21 |
|
#include "ambient.h" |
22 |
|
#include "random.h" |
23 |
|
|
24 |
< |
#ifndef OLDAMB |
24 |
> |
#ifndef MINADIV |
25 |
> |
#define MINADIV 7 /* minimum # divisions in each dimension */ |
26 |
> |
#endif |
27 |
|
|
28 |
|
extern void SDsquare2disk(double ds[2], double seedx, double seedy); |
29 |
|
|
30 |
|
typedef struct { |
31 |
|
COLOR v; /* hemisphere sample value */ |
32 |
< |
float d; /* reciprocal distance (1/rt) */ |
32 |
> |
float d; /* reciprocal distance */ |
33 |
|
FVECT p; /* intersection point */ |
34 |
|
} AMBSAMP; /* sample value */ |
35 |
|
|
60 |
|
FVECT dv |
61 |
|
) |
62 |
|
{ |
63 |
< |
const double cos_thresh = 0.9999995; /* about 3.44 arcminutes */ |
64 |
< |
int ii, jj; |
65 |
< |
|
63 |
> |
double cos_thresh; |
64 |
> |
int ii, jj; |
65 |
> |
/* min. spacing = 1/4th division */ |
66 |
> |
cos_thresh = (PI/4.)/(double)hp->ns; |
67 |
> |
cos_thresh = 1. - .5*cos_thresh*cos_thresh; |
68 |
> |
/* check existing neighbors */ |
69 |
|
for (ii = i-1; ii <= i+1; ii++) { |
70 |
|
if (ii < 0) continue; |
71 |
|
if (ii >= hp->ns) break; |
77 |
|
if (jj >= hp->ns) break; |
78 |
|
if ((ii==i) & (jj==j)) continue; |
79 |
|
ap = &ambsam(hp,ii,jj); |
80 |
< |
if (ap->d <= .5/FHUGE) continue; |
80 |
> |
if (ap->d <= .5/FHUGE) |
81 |
> |
continue; /* no one home */ |
82 |
|
VSUB(avec, ap->p, hp->rp->rop); |
83 |
|
dprod = DOT(avec, dv); |
84 |
|
if (dprod >= cos_thresh*VLEN(avec)) |
85 |
|
return(1); /* collision */ |
86 |
|
} |
87 |
|
} |
88 |
< |
return(0); |
88 |
> |
return(0); /* nothing to worry about */ |
89 |
|
} |
90 |
|
|
91 |
|
|
128 |
|
/* avoid coincident samples */ |
129 |
|
if (!n && ambcollision(hp, i, j, ar.rdir)) { |
130 |
|
spt[0] = frandom(); spt[1] = frandom(); |
131 |
< |
goto resample; |
131 |
> |
goto resample; /* reject this sample */ |
132 |
|
} |
133 |
|
dimlist[ndims++] = AI(hp,i,j) + 90171; |
134 |
|
rayvalue(&ar); /* evaluate ray */ |
135 |
|
ndims--; |
136 |
< |
if (ar.rt <= FTINY) |
136 |
> |
zd = raydistance(&ar); |
137 |
> |
if (zd <= FTINY) |
138 |
|
return(0); /* should never happen */ |
139 |
|
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
140 |
< |
if (ar.rt*ap->d < 1.0) /* new/closer distance? */ |
141 |
< |
ap->d = 1.0/ar.rt; |
140 |
> |
if (zd*ap->d < 1.0) /* new/closer distance? */ |
141 |
> |
ap->d = 1.0/zd; |
142 |
|
if (!n) { /* record first vertex & value */ |
143 |
< |
if (ar.rt > 10.0*thescene.cusize) |
144 |
< |
ar.rt = 10.0*thescene.cusize; |
145 |
< |
VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); |
143 |
> |
if (zd > 10.0*thescene.cusize + 1000.) |
144 |
> |
zd = 10.0*thescene.cusize + 1000.; |
145 |
> |
VSUM(ap->p, ar.rorg, ar.rdir, zd); |
146 |
|
copycolor(ap->v, ar.rcol); |
147 |
|
} else { /* else update recorded value */ |
148 |
|
hp->acol[RED] -= colval(ap->v,RED); |
159 |
|
} |
160 |
|
|
161 |
|
|
162 |
< |
/* Estimate errors based on ambient division differences */ |
162 |
> |
/* Estimate variance based on ambient division differences */ |
163 |
|
static float * |
164 |
|
getambdiffs(AMBHEMI *hp) |
165 |
|
{ |
166 |
+ |
const double normf = 1./bright(hp->acoef); |
167 |
|
float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float)); |
168 |
|
float *ep; |
169 |
|
AMBSAMP *ap; |
170 |
< |
double b, d2; |
170 |
> |
double b, b1, d2; |
171 |
|
int i, j; |
172 |
|
|
173 |
|
if (earr == NULL) /* out of memory? */ |
174 |
|
return(NULL); |
175 |
< |
/* compute squared neighbor diffs */ |
175 |
> |
/* sum squared neighbor diffs */ |
176 |
|
for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) |
177 |
|
for (j = 0; j < hp->ns; j++, ap++, ep++) { |
178 |
|
b = bright(ap[0].v); |
179 |
|
if (i) { /* from above */ |
180 |
< |
d2 = b - bright(ap[-hp->ns].v); |
181 |
< |
d2 *= d2; |
180 |
> |
b1 = bright(ap[-hp->ns].v); |
181 |
> |
d2 = b - b1; |
182 |
> |
d2 *= d2*normf/(b + b1); |
183 |
|
ep[0] += d2; |
184 |
|
ep[-hp->ns] += d2; |
185 |
|
} |
186 |
|
if (!j) continue; |
187 |
|
/* from behind */ |
188 |
< |
d2 = b - bright(ap[-1].v); |
189 |
< |
d2 *= d2; |
188 |
> |
b1 = bright(ap[-1].v); |
189 |
> |
d2 = b - b1; |
190 |
> |
d2 *= d2*normf/(b + b1); |
191 |
|
ep[0] += d2; |
192 |
|
ep[-1] += d2; |
193 |
|
if (!i) continue; |
194 |
|
/* diagonal */ |
195 |
< |
d2 = b - bright(ap[-hp->ns-1].v); |
196 |
< |
d2 *= d2; |
195 |
> |
b1 = bright(ap[-hp->ns-1].v); |
196 |
> |
d2 = b - b1; |
197 |
> |
d2 *= d2*normf/(b + b1); |
198 |
|
ep[0] += d2; |
199 |
|
ep[-hp->ns-1] += d2; |
200 |
|
} |
221 |
|
{ |
222 |
|
float *earr = getambdiffs(hp); |
223 |
|
double e2rem = 0; |
213 |
– |
AMBSAMP *ap; |
224 |
|
float *ep; |
225 |
|
int i, j, n, nss; |
226 |
|
|
230 |
|
for (ep = earr + hp->ns*hp->ns; ep > earr; ) |
231 |
|
e2rem += *--ep; |
232 |
|
ep = earr; /* perform super-sampling */ |
233 |
< |
for (ap = hp->sa, i = 0; i < hp->ns; i++) |
234 |
< |
for (j = 0; j < hp->ns; j++, ap++) { |
233 |
> |
for (i = 0; i < hp->ns; i++) |
234 |
> |
for (j = 0; j < hp->ns; j++) { |
235 |
|
if (e2rem <= FTINY) |
236 |
|
goto done; /* nothing left to do */ |
237 |
|
nss = *ep/e2rem*cnt + frandom(); |
238 |
|
for (n = 1; n <= nss && ambsample(hp,i,j,n); n++) |
239 |
< |
--cnt; |
239 |
> |
if (!--cnt) goto done; |
240 |
|
e2rem -= *ep++; /* update remainder */ |
241 |
|
} |
242 |
|
done: |
254 |
|
AMBHEMI *hp; |
255 |
|
double d; |
256 |
|
int n, i, j; |
257 |
+ |
/* insignificance check */ |
258 |
+ |
if (bright(rcol) <= FTINY) |
259 |
+ |
return(NULL); |
260 |
|
/* set number of divisions */ |
261 |
|
if (ambacc <= FTINY && |
262 |
|
wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight))) |
263 |
|
wt = d; /* avoid ray termination */ |
264 |
|
n = sqrt(ambdiv * wt) + 0.5; |
265 |
< |
i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ |
266 |
< |
if (n < i) |
265 |
> |
i = 1 + (MINADIV-1)*(ambacc > FTINY); |
266 |
> |
if (n < i) /* use minimum number of samples? */ |
267 |
|
n = i; |
268 |
|
/* allocate sampling array */ |
269 |
|
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
295 |
|
hp->sampOK *= -1; /* soft failure */ |
296 |
|
return(hp); |
297 |
|
} |
298 |
+ |
if (hp->sampOK <= MINADIV*MINADIV) |
299 |
+ |
return(hp); /* don't bother super-sampling */ |
300 |
|
n = ambssamp*wt + 0.5; |
301 |
|
if (n > 8) { /* perform super-sampling? */ |
302 |
|
ambsupersamp(hp, n); |
681 |
|
for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step) |
682 |
|
flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0))); |
683 |
|
} |
669 |
– |
/* add low-angle incident (< 20deg) */ |
670 |
– |
if (fabs(hp->rp->rod) <= 0.342) { |
671 |
– |
u = -DOT(hp->rp->rdir, uv[0]); |
672 |
– |
v = -DOT(hp->rp->rdir, uv[1]); |
673 |
– |
if ((r0*r0*u*u + r1*r1*v*v) > hp->rp->rot*hp->rp->rot) { |
674 |
– |
ang = atan2a(v, u); |
675 |
– |
ang += 2.*PI*(ang < 0); |
676 |
– |
ang *= 16/PI; |
677 |
– |
if ((ang < .5) | (ang >= 31.5)) |
678 |
– |
flgs |= 0x80000001; |
679 |
– |
else |
680 |
– |
flgs |= 3L<<(int)(ang-.5); |
681 |
– |
} |
682 |
– |
} |
684 |
|
return(flgs); |
685 |
|
} |
686 |
|
|
717 |
|
return(0); |
718 |
|
|
719 |
|
if ((ra == NULL) & (pg == NULL) & (dg == NULL) || |
720 |
< |
(hp->sampOK < 0) | (hp->ns < 6)) { |
720 |
> |
(hp->sampOK < 0) | (hp->ns < MINADIV)) { |
721 |
|
free(hp); /* Hessian not requested/possible */ |
722 |
|
return(-1); /* value-only return value */ |
723 |
|
} |
765 |
|
ra[0] = maxarad; |
766 |
|
} |
767 |
|
/* flag encroached directions */ |
768 |
< |
if (crlp != NULL) |
768 |
> |
if (crlp != NULL) /* XXX doesn't update with changes to ambacc */ |
769 |
|
*crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc); |
770 |
|
if (pg != NULL) { /* cap gradient if necessary */ |
771 |
|
d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; |
779 |
|
free(hp); /* clean up and return */ |
780 |
|
return(1); |
781 |
|
} |
781 |
– |
|
782 |
– |
|
783 |
– |
#else /* ! NEWAMB */ |
784 |
– |
|
785 |
– |
|
786 |
– |
void |
787 |
– |
inithemi( /* initialize sampling hemisphere */ |
788 |
– |
AMBHEMI *hp, |
789 |
– |
COLOR ac, |
790 |
– |
RAY *r, |
791 |
– |
double wt |
792 |
– |
) |
793 |
– |
{ |
794 |
– |
double d; |
795 |
– |
int i; |
796 |
– |
/* set number of divisions */ |
797 |
– |
if (ambacc <= FTINY && |
798 |
– |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) |
799 |
– |
wt = d; /* avoid ray termination */ |
800 |
– |
hp->nt = sqrt(ambdiv * wt / PI) + 0.5; |
801 |
– |
i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */ |
802 |
– |
if (hp->nt < i) |
803 |
– |
hp->nt = i; |
804 |
– |
hp->np = PI * hp->nt + 0.5; |
805 |
– |
/* set number of super-samples */ |
806 |
– |
hp->ns = ambssamp * wt + 0.5; |
807 |
– |
/* assign coefficient */ |
808 |
– |
copycolor(hp->acoef, ac); |
809 |
– |
d = 1.0/(hp->nt*hp->np); |
810 |
– |
scalecolor(hp->acoef, d); |
811 |
– |
/* make axes */ |
812 |
– |
VCOPY(hp->uz, r->ron); |
813 |
– |
hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; |
814 |
– |
for (i = 0; i < 3; i++) |
815 |
– |
if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6) |
816 |
– |
break; |
817 |
– |
if (i >= 3) |
818 |
– |
error(CONSISTENCY, "bad ray direction in inithemi"); |
819 |
– |
hp->uy[i] = 1.0; |
820 |
– |
fcross(hp->ux, hp->uy, hp->uz); |
821 |
– |
normalize(hp->ux); |
822 |
– |
fcross(hp->uy, hp->uz, hp->ux); |
823 |
– |
} |
824 |
– |
|
825 |
– |
|
826 |
– |
int |
827 |
– |
divsample( /* sample a division */ |
828 |
– |
AMBSAMP *dp, |
829 |
– |
AMBHEMI *h, |
830 |
– |
RAY *r |
831 |
– |
) |
832 |
– |
{ |
833 |
– |
RAY ar; |
834 |
– |
int hlist[3]; |
835 |
– |
double spt[2]; |
836 |
– |
double xd, yd, zd; |
837 |
– |
double b2; |
838 |
– |
double phi; |
839 |
– |
int i; |
840 |
– |
/* ambient coefficient for weight */ |
841 |
– |
if (ambacc > FTINY) |
842 |
– |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
843 |
– |
else |
844 |
– |
copycolor(ar.rcoef, h->acoef); |
845 |
– |
if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0) |
846 |
– |
return(-1); |
847 |
– |
if (ambacc > FTINY) { |
848 |
– |
multcolor(ar.rcoef, h->acoef); |
849 |
– |
scalecolor(ar.rcoef, 1./AVGREFL); |
850 |
– |
} |
851 |
– |
hlist[0] = r->rno; |
852 |
– |
hlist[1] = dp->t; |
853 |
– |
hlist[2] = dp->p; |
854 |
– |
multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n)); |
855 |
– |
zd = sqrt((dp->t + spt[0])/h->nt); |
856 |
– |
phi = 2.0*PI * (dp->p + spt[1])/h->np; |
857 |
– |
xd = tcos(phi) * zd; |
858 |
– |
yd = tsin(phi) * zd; |
859 |
– |
zd = sqrt(1.0 - zd*zd); |
860 |
– |
for (i = 0; i < 3; i++) |
861 |
– |
ar.rdir[i] = xd*h->ux[i] + |
862 |
– |
yd*h->uy[i] + |
863 |
– |
zd*h->uz[i]; |
864 |
– |
checknorm(ar.rdir); |
865 |
– |
dimlist[ndims++] = dp->t*h->np + dp->p + 90171; |
866 |
– |
rayvalue(&ar); |
867 |
– |
ndims--; |
868 |
– |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
869 |
– |
addcolor(dp->v, ar.rcol); |
870 |
– |
/* use rt to improve gradient calc */ |
871 |
– |
if (ar.rt > FTINY && ar.rt < FHUGE) |
872 |
– |
dp->r += 1.0/ar.rt; |
873 |
– |
/* (re)initialize error */ |
874 |
– |
if (dp->n++) { |
875 |
– |
b2 = bright(dp->v)/dp->n - bright(ar.rcol); |
876 |
– |
b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1)); |
877 |
– |
dp->k = b2/(dp->n*dp->n); |
878 |
– |
} else |
879 |
– |
dp->k = 0.0; |
880 |
– |
return(0); |
881 |
– |
} |
882 |
– |
|
883 |
– |
|
884 |
– |
static int |
885 |
– |
ambcmp( /* decreasing order */ |
886 |
– |
const void *p1, |
887 |
– |
const void *p2 |
888 |
– |
) |
889 |
– |
{ |
890 |
– |
const AMBSAMP *d1 = (const AMBSAMP *)p1; |
891 |
– |
const AMBSAMP *d2 = (const AMBSAMP *)p2; |
892 |
– |
|
893 |
– |
if (d1->k < d2->k) |
894 |
– |
return(1); |
895 |
– |
if (d1->k > d2->k) |
896 |
– |
return(-1); |
897 |
– |
return(0); |
898 |
– |
} |
899 |
– |
|
900 |
– |
|
901 |
– |
static int |
902 |
– |
ambnorm( /* standard order */ |
903 |
– |
const void *p1, |
904 |
– |
const void *p2 |
905 |
– |
) |
906 |
– |
{ |
907 |
– |
const AMBSAMP *d1 = (const AMBSAMP *)p1; |
908 |
– |
const AMBSAMP *d2 = (const AMBSAMP *)p2; |
909 |
– |
int c; |
910 |
– |
|
911 |
– |
if ( (c = d1->t - d2->t) ) |
912 |
– |
return(c); |
913 |
– |
return(d1->p - d2->p); |
914 |
– |
} |
915 |
– |
|
916 |
– |
|
917 |
– |
double |
918 |
– |
doambient( /* compute ambient component */ |
919 |
– |
COLOR rcol, |
920 |
– |
RAY *r, |
921 |
– |
double wt, |
922 |
– |
FVECT pg, |
923 |
– |
FVECT dg |
924 |
– |
) |
925 |
– |
{ |
926 |
– |
double b, d=0; |
927 |
– |
AMBHEMI hemi; |
928 |
– |
AMBSAMP *div; |
929 |
– |
AMBSAMP dnew; |
930 |
– |
double acol[3]; |
931 |
– |
AMBSAMP *dp; |
932 |
– |
double arad; |
933 |
– |
int divcnt; |
934 |
– |
int i, j; |
935 |
– |
/* initialize hemisphere */ |
936 |
– |
inithemi(&hemi, rcol, r, wt); |
937 |
– |
divcnt = hemi.nt * hemi.np; |
938 |
– |
/* initialize */ |
939 |
– |
if (pg != NULL) |
940 |
– |
pg[0] = pg[1] = pg[2] = 0.0; |
941 |
– |
if (dg != NULL) |
942 |
– |
dg[0] = dg[1] = dg[2] = 0.0; |
943 |
– |
setcolor(rcol, 0.0, 0.0, 0.0); |
944 |
– |
if (divcnt == 0) |
945 |
– |
return(0.0); |
946 |
– |
/* allocate super-samples */ |
947 |
– |
if (hemi.ns > 0 || pg != NULL || dg != NULL) { |
948 |
– |
div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP)); |
949 |
– |
if (div == NULL) |
950 |
– |
error(SYSTEM, "out of memory in doambient"); |
951 |
– |
} else |
952 |
– |
div = NULL; |
953 |
– |
/* sample the divisions */ |
954 |
– |
arad = 0.0; |
955 |
– |
acol[0] = acol[1] = acol[2] = 0.0; |
956 |
– |
if ((dp = div) == NULL) |
957 |
– |
dp = &dnew; |
958 |
– |
divcnt = 0; |
959 |
– |
for (i = 0; i < hemi.nt; i++) |
960 |
– |
for (j = 0; j < hemi.np; j++) { |
961 |
– |
dp->t = i; dp->p = j; |
962 |
– |
setcolor(dp->v, 0.0, 0.0, 0.0); |
963 |
– |
dp->r = 0.0; |
964 |
– |
dp->n = 0; |
965 |
– |
if (divsample(dp, &hemi, r) < 0) { |
966 |
– |
if (div != NULL) |
967 |
– |
dp++; |
968 |
– |
continue; |
969 |
– |
} |
970 |
– |
arad += dp->r; |
971 |
– |
divcnt++; |
972 |
– |
if (div != NULL) |
973 |
– |
dp++; |
974 |
– |
else |
975 |
– |
addcolor(acol, dp->v); |
976 |
– |
} |
977 |
– |
if (!divcnt) { |
978 |
– |
if (div != NULL) |
979 |
– |
free((void *)div); |
980 |
– |
return(0.0); /* no samples taken */ |
981 |
– |
} |
982 |
– |
if (divcnt < hemi.nt*hemi.np) { |
983 |
– |
pg = dg = NULL; /* incomplete sampling */ |
984 |
– |
hemi.ns = 0; |
985 |
– |
} else if (arad > FTINY && divcnt/arad < minarad) { |
986 |
– |
hemi.ns = 0; /* close enough */ |
987 |
– |
} else if (hemi.ns > 0) { /* else perform super-sampling? */ |
988 |
– |
comperrs(div, &hemi); /* compute errors */ |
989 |
– |
qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */ |
990 |
– |
/* super-sample */ |
991 |
– |
for (i = hemi.ns; i > 0; i--) { |
992 |
– |
dnew = *div; |
993 |
– |
if (divsample(&dnew, &hemi, r) < 0) { |
994 |
– |
dp++; |
995 |
– |
continue; |
996 |
– |
} |
997 |
– |
dp = div; /* reinsert */ |
998 |
– |
j = divcnt < i ? divcnt : i; |
999 |
– |
while (--j > 0 && dnew.k < dp[1].k) { |
1000 |
– |
*dp = *(dp+1); |
1001 |
– |
dp++; |
1002 |
– |
} |
1003 |
– |
*dp = dnew; |
1004 |
– |
} |
1005 |
– |
if (pg != NULL || dg != NULL) /* restore order */ |
1006 |
– |
qsort(div, divcnt, sizeof(AMBSAMP), ambnorm); |
1007 |
– |
} |
1008 |
– |
/* compute returned values */ |
1009 |
– |
if (div != NULL) { |
1010 |
– |
arad = 0.0; /* note: divcnt may be < nt*np */ |
1011 |
– |
for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) { |
1012 |
– |
arad += dp->r; |
1013 |
– |
if (dp->n > 1) { |
1014 |
– |
b = 1.0/dp->n; |
1015 |
– |
scalecolor(dp->v, b); |
1016 |
– |
dp->r *= b; |
1017 |
– |
dp->n = 1; |
1018 |
– |
} |
1019 |
– |
addcolor(acol, dp->v); |
1020 |
– |
} |
1021 |
– |
b = bright(acol); |
1022 |
– |
if (b > FTINY) { |
1023 |
– |
b = 1.0/b; /* compute & normalize gradient(s) */ |
1024 |
– |
if (pg != NULL) { |
1025 |
– |
posgradient(pg, div, &hemi); |
1026 |
– |
for (i = 0; i < 3; i++) |
1027 |
– |
pg[i] *= b; |
1028 |
– |
} |
1029 |
– |
if (dg != NULL) { |
1030 |
– |
dirgradient(dg, div, &hemi); |
1031 |
– |
for (i = 0; i < 3; i++) |
1032 |
– |
dg[i] *= b; |
1033 |
– |
} |
1034 |
– |
} |
1035 |
– |
free((void *)div); |
1036 |
– |
} |
1037 |
– |
copycolor(rcol, acol); |
1038 |
– |
if (arad <= FTINY) |
1039 |
– |
arad = maxarad; |
1040 |
– |
else |
1041 |
– |
arad = (divcnt+hemi.ns)/arad; |
1042 |
– |
if (pg != NULL) { /* reduce radius if gradient large */ |
1043 |
– |
d = DOT(pg,pg); |
1044 |
– |
if (d*arad*arad > 1.0) |
1045 |
– |
arad = 1.0/sqrt(d); |
1046 |
– |
} |
1047 |
– |
if (arad < minarad) { |
1048 |
– |
arad = minarad; |
1049 |
– |
if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */ |
1050 |
– |
d = 1.0/arad/sqrt(d); |
1051 |
– |
for (i = 0; i < 3; i++) |
1052 |
– |
pg[i] *= d; |
1053 |
– |
} |
1054 |
– |
} |
1055 |
– |
if ((arad /= sqrt(wt)) > maxarad) |
1056 |
– |
arad = maxarad; |
1057 |
– |
return(arad); |
1058 |
– |
} |
1059 |
– |
|
1060 |
– |
|
1061 |
– |
void |
1062 |
– |
comperrs( /* compute initial error estimates */ |
1063 |
– |
AMBSAMP *da, /* assumes standard ordering */ |
1064 |
– |
AMBHEMI *hp |
1065 |
– |
) |
1066 |
– |
{ |
1067 |
– |
double b, b2; |
1068 |
– |
int i, j; |
1069 |
– |
AMBSAMP *dp; |
1070 |
– |
/* sum differences from neighbors */ |
1071 |
– |
dp = da; |
1072 |
– |
for (i = 0; i < hp->nt; i++) |
1073 |
– |
for (j = 0; j < hp->np; j++) { |
1074 |
– |
#ifdef DEBUG |
1075 |
– |
if (dp->t != i || dp->p != j) |
1076 |
– |
error(CONSISTENCY, |
1077 |
– |
"division order in comperrs"); |
1078 |
– |
#endif |
1079 |
– |
b = bright(dp[0].v); |
1080 |
– |
if (i > 0) { /* from above */ |
1081 |
– |
b2 = bright(dp[-hp->np].v) - b; |
1082 |
– |
b2 *= b2 * 0.25; |
1083 |
– |
dp[0].k += b2; |
1084 |
– |
dp[-hp->np].k += b2; |
1085 |
– |
} |
1086 |
– |
if (j > 0) { /* from behind */ |
1087 |
– |
b2 = bright(dp[-1].v) - b; |
1088 |
– |
b2 *= b2 * 0.25; |
1089 |
– |
dp[0].k += b2; |
1090 |
– |
dp[-1].k += b2; |
1091 |
– |
} else { /* around */ |
1092 |
– |
b2 = bright(dp[hp->np-1].v) - b; |
1093 |
– |
b2 *= b2 * 0.25; |
1094 |
– |
dp[0].k += b2; |
1095 |
– |
dp[hp->np-1].k += b2; |
1096 |
– |
} |
1097 |
– |
dp++; |
1098 |
– |
} |
1099 |
– |
/* divide by number of neighbors */ |
1100 |
– |
dp = da; |
1101 |
– |
for (j = 0; j < hp->np; j++) /* top row */ |
1102 |
– |
(dp++)->k *= 1.0/3.0; |
1103 |
– |
if (hp->nt < 2) |
1104 |
– |
return; |
1105 |
– |
for (i = 1; i < hp->nt-1; i++) /* central region */ |
1106 |
– |
for (j = 0; j < hp->np; j++) |
1107 |
– |
(dp++)->k *= 0.25; |
1108 |
– |
for (j = 0; j < hp->np; j++) /* bottom row */ |
1109 |
– |
(dp++)->k *= 1.0/3.0; |
1110 |
– |
} |
1111 |
– |
|
1112 |
– |
|
1113 |
– |
void |
1114 |
– |
posgradient( /* compute position gradient */ |
1115 |
– |
FVECT gv, |
1116 |
– |
AMBSAMP *da, /* assumes standard ordering */ |
1117 |
– |
AMBHEMI *hp |
1118 |
– |
) |
1119 |
– |
{ |
1120 |
– |
int i, j; |
1121 |
– |
double nextsine, lastsine, b, d; |
1122 |
– |
double mag0, mag1; |
1123 |
– |
double phi, cosp, sinp, xd, yd; |
1124 |
– |
AMBSAMP *dp; |
1125 |
– |
|
1126 |
– |
xd = yd = 0.0; |
1127 |
– |
for (j = 0; j < hp->np; j++) { |
1128 |
– |
dp = da + j; |
1129 |
– |
mag0 = mag1 = 0.0; |
1130 |
– |
lastsine = 0.0; |
1131 |
– |
for (i = 0; i < hp->nt; i++) { |
1132 |
– |
#ifdef DEBUG |
1133 |
– |
if (dp->t != i || dp->p != j) |
1134 |
– |
error(CONSISTENCY, |
1135 |
– |
"division order in posgradient"); |
1136 |
– |
#endif |
1137 |
– |
b = bright(dp->v); |
1138 |
– |
if (i > 0) { |
1139 |
– |
d = dp[-hp->np].r; |
1140 |
– |
if (dp[0].r > d) d = dp[0].r; |
1141 |
– |
/* sin(t)*cos(t)^2 */ |
1142 |
– |
d *= lastsine * (1.0 - (double)i/hp->nt); |
1143 |
– |
mag0 += d*(b - bright(dp[-hp->np].v)); |
1144 |
– |
} |
1145 |
– |
nextsine = sqrt((double)(i+1)/hp->nt); |
1146 |
– |
if (j > 0) { |
1147 |
– |
d = dp[-1].r; |
1148 |
– |
if (dp[0].r > d) d = dp[0].r; |
1149 |
– |
mag1 += d * (nextsine - lastsine) * |
1150 |
– |
(b - bright(dp[-1].v)); |
1151 |
– |
} else { |
1152 |
– |
d = dp[hp->np-1].r; |
1153 |
– |
if (dp[0].r > d) d = dp[0].r; |
1154 |
– |
mag1 += d * (nextsine - lastsine) * |
1155 |
– |
(b - bright(dp[hp->np-1].v)); |
1156 |
– |
} |
1157 |
– |
dp += hp->np; |
1158 |
– |
lastsine = nextsine; |
1159 |
– |
} |
1160 |
– |
mag0 *= 2.0*PI / hp->np; |
1161 |
– |
phi = 2.0*PI * (double)j/hp->np; |
1162 |
– |
cosp = tcos(phi); sinp = tsin(phi); |
1163 |
– |
xd += mag0*cosp - mag1*sinp; |
1164 |
– |
yd += mag0*sinp + mag1*cosp; |
1165 |
– |
} |
1166 |
– |
for (i = 0; i < 3; i++) |
1167 |
– |
gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI; |
1168 |
– |
} |
1169 |
– |
|
1170 |
– |
|
1171 |
– |
void |
1172 |
– |
dirgradient( /* compute direction gradient */ |
1173 |
– |
FVECT gv, |
1174 |
– |
AMBSAMP *da, /* assumes standard ordering */ |
1175 |
– |
AMBHEMI *hp |
1176 |
– |
) |
1177 |
– |
{ |
1178 |
– |
int i, j; |
1179 |
– |
double mag; |
1180 |
– |
double phi, xd, yd; |
1181 |
– |
AMBSAMP *dp; |
1182 |
– |
|
1183 |
– |
xd = yd = 0.0; |
1184 |
– |
for (j = 0; j < hp->np; j++) { |
1185 |
– |
dp = da + j; |
1186 |
– |
mag = 0.0; |
1187 |
– |
for (i = 0; i < hp->nt; i++) { |
1188 |
– |
#ifdef DEBUG |
1189 |
– |
if (dp->t != i || dp->p != j) |
1190 |
– |
error(CONSISTENCY, |
1191 |
– |
"division order in dirgradient"); |
1192 |
– |
#endif |
1193 |
– |
/* tan(t) */ |
1194 |
– |
mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0); |
1195 |
– |
dp += hp->np; |
1196 |
– |
} |
1197 |
– |
phi = 2.0*PI * (j+.5)/hp->np + PI/2.0; |
1198 |
– |
xd += mag * tcos(phi); |
1199 |
– |
yd += mag * tsin(phi); |
1200 |
– |
} |
1201 |
– |
for (i = 0; i < 3; i++) |
1202 |
– |
gv[i] = xd*hp->ux[i] + yd*hp->uy[i]; |
1203 |
– |
} |
1204 |
– |
|
1205 |
– |
#endif /* ! NEWAMB */ |