = b - b1;
275 >                        d2 *= d2*normf/(b + b1 + FTINY);
276                          ep[0] += d2;
277                          ep[-hp->ns] += d2;
278                  }
279                  if (!j) continue;
280                                          /* from behind */
281 <                d2 = b - bright(ap[-1].v);
282 <                d2 *= d2;
281 >                b1 = pbright(ap[-1].v);
282 >                d2 = b - b1;
283 >                d2 *= d2*normf/(b + b1 + FTINY);
284                  ep[0] += d2;
285                  ep[-1] += d2;
286                  if (!i) continue;
287                                          /* diagonal */
288 <                d2 = b - bright(ap[-hp->ns-1].v);
289 <                d2 *= d2;
288 >                b1 = pbright(ap[-hp->ns-1].v);
289 >                d2 = b - b1;
290 >                d2 *= d2*normf/(b + b1 + FTINY);
291                  ep[0] += d2;
292                  ep[-hp->ns-1] += d2;
293              }
294                                          /* correct for number of neighbors */
295 <        earr[0] *= 8./3.;
296 <        earr[hp->ns-1] *= 8./3.;
297 <        earr[(hp->ns-1)*hp->ns] *= 8./3.;
298 <        earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
295 >        ep = earr + hp->ns*hp->ns;
296 >        ep[0] *= 6./3.;
297 >        ep[hp->ns-1] *= 6./3.;
298 >        ep[(hp->ns-1)*hp->ns] *= 6./3.;
299 >        ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.;
300          for (i = 1; i < hp->ns-1; i++) {
301 <                earr[i*hp->ns] *= 8./5.;
302 <                earr[i*hp->ns + hp->ns-1] *= 8./5.;
301 >                ep[i*hp->ns] *= 6./5.;
302 >                ep[i*hp->ns + hp->ns-1] *= 6./5.;
303          }
304          for (j = 1; j < hp->ns-1; j++) {
305 <                earr[j] *= 8./5.;
306 <                earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
305 >                ep[j] *= 6./5.;
306 >                ep[(hp->ns-1)*hp->ns + j] *= 6./5.;
307          }
308 +                                        /* blur final map to reduce bias */
309 +        for (i = 0; i < hp->ns-1; i++) {
310 +            float  *ep2;
311 +            ep = earr + i*hp->ns;
312 +            ep2 = ep + hp->ns*hp->ns;
313 +            for (j = 0; j < hp->ns-1; j++, ep++, ep2++) {
314 +                ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]);
315 +                ep[1] += .125*ep2[0];
316 +                ep[hp->ns] += .125*ep2[0];
317 +            }
318 +        }
319          return(earr);
320   }
321  
# Line 210 | Line 326 | ambsupersamp(AMBHEMI *hp, int cnt)
326   {
327          float   *earr = getambdiffs(hp);
328          double  e2rem = 0;
213        AMBSAMP *ap;
329          float   *ep;
330          int     i, j, n, nss;
331  
# Line 220 | Line 335 | ambsupersamp(AMBHEMI *hp, int cnt)
335          for (ep = earr + hp->ns*hp->ns; ep > earr; )
336                  e2rem += *--ep;
337          ep = earr;                      /* perform super-sampling */
338 <        for (ap = hp->sa, i = 0; i < hp->ns; i++)
339 <            for (j = 0; j < hp->ns; j++, ap++) {
338 >        for (i = 0; i < hp->ns; i++)
339 >            for (j = 0; j < hp->ns; j++) {
340                  if (e2rem <= FTINY)
341                          goto done;      /* nothing left to do */
342                  nss = *ep/e2rem*cnt + frandom();
343                  for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
344 <                        --cnt;
344 >                        if (!--cnt) goto done;
345                  e2rem -= *ep++;         /* update remainder */
346          }
347   done:
# Line 236 | Line 351 | done:
351  
352   static AMBHEMI *
353   samp_hemi(                              /* sample indirect hemisphere */
354 <        COLOR   rcol,
354 >        SCOLOR  rcol,
355          RAY     *r,
356          double  wt
357   )
358   {
359 +        int     backside = (wt < 0);
360          AMBHEMI *hp;
361          double  d;
362          int     n, i, j;
363 +                                        /* insignificance check */
364 +        d = sintens(rcol);
365 +        if (d <= FTINY)
366 +                return(NULL);
367                                          /* set number of divisions */
368 +        if (backside) wt = -wt;
369          if (ambacc <= FTINY &&
370 <                        wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight)))
370 >                        wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20)))
371                  wt = d;                 /* avoid ray termination */
372          n = sqrt(ambdiv * wt) + 0.5;
373 <        i = 1 + 5*(ambacc > FTINY);     /* minimum number of samples */
374 <        if (n < i)
373 >        i = 1 + (MINADIV-1)*(ambacc > FTINY);
374 >        if (n < i)                      /* use minimum number of samples? */
375                  n = i;
376                                          /* allocate sampling array */
377          hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
378          if (hp == NULL)
379                  error(SYSTEM, "out of memory in samp_hemi");
380 +
381 +        if (backside) {
382 +                hp->atyp = TAMBIENT;
383 +                hp->onrm[0] = -r->ron[0];
384 +                hp->onrm[1] = -r->ron[1];
385 +                hp->onrm[2] = -r->ron[2];
386 +        } else {
387 +                hp->atyp = RAMBIENT;
388 +                VCOPY(hp->onrm, r->ron);
389 +        }
390          hp->rp = r;
391          hp->ns = n;
392 <        hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0;
392 >        scolorblack(hp->acol);
393          memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
394          hp->sampOK = 0;
395                                          /* assign coefficient */
396 <        copycolor(hp->acoef, rcol);
396 >        copyscolor(hp->acoef, rcol);
397          d = 1.0/(n*n);
398 <        scalecolor(hp->acoef, d);
398 >        scalescolor(hp->acoef, d);
399                                          /* make tangent plane axes */
400 <        if (!getperpendicular(hp->ux, r->ron, 1))
400 >        if (!getperpendicular(hp->ux, hp->onrm, 1))
401                  error(CONSISTENCY, "bad ray direction in samp_hemi");
402 <        VCROSS(hp->uy, r->ron, hp->ux);
402 >        VCROSS(hp->uy, hp->onrm, hp->ux);
403                                          /* sample divisions */
404          for (i = hp->ns; i--; )
405              for (j = hp->ns; j--; )
406                  hp->sampOK += ambsample(hp, i, j, 0);
407 <        copycolor(rcol, hp->acol);
407 >        copyscolor(rcol, hp->acol);
408          if (!hp->sampOK) {              /* utter failure? */
409                  free(hp);
410                  return(NULL);
# Line 282 | Line 413 | samp_hemi(                             /* sample indirect hemisphere */
413                  hp->sampOK *= -1;       /* soft failure */
414                  return(hp);
415          }
416 +        if (hp->sampOK <= MINADIV*MINADIV)
417 +                return(hp);             /* don't bother super-sampling */
418          n = ambssamp*wt + 0.5;
419 <        if (n > 8) {                    /* perform super-sampling? */
419 >        if (n >= 4*hp->ns) {            /* perform super-sampling? */
420                  ambsupersamp(hp, n);
421 <                copycolor(rcol, hp->acol);
421 >                copyscolor(rcol, hp->acol);
422          }
423          return(hp);                     /* all is well */
424   }
# Line 297 | Line 430 | back_ambval(AMBHEMI *hp, const int n1, const int n2, c
430   {
431          if (hp->sa[n1].d <= hp->sa[n2].d) {
432                  if (hp->sa[n1].d <= hp->sa[n3].d)
433 <                        return(colval(hp->sa[n1].v,CIEY));
434 <                return(colval(hp->sa[n3].v,CIEY));
433 >                        return(hp->sa[n1].v[0]);
434 >                return(hp->sa[n3].v[0]);
435          }
436          if (hp->sa[n2].d <= hp->sa[n3].d)
437 <                return(colval(hp->sa[n2].v,CIEY));
438 <        return(colval(hp->sa[n3].v,CIEY));
437 >                return(hp->sa[n2].v[0]);
438 >        return(hp->sa[n3].v[0]);
439   }
440  
441  
# Line 531 | Line 664 | ambHessian(                            /* anisotropic radii & pos. gradient */
664          for (j = 0; j < hp->ns-1; j++) {
665                  comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
666                  if (hessrow != NULL)
667 <                        comp_hessian(hessrow[j], &fftr, hp->rp->ron);
667 >                        comp_hessian(hessrow[j], &fftr, hp->onrm);
668                  if (gradrow != NULL)
669 <                        comp_gradient(gradrow[j], &fftr, hp->rp->ron);
669 >                        comp_gradient(gradrow[j], &fftr, hp->onrm);
670          }
671                                          /* sum each row of triangles */
672          for (i = 0; i < hp->ns-1; i++) {
# Line 541 | Line 674 | ambHessian(                            /* anisotropic radii & pos. gradient */
674              FVECT       gradcol;
675              comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
676              if (hessrow != NULL)
677 <                comp_hessian(hesscol, &fftr, hp->rp->ron);
677 >                comp_hessian(hesscol, &fftr, hp->onrm);
678              if (gradrow != NULL)
679 <                comp_gradient(gradcol, &fftr, hp->rp->ron);
679 >                comp_gradient(gradcol, &fftr, hp->onrm);
680              for (j = 0; j < hp->ns-1; j++) {
681                  FVECT   hessdia[3];     /* compute triangle contributions */
682                  FVECT   graddia;
# Line 553 | Line 686 | ambHessian(                            /* anisotropic radii & pos. gradient */
686                                          /* diagonal (inner) edge */
687                  comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
688                  if (hessrow != NULL) {
689 <                    comp_hessian(hessdia, &fftr, hp->rp->ron);
689 >                    comp_hessian(hessdia, &fftr, hp->onrm);
690                      rev_hessian(hesscol);
691                      add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
692                  }
693                  if (gradrow != NULL) {
694 <                    comp_gradient(graddia, &fftr, hp->rp->ron);
694 >                    comp_gradient(graddia, &fftr, hp->onrm);
695                      rev_gradient(gradcol);
696                      add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
697                  }
698                                          /* initialize edge in next row */
699                  comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
700                  if (hessrow != NULL)
701 <                    comp_hessian(hessrow[j], &fftr, hp->rp->ron);
701 >                    comp_hessian(hessrow[j], &fftr, hp->onrm);
702                  if (gradrow != NULL)
703 <                    comp_gradient(gradrow[j], &fftr, hp->rp->ron);
703 >                    comp_gradient(gradrow[j], &fftr, hp->onrm);
704                                          /* new column edge & paired triangle */
705                  backg = back_ambval(hp, AI(hp,i+1,j+1),
706                                          AI(hp,i+1,j), AI(hp,i,j+1));
707                  comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
708                  if (hessrow != NULL) {
709 <                    comp_hessian(hesscol, &fftr, hp->rp->ron);
709 >                    comp_hessian(hesscol, &fftr, hp->onrm);
710                      rev_hessian(hessdia);
711                      add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
712                      if (i < hp->ns-2)
713                          rev_hessian(hessrow[j]);
714                  }
715                  if (gradrow != NULL) {
716 <                    comp_gradient(gradcol, &fftr, hp->rp->ron);
716 >                    comp_gradient(gradcol, &fftr, hp->onrm);
717                      rev_gradient(graddia);
718                      add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
719                      if (i < hp->ns-2)
# Line 616 | Line 749 | ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
749                                          /* use vector for azimuth + 90deg */
750                  VSUB(vd, ap->p, hp->rp->rop);
751                                          /* brightness over cosine factor */
752 <                gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
752 >                gfact = ap->v[0] / DOT(hp->onrm, vd);
753                                          /* sine = proj_radius/vd_length */
754                  dgsum[0] -= DOT(uv[1], vd) * gfact;
755                  dgsum[1] += DOT(uv[0], vd) * gfact;
# Line 666 | Line 799 | ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, c
799                  for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
800                          flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
801              }
669                                        /* add low-angle incident (< 20deg) */
670        if (fabs(hp->rp->rod) <= 0.342) {
671                u = -DOT(hp->rp->rdir, uv[0]);
672                v = -DOT(hp->rp->rdir, uv[1]);
673                if ((r0*r0*u*u + r1*r1*v*v) > hp->rp->rot*hp->rp->rot) {
674                        ang = atan2a(v, u);
675                        ang += 2.*PI*(ang < 0);
676                        ang *= 16/PI;
677                        if ((ang < .5) | (ang >= 31.5))
678                                flgs |= 0x80000001;
679                        else
680                                flgs |= 3L<<(int)(ang-.5);
681                }
682        }
802          return(flgs);
803   }
804  
805  
806   int
807   doambient(                              /* compute ambient component */
808 <        COLOR   rcol,                   /* input/output color */
808 >        SCOLOR  rcol,                   /* input/output color */
809          RAY     *r,
810 <        double  wt,
810 >        double  wt,                     /* negative for back side */
811          FVECT   uv[2],                  /* returned (optional) */
812          float   ra[2],                  /* returned (optional) */
813          float   pg[2],                  /* returned (optional) */
# Line 716 | Line 835 | doambient(                             /* compute ambient component */
835                  return(0);
836  
837          if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
838 <                        (hp->sampOK < 0) | (hp->ns < 6)) {
838 >                        (hp->sampOK < 0) | (hp->ns < MINADIV)) {
839                  free(hp);               /* Hessian not requested/possible */
840                  return(-1);             /* value-only return value */
841          }
842 <        if ((d = bright(rcol)) > FTINY) {       /* normalize Y values */
843 <                d = 0.99*(hp->ns*hp->ns)/d;
842 >        if ((d = scolor_mean(rcol)) > FTINY) {
843 >                d = 0.99*(hp->ns*hp->ns)/d;     /* normalize avg. values */
844                  K = 0.01;
845          } else {                        /* or fall back on geometric Hessian */
846                  K = 1.0;
# Line 729 | Line 848 | doambient(                             /* compute ambient component */
848                  dg = NULL;
849                  crlp = NULL;
850          }
851 <        ap = hp->sa;                    /* relative Y channel from here on... */
851 >        ap = hp->sa;                    /* single channel from here on... */
852          for (i = hp->ns*hp->ns; i--; ap++)
853 <                colval(ap->v,CIEY) = bright(ap->v)*d + K;
853 >                ap->v[0] = scolor_mean(ap->v)*d + K;
854  
855          if (uv == NULL)                 /* make sure we have axis pointers */
856                  uv = my_uv;
# Line 755 | Line 874 | doambient(                             /* compute ambient component */
874                          if (ra[1] < minarad)
875                                  ra[1] = minarad;
876                  }
877 <                ra[0] *= d = 1.0/sqrt(wt);
877 >                ra[0] *= d = 1.0/sqrt(fabs(wt));
878                  if ((ra[1] *= d) > 2.0*ra[0])
879                          ra[1] = 2.0*ra[0];
880                  if (ra[1] > maxarad) {
# Line 764 | Line 883 | doambient(                             /* compute ambient component */
883                                  ra[0] = maxarad;
884                  }
885                                          /* flag encroached directions */
886 <                if (crlp != NULL)
886 >                if (crlp != NULL)       /* XXX doesn't update with changes to ambacc */
887                          *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
888                  if (pg != NULL) {       /* cap gradient if necessary */
889                          d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
# Line 778 | Line 897 | doambient(                             /* compute ambient component */
897          free(hp);                       /* clean up and return */
898          return(1);
899   }
781
782
783 #else /* ! NEWAMB */
784
785
786 void
787 inithemi(                       /* initialize sampling hemisphere */
788        AMBHEMI  *hp,
789        COLOR ac,
790        RAY  *r,
791        double  wt
792 )
793 {
794        double  d;
795        int  i;
796                                        /* set number of divisions */
797        if (ambacc <= FTINY &&
798                        wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
799                wt = d;                 /* avoid ray termination */
800        hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
801        i = ambacc > FTINY ? 3 : 1;     /* minimum number of samples */
802        if (hp->nt < i)
803                hp->nt = i;
804        hp->np = PI * hp->nt + 0.5;
805                                        /* set number of super-samples */
806        hp->ns = ambssamp * wt + 0.5;
807                                        /* assign coefficient */
808        copycolor(hp->acoef, ac);
809        d = 1.0/(hp->nt*hp->np);
810        scalecolor(hp->acoef, d);
811                                        /* make axes */
812        VCOPY(hp->uz, r->ron);
813        hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
814        for (i = 0; i < 3; i++)
815                if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
816                        break;
817        if (i >= 3)
818                error(CONSISTENCY, "bad ray direction in inithemi");
819        hp->uy[i] = 1.0;
820        fcross(hp->ux, hp->uy, hp->uz);
821        normalize(hp->ux);
822        fcross(hp->uy, hp->uz, hp->ux);
823 }
824
825
826 int
827 divsample(                              /* sample a division */
828        AMBSAMP  *dp,
829        AMBHEMI  *h,
830        RAY  *r
831 )
832 {
833        RAY  ar;
834        int  hlist[3];
835        double  spt[2];
836        double  xd, yd, zd;
837        double  b2;
838        double  phi;
839        int  i;
840                                        /* ambient coefficient for weight */
841        if (ambacc > FTINY)
842                setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
843        else
844                copycolor(ar.rcoef, h->acoef);
845        if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
846                return(-1);
847        if (ambacc > FTINY) {
848                multcolor(ar.rcoef, h->acoef);
849                scalecolor(ar.rcoef, 1./AVGREFL);
850        }
851        hlist[0] = r->rno;
852        hlist[1] = dp->t;
853        hlist[2] = dp->p;
854        multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
855        zd = sqrt((dp->t + spt[0])/h->nt);
856        phi = 2.0*PI * (dp->p + spt[1])/h->np;
857        xd = tcos(phi) * zd;
858        yd = tsin(phi) * zd;
859        zd = sqrt(1.0 - zd*zd);
860        for (i = 0; i < 3; i++)
861                ar.rdir[i] =    xd*h->ux[i] +
862                                yd*h->uy[i] +
863                                zd*h->uz[i];
864        checknorm(ar.rdir);
865        dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
866        rayvalue(&ar);
867        ndims--;
868        multcolor(ar.rcol, ar.rcoef);   /* apply coefficient */
869        addcolor(dp->v, ar.rcol);
870                                        /* use rt to improve gradient calc */
871        if (ar.rt > FTINY && ar.rt < FHUGE)
872                dp->r += 1.0/ar.rt;
873                                        /* (re)initialize error */
874        if (dp->n++) {
875                b2 = bright(dp->v)/dp->n - bright(ar.rcol);
876                b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
877                dp->k = b2/(dp->n*dp->n);
878        } else
879                dp->k = 0.0;
880        return(0);
881 }
882
883
884 static int
885 ambcmp(                                 /* decreasing order */
886        const void *p1,
887        const void *p2
888 )
889 {
890        const AMBSAMP   *d1 = (const AMBSAMP *)p1;
891        const AMBSAMP   *d2 = (const AMBSAMP *)p2;
892
893        if (d1->k < d2->k)
894                return(1);
895        if (d1->k > d2->k)
896                return(-1);
897        return(0);
898 }
899
900
901 static int
902 ambnorm(                                /* standard order */
903        const void *p1,
904        const void *p2
905 )
906 {
907        const AMBSAMP   *d1 = (const AMBSAMP *)p1;
908        const AMBSAMP   *d2 = (const AMBSAMP *)p2;
909        int     c;
910
911        if ( (c = d1->t - d2->t) )
912                return(c);
913        return(d1->p - d2->p);
914 }
915
916
917 double
918 doambient(                              /* compute ambient component */
919        COLOR  rcol,
920        RAY  *r,
921        double  wt,
922        FVECT  pg,
923        FVECT  dg
924 )
925 {
926        double  b, d=0;
927        AMBHEMI  hemi;
928        AMBSAMP  *div;
929        AMBSAMP  dnew;
930        double  acol[3];
931        AMBSAMP  *dp;
932        double  arad;
933        int  divcnt;
934        int  i, j;
935                                        /* initialize hemisphere */
936        inithemi(&hemi, rcol, r, wt);
937        divcnt = hemi.nt * hemi.np;
938                                        /* initialize */
939        if (pg != NULL)
940                pg[0] = pg[1] = pg[2] = 0.0;
941        if (dg != NULL)
942                dg[0] = dg[1] = dg[2] = 0.0;
943        setcolor(rcol, 0.0, 0.0, 0.0);
944        if (divcnt == 0)
945                return(0.0);
946                                        /* allocate super-samples */
947        if (hemi.ns > 0 || pg != NULL || dg != NULL) {
948                div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
949                if (div == NULL)
950                        error(SYSTEM, "out of memory in doambient");
951        } else
952                div = NULL;
953                                        /* sample the divisions */
954        arad = 0.0;
955        acol[0] = acol[1] = acol[2] = 0.0;
956        if ((dp = div) == NULL)
957                dp = &dnew;
958        divcnt = 0;
959        for (i = 0; i < hemi.nt; i++)
960                for (j = 0; j < hemi.np; j++) {
961                        dp->t = i; dp->p = j;
962                        setcolor(dp->v, 0.0, 0.0, 0.0);
963                        dp->r = 0.0;
964                        dp->n = 0;
965                        if (divsample(dp, &hemi, r) < 0) {
966                                if (div != NULL)
967                                        dp++;
968                                continue;
969                        }
970                        arad += dp->r;
971                        divcnt++;
972                        if (div != NULL)
973                                dp++;
974                        else
975                                addcolor(acol, dp->v);
976                }
977        if (!divcnt) {
978                if (div != NULL)
979                        free((void *)div);
980                return(0.0);            /* no samples taken */
981        }
982        if (divcnt < hemi.nt*hemi.np) {
983                pg = dg = NULL;         /* incomplete sampling */
984                hemi.ns = 0;
985        } else if (arad > FTINY && divcnt/arad < minarad) {
986                hemi.ns = 0;            /* close enough */
987        } else if (hemi.ns > 0) {       /* else perform super-sampling? */
988                comperrs(div, &hemi);                   /* compute errors */
989                qsort(div, divcnt, sizeof(AMBSAMP), ambcmp);    /* sort divs */
990                                                /* super-sample */
991                for (i = hemi.ns; i > 0; i--) {
992                        dnew = *div;
993                        if (divsample(&dnew, &hemi, r) < 0) {
994                                dp++;
995                                continue;
996                        }
997                        dp = div;               /* reinsert */
998                        j = divcnt < i ? divcnt : i;
999                        while (--j > 0 && dnew.k < dp[1].k) {
1000                                *dp = *(dp+1);
1001                                dp++;
1002                        }
1003                        *dp = dnew;
1004                }
1005                if (pg != NULL || dg != NULL)   /* restore order */
1006                        qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
1007        }
1008                                        /* compute returned values */
1009        if (div != NULL) {
1010                arad = 0.0;             /* note: divcnt may be < nt*np */
1011                for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
1012                        arad += dp->r;
1013                        if (dp->n > 1) {
1014                                b = 1.0/dp->n;
1015                                scalecolor(dp->v, b);
1016                                dp->r *= b;
1017                                dp->n = 1;
1018                        }
1019                        addcolor(acol, dp->v);
1020                }
1021                b = bright(acol);
1022                if (b > FTINY) {
1023                        b = 1.0/b;      /* compute & normalize gradient(s) */
1024                        if (pg != NULL) {
1025                                posgradient(pg, div, &hemi);
1026                                for (i = 0; i < 3; i++)
1027                                        pg[i] *= b;
1028                        }
1029                        if (dg != NULL) {
1030                                dirgradient(dg, div, &hemi);
1031                                for (i = 0; i < 3; i++)
1032                                        dg[i] *= b;
1033                        }
1034                }
1035                free((void *)div);
1036        }
1037        copycolor(rcol, acol);
1038        if (arad <= FTINY)
1039                arad = maxarad;
1040        else
1041                arad = (divcnt+hemi.ns)/arad;
1042        if (pg != NULL) {               /* reduce radius if gradient large */
1043                d = DOT(pg,pg);
1044                if (d*arad*arad > 1.0)
1045                        arad = 1.0/sqrt(d);
1046        }
1047        if (arad < minarad) {
1048                arad = minarad;
1049                if (pg != NULL && d*arad*arad > 1.0) {  /* cap gradient */
1050                        d = 1.0/arad/sqrt(d);
1051                        for (i = 0; i < 3; i++)
1052                                pg[i] *= d;
1053                }
1054        }
1055        if ((arad /= sqrt(wt)) > maxarad)
1056                arad = maxarad;
1057        return(arad);
1058 }
1059
1060
1061 void
1062 comperrs(                       /* compute initial error estimates */
1063        AMBSAMP  *da,   /* assumes standard ordering */
1064        AMBHEMI  *hp
1065 )
1066 {
1067        double  b, b2;
1068        int  i, j;
1069        AMBSAMP  *dp;
1070                                /* sum differences from neighbors */
1071        dp = da;
1072        for (i = 0; i < hp->nt; i++)
1073                for (j = 0; j < hp->np; j++) {
1074 #ifdef  DEBUG
1075                        if (dp->t != i || dp->p != j)
1076                                error(CONSISTENCY,
1077                                        "division order in comperrs");
1078 #endif
1079                        b = bright(dp[0].v);
1080                        if (i > 0) {            /* from above */
1081                                b2 = bright(dp[-hp->np].v) - b;
1082                                b2 *= b2 * 0.25;
1083                                dp[0].k += b2;
1084                                dp[-hp->np].k += b2;
1085                        }
1086                        if (j > 0) {            /* from behind */
1087                                b2 = bright(dp[-1].v) - b;
1088                                b2 *= b2 * 0.25;
1089                                dp[0].k += b2;
1090                                dp[-1].k += b2;
1091                        } else {                /* around */
1092                                b2 = bright(dp[hp->np-1].v) - b;
1093                                b2 *= b2 * 0.25;
1094                                dp[0].k += b2;
1095                                dp[hp->np-1].k += b2;
1096                        }
1097                        dp++;
1098                }
1099                                /* divide by number of neighbors */
1100        dp = da;
1101        for (j = 0; j < hp->np; j++)            /* top row */
1102                (dp++)->k *= 1.0/3.0;
1103        if (hp->nt < 2)
1104                return;
1105        for (i = 1; i < hp->nt-1; i++)          /* central region */
1106                for (j = 0; j < hp->np; j++)
1107                        (dp++)->k *= 0.25;
1108        for (j = 0; j < hp->np; j++)            /* bottom row */
1109                (dp++)->k *= 1.0/3.0;
1110 }
1111
1112
1113 void
1114 posgradient(                                    /* compute position gradient */
1115        FVECT  gv,
1116        AMBSAMP  *da,                   /* assumes standard ordering */
1117        AMBHEMI  *hp
1118 )
1119 {
1120        int  i, j;
1121        double  nextsine, lastsine, b, d;
1122        double  mag0, mag1;
1123        double  phi, cosp, sinp, xd, yd;
1124        AMBSAMP  *dp;
1125
1126        xd = yd = 0.0;
1127        for (j = 0; j < hp->np; j++) {
1128                dp = da + j;
1129                mag0 = mag1 = 0.0;
1130                lastsine = 0.0;
1131                for (i = 0; i < hp->nt; i++) {
1132 #ifdef  DEBUG
1133                        if (dp->t != i || dp->p != j)
1134                                error(CONSISTENCY,
1135                                        "division order in posgradient");
1136 #endif
1137                        b = bright(dp->v);
1138                        if (i > 0) {
1139                                d = dp[-hp->np].r;
1140                                if (dp[0].r > d) d = dp[0].r;
1141                                                        /* sin(t)*cos(t)^2 */
1142                                d *= lastsine * (1.0 - (double)i/hp->nt);
1143                                mag0 += d*(b - bright(dp[-hp->np].v));
1144                        }
1145                        nextsine = sqrt((double)(i+1)/hp->nt);
1146                        if (j > 0) {
1147                                d = dp[-1].r;
1148                                if (dp[0].r > d) d = dp[0].r;
1149                                mag1 += d * (nextsine - lastsine) *
1150                                                (b - bright(dp[-1].v));
1151                        } else {
1152                                d = dp[hp->np-1].r;
1153                                if (dp[0].r > d) d = dp[0].r;
1154                                mag1 += d * (nextsine - lastsine) *
1155                                                (b - bright(dp[hp->np-1].v));
1156                        }
1157                        dp += hp->np;
1158                        lastsine = nextsine;
1159                }
1160                mag0 *= 2.0*PI / hp->np;
1161                phi = 2.0*PI * (double)j/hp->np;
1162                cosp = tcos(phi); sinp = tsin(phi);
1163                xd += mag0*cosp - mag1*sinp;
1164                yd += mag0*sinp + mag1*cosp;
1165        }
1166        for (i = 0; i < 3; i++)
1167                gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1168 }
1169
1170
1171 void
1172 dirgradient(                                    /* compute direction gradient */
1173        FVECT  gv,
1174        AMBSAMP  *da,                   /* assumes standard ordering */
1175        AMBHEMI  *hp
1176 )
1177 {
1178        int  i, j;
1179        double  mag;
1180        double  phi, xd, yd;
1181        AMBSAMP  *dp;
1182
1183        xd = yd = 0.0;
1184        for (j = 0; j < hp->np; j++) {
1185                dp = da + j;
1186                mag = 0.0;
1187                for (i = 0; i < hp->nt; i++) {
1188 #ifdef  DEBUG
1189                        if (dp->t != i || dp->p != j)
1190                                error(CONSISTENCY,
1191                                        "division order in dirgradient");
1192 #endif
1193                                                        /* tan(t) */
1194                        mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1195                        dp += hp->np;
1196                }
1197                phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1198                xd += mag * tcos(phi);
1199                yd += mag * tsin(phi);
1200        }
1201        for (i = 0; i < 3; i++)
1202                gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1203 }
1204
1205 #endif  /* ! NEWAMB */

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines