21 |
|
#include "ambient.h" |
22 |
|
#include "random.h" |
23 |
|
|
24 |
< |
#ifdef NEWAMB |
24 |
> |
#ifndef MINADIV |
25 |
> |
#define MINADIV 7 /* minimum # divisions in each dimension */ |
26 |
> |
#endif |
27 |
|
|
26 |
– |
extern void SDsquare2disk(double ds[2], double seedx, double seedy); |
27 |
– |
|
28 |
– |
/* vertex direction bit positions */ |
29 |
– |
#define VDB_xy 0 |
30 |
– |
#define VDB_y 01 |
31 |
– |
#define VDB_x 02 |
32 |
– |
#define VDB_Xy 03 |
33 |
– |
#define VDB_xY 04 |
34 |
– |
#define VDB_X 05 |
35 |
– |
#define VDB_Y 06 |
36 |
– |
#define VDB_XY 07 |
37 |
– |
/* get opposite vertex direction bit */ |
38 |
– |
#define VDB_OPP(f) (~(f) & 07) |
39 |
– |
/* adjacent triangle vertex flags */ |
40 |
– |
static const int adjacent_trifl[8] = { |
41 |
– |
0, /* forbidden diagonal */ |
42 |
– |
1<<VDB_x|1<<VDB_y|1<<VDB_Xy, |
43 |
– |
1<<VDB_y|1<<VDB_x|1<<VDB_xY, |
44 |
– |
1<<VDB_y|1<<VDB_Xy|1<<VDB_X, |
45 |
– |
1<<VDB_x|1<<VDB_xY|1<<VDB_Y, |
46 |
– |
1<<VDB_Xy|1<<VDB_X|1<<VDB_Y, |
47 |
– |
1<<VDB_xY|1<<VDB_Y|1<<VDB_X, |
48 |
– |
0, /* forbidden diagonal */ |
49 |
– |
}; |
50 |
– |
|
28 |
|
typedef struct { |
29 |
|
COLOR v; /* hemisphere sample value */ |
30 |
< |
float d; /* reciprocal distance (1/rt) */ |
30 |
> |
float d; /* reciprocal distance */ |
31 |
|
FVECT p; /* intersection point */ |
32 |
|
} AMBSAMP; /* sample value */ |
33 |
|
|
34 |
|
typedef struct { |
35 |
|
RAY *rp; /* originating ray sample */ |
59 |
– |
FVECT ux, uy; /* tangent axis unit vectors */ |
36 |
|
int ns; /* number of samples per axis */ |
37 |
+ |
int sampOK; /* acquired full sample set? */ |
38 |
|
COLOR acoef; /* division contribution coefficient */ |
39 |
+ |
double acol[3]; /* accumulated color */ |
40 |
+ |
FVECT ux, uy; /* tangent axis unit vectors */ |
41 |
|
AMBSAMP sa[1]; /* sample array (extends struct) */ |
42 |
|
} AMBHEMI; /* ambient sample hemisphere */ |
43 |
|
|
44 |
< |
#define ambndx(h,i,j) ((i)*(h)->ns + (j)) |
45 |
< |
#define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)] |
44 |
> |
#define AI(h,i,j) ((i)*(h)->ns + (j)) |
45 |
> |
#define ambsam(h,i,j) (h)->sa[AI(h,i,j)] |
46 |
|
|
47 |
|
typedef struct { |
48 |
|
FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; |
49 |
|
double I1, I2; |
71 |
– |
int valid; |
50 |
|
} FFTRI; /* vectors and coefficients for Hessian calculation */ |
51 |
|
|
52 |
|
|
75 |
– |
/* Get index for adjacent vertex */ |
53 |
|
static int |
54 |
< |
adjacent_verti(AMBHEMI *hp, int i, int j, int dbit) |
54 |
> |
ambcollision( /* proposed direciton collides? */ |
55 |
> |
AMBHEMI *hp, |
56 |
> |
int i, |
57 |
> |
int j, |
58 |
> |
FVECT dv |
59 |
> |
) |
60 |
|
{ |
61 |
< |
int i0 = i*hp->ns + j; |
62 |
< |
|
63 |
< |
switch (dbit) { |
64 |
< |
case VDB_y: return(i0 - hp->ns); |
65 |
< |
case VDB_x: return(i0 - 1); |
66 |
< |
case VDB_Xy: return(i0 - hp->ns + 1); |
67 |
< |
case VDB_xY: return(i0 + hp->ns - 1); |
68 |
< |
case VDB_X: return(i0 + 1); |
69 |
< |
case VDB_Y: return(i0 + hp->ns); |
70 |
< |
/* the following should never occur */ |
71 |
< |
case VDB_xy: return(i0 - hp->ns - 1); |
72 |
< |
case VDB_XY: return(i0 + hp->ns + 1); |
61 |
> |
double cos_thresh; |
62 |
> |
int ii, jj; |
63 |
> |
/* min. spacing = 1/4th division */ |
64 |
> |
cos_thresh = (PI/4.)/(double)hp->ns; |
65 |
> |
cos_thresh = 1. - .5*cos_thresh*cos_thresh; |
66 |
> |
/* check existing neighbors */ |
67 |
> |
for (ii = i-1; ii <= i+1; ii++) { |
68 |
> |
if (ii < 0) continue; |
69 |
> |
if (ii >= hp->ns) break; |
70 |
> |
for (jj = j-1; jj <= j+1; jj++) { |
71 |
> |
AMBSAMP *ap; |
72 |
> |
FVECT avec; |
73 |
> |
double dprod; |
74 |
> |
if (jj < 0) continue; |
75 |
> |
if (jj >= hp->ns) break; |
76 |
> |
if ((ii==i) & (jj==j)) continue; |
77 |
> |
ap = &ambsam(hp,ii,jj); |
78 |
> |
if (ap->d <= .5/FHUGE) |
79 |
> |
continue; /* no one home */ |
80 |
> |
VSUB(avec, ap->p, hp->rp->rop); |
81 |
> |
dprod = DOT(avec, dv); |
82 |
> |
if (dprod >= cos_thresh*VLEN(avec)) |
83 |
> |
return(1); /* collision */ |
84 |
> |
} |
85 |
|
} |
86 |
< |
return(-1); |
86 |
> |
return(0); /* nothing to worry about */ |
87 |
|
} |
88 |
|
|
89 |
|
|
96 |
– |
/* Get vertex direction bit for the opposite edge to complete triangle */ |
90 |
|
static int |
91 |
< |
vdb_edge(int db1, int db2) |
92 |
< |
{ |
93 |
< |
switch (db1) { |
94 |
< |
case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y); |
95 |
< |
case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X); |
103 |
< |
case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY); |
104 |
< |
case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy); |
105 |
< |
case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X); |
106 |
< |
case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y); |
107 |
< |
} |
108 |
< |
error(INTERNAL, "forbidden diagonal in vdb_edge()"); |
109 |
< |
return(-1); |
110 |
< |
} |
111 |
< |
|
112 |
< |
|
113 |
< |
static AMBHEMI * |
114 |
< |
inithemi( /* initialize sampling hemisphere */ |
115 |
< |
COLOR ac, |
116 |
< |
RAY *r, |
117 |
< |
double wt |
91 |
> |
ambsample( /* initial ambient division sample */ |
92 |
> |
AMBHEMI *hp, |
93 |
> |
int i, |
94 |
> |
int j, |
95 |
> |
int n |
96 |
|
) |
97 |
|
{ |
98 |
< |
AMBHEMI *hp; |
99 |
< |
double d; |
122 |
< |
int n, i; |
123 |
< |
/* set number of divisions */ |
124 |
< |
if (ambacc <= FTINY && |
125 |
< |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) |
126 |
< |
wt = d; /* avoid ray termination */ |
127 |
< |
n = sqrt(ambdiv * wt) + 0.5; |
128 |
< |
i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ |
129 |
< |
if (n < i) |
130 |
< |
n = i; |
131 |
< |
/* allocate sampling array */ |
132 |
< |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
133 |
< |
if (hp == NULL) |
134 |
< |
return(NULL); |
135 |
< |
hp->rp = r; |
136 |
< |
hp->ns = n; |
137 |
< |
/* assign coefficient */ |
138 |
< |
copycolor(hp->acoef, ac); |
139 |
< |
d = 1.0/(n*n); |
140 |
< |
scalecolor(hp->acoef, d); |
141 |
< |
/* make tangent plane axes */ |
142 |
< |
hp->uy[0] = 0.5 - frandom(); |
143 |
< |
hp->uy[1] = 0.5 - frandom(); |
144 |
< |
hp->uy[2] = 0.5 - frandom(); |
145 |
< |
for (i = 3; i--; ) |
146 |
< |
if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6)) |
147 |
< |
break; |
148 |
< |
if (i < 0) |
149 |
< |
error(CONSISTENCY, "bad ray direction in inithemi"); |
150 |
< |
hp->uy[i] = 1.0; |
151 |
< |
VCROSS(hp->ux, hp->uy, r->ron); |
152 |
< |
normalize(hp->ux); |
153 |
< |
VCROSS(hp->uy, r->ron, hp->ux); |
154 |
< |
/* we're ready to sample */ |
155 |
< |
return(hp); |
156 |
< |
} |
157 |
< |
|
158 |
< |
|
159 |
< |
/* Sample ambient division and apply weighting coefficient */ |
160 |
< |
static int |
161 |
< |
getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n) |
162 |
< |
{ |
98 |
> |
AMBSAMP *ap = &ambsam(hp,i,j); |
99 |
> |
RAY ar; |
100 |
|
int hlist[3], ii; |
101 |
< |
double spt[2], zd; |
101 |
> |
RREAL spt[2]; |
102 |
> |
double zd; |
103 |
> |
/* generate hemispherical sample */ |
104 |
|
/* ambient coefficient for weight */ |
105 |
|
if (ambacc > FTINY) |
106 |
< |
setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL); |
106 |
> |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
107 |
|
else |
108 |
< |
copycolor(arp->rcoef, hp->acoef); |
109 |
< |
if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0) |
108 |
> |
copycolor(ar.rcoef, hp->acoef); |
109 |
> |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) |
110 |
|
return(0); |
111 |
|
if (ambacc > FTINY) { |
112 |
< |
multcolor(arp->rcoef, hp->acoef); |
113 |
< |
scalecolor(arp->rcoef, 1./AVGREFL); |
112 |
> |
multcolor(ar.rcoef, hp->acoef); |
113 |
> |
scalecolor(ar.rcoef, 1./AVGREFL); |
114 |
|
} |
115 |
|
hlist[0] = hp->rp->rno; |
116 |
|
hlist[1] = j; |
117 |
|
hlist[2] = i; |
118 |
|
multisamp(spt, 2, urand(ilhash(hlist,3)+n)); |
119 |
< |
if (!n) { /* avoid border samples for n==0 */ |
120 |
< |
if ((spt[0] < 0.1) | (spt[0] >= 0.9)) |
182 |
< |
spt[0] = 0.1 + 0.8*frandom(); |
183 |
< |
if ((spt[1] < 0.1) | (spt[1] >= 0.9)) |
184 |
< |
spt[1] = 0.1 + 0.8*frandom(); |
185 |
< |
} |
186 |
< |
SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns); |
119 |
> |
resample: |
120 |
> |
square2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns); |
121 |
|
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
122 |
|
for (ii = 3; ii--; ) |
123 |
< |
arp->rdir[ii] = spt[0]*hp->ux[ii] + |
123 |
> |
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
124 |
|
spt[1]*hp->uy[ii] + |
125 |
|
zd*hp->rp->ron[ii]; |
126 |
< |
checknorm(arp->rdir); |
127 |
< |
dimlist[ndims++] = ambndx(hp,i,j) + 90171; |
128 |
< |
rayvalue(arp); /* evaluate ray */ |
129 |
< |
ndims--; /* apply coefficient */ |
130 |
< |
multcolor(arp->rcol, arp->rcoef); |
126 |
> |
checknorm(ar.rdir); |
127 |
> |
/* avoid coincident samples */ |
128 |
> |
if (!n && ambcollision(hp, i, j, ar.rdir)) { |
129 |
> |
spt[0] = frandom(); spt[1] = frandom(); |
130 |
> |
goto resample; /* reject this sample */ |
131 |
> |
} |
132 |
> |
dimlist[ndims++] = AI(hp,i,j) + 90171; |
133 |
> |
rayvalue(&ar); /* evaluate ray */ |
134 |
> |
ndims--; |
135 |
> |
zd = raydistance(&ar); |
136 |
> |
if (zd <= FTINY) |
137 |
> |
return(0); /* should never happen */ |
138 |
> |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
139 |
> |
if (zd*ap->d < 1.0) /* new/closer distance? */ |
140 |
> |
ap->d = 1.0/zd; |
141 |
> |
if (!n) { /* record first vertex & value */ |
142 |
> |
if (zd > 10.0*thescene.cusize + 1000.) |
143 |
> |
zd = 10.0*thescene.cusize + 1000.; |
144 |
> |
VSUM(ap->p, ar.rorg, ar.rdir, zd); |
145 |
> |
copycolor(ap->v, ar.rcol); |
146 |
> |
} else { /* else update recorded value */ |
147 |
> |
hp->acol[RED] -= colval(ap->v,RED); |
148 |
> |
hp->acol[GRN] -= colval(ap->v,GRN); |
149 |
> |
hp->acol[BLU] -= colval(ap->v,BLU); |
150 |
> |
zd = 1.0/(double)(n+1); |
151 |
> |
scalecolor(ar.rcol, zd); |
152 |
> |
zd *= (double)n; |
153 |
> |
scalecolor(ap->v, zd); |
154 |
> |
addcolor(ap->v, ar.rcol); |
155 |
> |
} |
156 |
> |
addcolor(hp->acol, ap->v); /* add to our sum */ |
157 |
|
return(1); |
158 |
|
} |
159 |
|
|
160 |
|
|
161 |
< |
static AMBSAMP * |
202 |
< |
ambsample( /* initial ambient division sample */ |
203 |
< |
AMBHEMI *hp, |
204 |
< |
int i, |
205 |
< |
int j |
206 |
< |
) |
207 |
< |
{ |
208 |
< |
AMBSAMP *ap = &ambsam(hp,i,j); |
209 |
< |
RAY ar; |
210 |
< |
/* generate hemispherical sample */ |
211 |
< |
if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) { |
212 |
< |
memset(ap, 0, sizeof(AMBSAMP)); |
213 |
< |
return(NULL); |
214 |
< |
} |
215 |
< |
ap->d = 1.0/ar.rt; /* limit vertex distance */ |
216 |
< |
if (ar.rt > 10.0*thescene.cusize) |
217 |
< |
ar.rt = 10.0*thescene.cusize; |
218 |
< |
VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); |
219 |
< |
copycolor(ap->v, ar.rcol); |
220 |
< |
return(ap); |
221 |
< |
} |
222 |
< |
|
223 |
< |
|
224 |
< |
/* Estimate errors based on ambient division differences */ |
161 |
> |
/* Estimate variance based on ambient division differences */ |
162 |
|
static float * |
163 |
|
getambdiffs(AMBHEMI *hp) |
164 |
|
{ |
165 |
+ |
const double normf = 1./bright(hp->acoef); |
166 |
|
float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float)); |
167 |
|
float *ep; |
168 |
|
AMBSAMP *ap; |
169 |
< |
double b, d2; |
169 |
> |
double b, b1, d2; |
170 |
|
int i, j; |
171 |
|
|
172 |
|
if (earr == NULL) /* out of memory? */ |
173 |
|
return(NULL); |
174 |
< |
/* compute squared neighbor diffs */ |
174 |
> |
/* sum squared neighbor diffs */ |
175 |
|
for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) |
176 |
|
for (j = 0; j < hp->ns; j++, ap++, ep++) { |
177 |
|
b = bright(ap[0].v); |
178 |
|
if (i) { /* from above */ |
179 |
< |
d2 = b - bright(ap[-hp->ns].v); |
180 |
< |
d2 *= d2; |
179 |
> |
b1 = bright(ap[-hp->ns].v); |
180 |
> |
d2 = b - b1; |
181 |
> |
d2 *= d2*normf/(b + b1); |
182 |
|
ep[0] += d2; |
183 |
|
ep[-hp->ns] += d2; |
184 |
|
} |
185 |
< |
if (j) { /* from behind */ |
186 |
< |
d2 = b - bright(ap[-1].v); |
187 |
< |
d2 *= d2; |
188 |
< |
ep[0] += d2; |
189 |
< |
ep[-1] += d2; |
190 |
< |
} |
185 |
> |
if (!j) continue; |
186 |
> |
/* from behind */ |
187 |
> |
b1 = bright(ap[-1].v); |
188 |
> |
d2 = b - b1; |
189 |
> |
d2 *= d2*normf/(b + b1); |
190 |
> |
ep[0] += d2; |
191 |
> |
ep[-1] += d2; |
192 |
> |
if (!i) continue; |
193 |
> |
/* diagonal */ |
194 |
> |
b1 = bright(ap[-hp->ns-1].v); |
195 |
> |
d2 = b - b1; |
196 |
> |
d2 *= d2*normf/(b + b1); |
197 |
> |
ep[0] += d2; |
198 |
> |
ep[-hp->ns-1] += d2; |
199 |
|
} |
200 |
|
/* correct for number of neighbors */ |
201 |
< |
earr[0] *= 2.f; |
202 |
< |
earr[hp->ns-1] *= 2.f; |
203 |
< |
earr[(hp->ns-1)*hp->ns] *= 2.f; |
204 |
< |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f; |
201 |
> |
earr[0] *= 8./3.; |
202 |
> |
earr[hp->ns-1] *= 8./3.; |
203 |
> |
earr[(hp->ns-1)*hp->ns] *= 8./3.; |
204 |
> |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.; |
205 |
|
for (i = 1; i < hp->ns-1; i++) { |
206 |
< |
earr[i*hp->ns] *= 4./3.; |
207 |
< |
earr[i*hp->ns + hp->ns-1] *= 4./3.; |
206 |
> |
earr[i*hp->ns] *= 8./5.; |
207 |
> |
earr[i*hp->ns + hp->ns-1] *= 8./5.; |
208 |
|
} |
209 |
|
for (j = 1; j < hp->ns-1; j++) { |
210 |
< |
earr[j] *= 4./3.; |
211 |
< |
earr[(hp->ns-1)*hp->ns + j] *= 4./3.; |
210 |
> |
earr[j] *= 8./5.; |
211 |
> |
earr[(hp->ns-1)*hp->ns + j] *= 8./5.; |
212 |
|
} |
213 |
|
return(earr); |
214 |
|
} |
216 |
|
|
217 |
|
/* Perform super-sampling on hemisphere (introduces bias) */ |
218 |
|
static void |
219 |
< |
ambsupersamp(double acol[3], AMBHEMI *hp, int cnt) |
219 |
> |
ambsupersamp(AMBHEMI *hp, int cnt) |
220 |
|
{ |
221 |
|
float *earr = getambdiffs(hp); |
222 |
< |
double e2sum = 0.0; |
276 |
< |
AMBSAMP *ap; |
277 |
< |
RAY ar; |
278 |
< |
double asum[3]; |
222 |
> |
double e2rem = 0; |
223 |
|
float *ep; |
224 |
< |
int i, j, n; |
224 |
> |
int i, j, n, nss; |
225 |
|
|
226 |
|
if (earr == NULL) /* just skip calc. if no memory */ |
227 |
|
return; |
228 |
< |
/* add up estimated variances */ |
229 |
< |
for (ep = earr + hp->ns*hp->ns; ep-- > earr; ) |
230 |
< |
e2sum += *ep; |
228 |
> |
/* accumulate estimated variances */ |
229 |
> |
for (ep = earr + hp->ns*hp->ns; ep > earr; ) |
230 |
> |
e2rem += *--ep; |
231 |
|
ep = earr; /* perform super-sampling */ |
232 |
< |
for (ap = hp->sa, i = 0; i < hp->ns; i++) |
233 |
< |
for (j = 0; j < hp->ns; j++, ap++) { |
234 |
< |
int nss = *ep/e2sum*cnt + frandom(); |
235 |
< |
asum[0] = asum[1] = asum[2] = 0.0; |
236 |
< |
for (n = 1; n <= nss; n++) { |
237 |
< |
if (!getambsamp(&ar, hp, i, j, n)) { |
238 |
< |
nss = n-1; |
239 |
< |
break; |
296 |
< |
} |
297 |
< |
addcolor(asum, ar.rcol); |
298 |
< |
} |
299 |
< |
if (nss) { /* update returned ambient value */ |
300 |
< |
const double ssf = 1./(nss + 1); |
301 |
< |
for (n = 3; n--; ) |
302 |
< |
acol[n] += ssf*asum[n] + |
303 |
< |
(ssf - 1.)*colval(ap->v,n); |
304 |
< |
} |
305 |
< |
e2sum -= *ep++; /* update remainders */ |
306 |
< |
cnt -= nss; |
232 |
> |
for (i = 0; i < hp->ns; i++) |
233 |
> |
for (j = 0; j < hp->ns; j++) { |
234 |
> |
if (e2rem <= FTINY) |
235 |
> |
goto done; /* nothing left to do */ |
236 |
> |
nss = *ep/e2rem*cnt + frandom(); |
237 |
> |
for (n = 1; n <= nss && ambsample(hp,i,j,n); n++) |
238 |
> |
if (!--cnt) goto done; |
239 |
> |
e2rem -= *ep++; /* update remainder */ |
240 |
|
} |
241 |
+ |
done: |
242 |
|
free(earr); |
243 |
|
} |
244 |
|
|
245 |
|
|
246 |
< |
/* Compute vertex flags, indicating farthest in each direction */ |
247 |
< |
static uby8 * |
248 |
< |
vertex_flags(AMBHEMI *hp) |
246 |
> |
static AMBHEMI * |
247 |
> |
samp_hemi( /* sample indirect hemisphere */ |
248 |
> |
COLOR rcol, |
249 |
> |
RAY *r, |
250 |
> |
double wt |
251 |
> |
) |
252 |
|
{ |
253 |
< |
uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8)); |
254 |
< |
uby8 *vf; |
255 |
< |
AMBSAMP *ap; |
256 |
< |
int i, j; |
257 |
< |
|
258 |
< |
if (vflags == NULL) |
259 |
< |
error(SYSTEM, "out of memory in vertex_flags()"); |
260 |
< |
vf = vflags; |
261 |
< |
ap = hp->sa; /* compute farthest along first row */ |
262 |
< |
for (j = 0; j < hp->ns-1; j++, vf++, ap++) |
263 |
< |
if (ap[0].d <= ap[1].d) |
264 |
< |
vf[0] |= 1<<VDB_X; |
265 |
< |
else |
266 |
< |
vf[1] |= 1<<VDB_x; |
267 |
< |
++vf; ++ap; |
268 |
< |
/* flag subsequent rows */ |
269 |
< |
for (i = 1; i < hp->ns; i++) { |
270 |
< |
for (j = 0; j < hp->ns-1; j++, vf++, ap++) { |
271 |
< |
if (ap[0].d <= ap[-hp->ns].d) /* row before */ |
272 |
< |
vf[0] |= 1<<VDB_y; |
273 |
< |
else |
274 |
< |
vf[-hp->ns] |= 1<<VDB_Y; |
275 |
< |
if (ap[0].d <= ap[1-hp->ns].d) /* diagonal we care about */ |
276 |
< |
vf[0] |= 1<<VDB_Xy; |
277 |
< |
else |
278 |
< |
vf[1-hp->ns] |= 1<<VDB_xY; |
279 |
< |
if (ap[0].d <= ap[1].d) /* column after */ |
280 |
< |
vf[0] |= 1<<VDB_X; |
281 |
< |
else |
282 |
< |
vf[1] |= 1<<VDB_x; |
283 |
< |
} |
284 |
< |
if (ap[0].d <= ap[-hp->ns].d) /* final column edge */ |
285 |
< |
vf[0] |= 1<<VDB_y; |
286 |
< |
else |
287 |
< |
vf[-hp->ns] |= 1<<VDB_Y; |
288 |
< |
++vf; ++ap; |
253 |
> |
AMBHEMI *hp; |
254 |
> |
double d; |
255 |
> |
int n, i, j; |
256 |
> |
/* insignificance check */ |
257 |
> |
if (bright(rcol) <= FTINY) |
258 |
> |
return(NULL); |
259 |
> |
/* set number of divisions */ |
260 |
> |
if (ambacc <= FTINY && |
261 |
> |
wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight))) |
262 |
> |
wt = d; /* avoid ray termination */ |
263 |
> |
n = sqrt(ambdiv * wt) + 0.5; |
264 |
> |
i = 1 + (MINADIV-1)*(ambacc > FTINY); |
265 |
> |
if (n < i) /* use minimum number of samples? */ |
266 |
> |
n = i; |
267 |
> |
/* allocate sampling array */ |
268 |
> |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
269 |
> |
if (hp == NULL) |
270 |
> |
error(SYSTEM, "out of memory in samp_hemi"); |
271 |
> |
hp->rp = r; |
272 |
> |
hp->ns = n; |
273 |
> |
hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0; |
274 |
> |
memset(hp->sa, 0, sizeof(AMBSAMP)*n*n); |
275 |
> |
hp->sampOK = 0; |
276 |
> |
/* assign coefficient */ |
277 |
> |
copycolor(hp->acoef, rcol); |
278 |
> |
d = 1.0/(n*n); |
279 |
> |
scalecolor(hp->acoef, d); |
280 |
> |
/* make tangent plane axes */ |
281 |
> |
if (!getperpendicular(hp->ux, r->ron, 1)) |
282 |
> |
error(CONSISTENCY, "bad ray direction in samp_hemi"); |
283 |
> |
VCROSS(hp->uy, r->ron, hp->ux); |
284 |
> |
/* sample divisions */ |
285 |
> |
for (i = hp->ns; i--; ) |
286 |
> |
for (j = hp->ns; j--; ) |
287 |
> |
hp->sampOK += ambsample(hp, i, j, 0); |
288 |
> |
copycolor(rcol, hp->acol); |
289 |
> |
if (!hp->sampOK) { /* utter failure? */ |
290 |
> |
free(hp); |
291 |
> |
return(NULL); |
292 |
|
} |
293 |
< |
return(vflags); |
293 |
> |
if (hp->sampOK < hp->ns*hp->ns) { |
294 |
> |
hp->sampOK *= -1; /* soft failure */ |
295 |
> |
return(hp); |
296 |
> |
} |
297 |
> |
if (hp->sampOK <= MINADIV*MINADIV) |
298 |
> |
return(hp); /* don't bother super-sampling */ |
299 |
> |
n = ambssamp*wt + 0.5; |
300 |
> |
if (n > 8) { /* perform super-sampling? */ |
301 |
> |
ambsupersamp(hp, n); |
302 |
> |
copycolor(rcol, hp->acol); |
303 |
> |
} |
304 |
> |
return(hp); /* all is well */ |
305 |
|
} |
306 |
|
|
307 |
|
|
308 |
|
/* Return brightness of farthest ambient sample */ |
309 |
|
static double |
310 |
< |
back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags) |
310 |
> |
back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3) |
311 |
|
{ |
312 |
< |
const int v0 = ambndx(hp,i,j); |
313 |
< |
const int tflags = (1<<dbit1 | 1<<dbit2); |
314 |
< |
int v1, v2; |
315 |
< |
|
316 |
< |
if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */ |
317 |
< |
return(colval(hp->sa[v0].v,CIEY)); |
318 |
< |
v1 = adjacent_verti(hp, i, j, dbit1); |
319 |
< |
if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */ |
369 |
< |
return(colval(hp->sa[v1].v,CIEY)); |
370 |
< |
v2 = adjacent_verti(hp, i, j, dbit2); |
371 |
< |
if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */ |
372 |
< |
return(colval(hp->sa[v2].v,CIEY)); |
373 |
< |
/* else check if v1>v2 */ |
374 |
< |
if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2)) |
375 |
< |
return(colval(hp->sa[v1].v,CIEY)); |
376 |
< |
return(colval(hp->sa[v2].v,CIEY)); |
312 |
> |
if (hp->sa[n1].d <= hp->sa[n2].d) { |
313 |
> |
if (hp->sa[n1].d <= hp->sa[n3].d) |
314 |
> |
return(colval(hp->sa[n1].v,CIEY)); |
315 |
> |
return(colval(hp->sa[n3].v,CIEY)); |
316 |
> |
} |
317 |
> |
if (hp->sa[n2].d <= hp->sa[n3].d) |
318 |
> |
return(colval(hp->sa[n2].v,CIEY)); |
319 |
> |
return(colval(hp->sa[n3].v,CIEY)); |
320 |
|
} |
321 |
|
|
322 |
|
|
323 |
|
/* Compute vectors and coefficients for Hessian/gradient calcs */ |
324 |
|
static void |
325 |
< |
comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags) |
325 |
> |
comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1) |
326 |
|
{ |
327 |
< |
const int i0 = ambndx(hp,i,j); |
328 |
< |
double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; |
386 |
< |
int i1, ii; |
327 |
> |
double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; |
328 |
> |
int ii; |
329 |
|
|
330 |
< |
ftp->valid = 0; /* check if we can skip this edge */ |
331 |
< |
ii = adjacent_trifl[dbit]; |
332 |
< |
if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */ |
391 |
< |
return; |
392 |
< |
i1 = adjacent_verti(hp, i, j, dbit); |
393 |
< |
ii = adjacent_trifl[VDB_OPP(dbit)]; |
394 |
< |
if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */ |
395 |
< |
return; |
396 |
< |
/* else go ahead with calculation */ |
397 |
< |
VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop); |
398 |
< |
VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop); |
399 |
< |
VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p); |
330 |
> |
VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop); |
331 |
> |
VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop); |
332 |
> |
VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p); |
333 |
|
VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); |
334 |
|
rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); |
335 |
|
dot_e = DOT(ftp->e_i,ftp->e_i); |
343 |
|
J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; |
344 |
|
for (ii = 3; ii--; ) |
345 |
|
ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii]; |
413 |
– |
ftp->valid++; |
346 |
|
} |
347 |
|
|
348 |
|
|
368 |
|
double d1, d2, d3, d4; |
369 |
|
double I3, J3, K3; |
370 |
|
int i, j; |
439 |
– |
|
440 |
– |
if (!ftp->valid) { /* preemptive test */ |
441 |
– |
memset(hess, 0, sizeof(FVECT)*3); |
442 |
– |
return; |
443 |
– |
} |
371 |
|
/* compute intermediate coefficients */ |
372 |
|
d1 = 1.0/DOT(ftp->r_i,ftp->r_i); |
373 |
|
d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
431 |
|
double f1; |
432 |
|
int i; |
433 |
|
|
507 |
– |
if (!ftp->valid) { /* preemptive test */ |
508 |
– |
memset(grad, 0, sizeof(FVECT)); |
509 |
– |
return; |
510 |
– |
} |
434 |
|
f1 = 2.0*DOT(nrm, ftp->rcp); |
435 |
|
VCROSS(ncp, nrm, ftp->e_i); |
436 |
|
for (i = 3; i--; ) |
460 |
|
|
461 |
|
|
462 |
|
/* Compute anisotropic radii and eigenvector directions */ |
463 |
< |
static int |
463 |
> |
static void |
464 |
|
eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3]) |
465 |
|
{ |
466 |
|
double hess2[2][2]; |
482 |
|
if (i == 1) /* double-root (circle) */ |
483 |
|
evalue[1] = evalue[0]; |
484 |
|
if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | |
485 |
< |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) |
486 |
< |
error(INTERNAL, "bad eigenvalue calculation"); |
487 |
< |
|
485 |
> |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) { |
486 |
> |
ra[0] = ra[1] = maxarad; |
487 |
> |
return; |
488 |
> |
} |
489 |
|
if (evalue[0] > evalue[1]) { |
490 |
|
ra[0] = sqrt(sqrt(4.0/evalue[0])); |
491 |
|
ra[1] = sqrt(sqrt(4.0/evalue[1])); |
520 |
|
static char memerrmsg[] = "out of memory in ambHessian()"; |
521 |
|
FVECT (*hessrow)[3] = NULL; |
522 |
|
FVECT *gradrow = NULL; |
599 |
– |
uby8 *vflags; |
523 |
|
FVECT hessian[3]; |
524 |
|
FVECT gradient; |
525 |
|
FFTRI fftr; |
541 |
|
error(SYSTEM, memerrmsg); |
542 |
|
memset(gradient, 0, sizeof(gradient)); |
543 |
|
} |
621 |
– |
/* get vertex position flags */ |
622 |
– |
vflags = vertex_flags(hp); |
544 |
|
/* compute first row of edges */ |
545 |
|
for (j = 0; j < hp->ns-1; j++) { |
546 |
< |
comp_fftri(&fftr, hp, 0, j, VDB_X, vflags); |
546 |
> |
comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1)); |
547 |
|
if (hessrow != NULL) |
548 |
|
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
549 |
|
if (gradrow != NULL) |
553 |
|
for (i = 0; i < hp->ns-1; i++) { |
554 |
|
FVECT hesscol[3]; /* compute first vertical edge */ |
555 |
|
FVECT gradcol; |
556 |
< |
comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags); |
556 |
> |
comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0)); |
557 |
|
if (hessrow != NULL) |
558 |
|
comp_hessian(hesscol, &fftr, hp->rp->ron); |
559 |
|
if (gradrow != NULL) |
562 |
|
FVECT hessdia[3]; /* compute triangle contributions */ |
563 |
|
FVECT graddia; |
564 |
|
double backg; |
565 |
< |
backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags); |
565 |
> |
backg = back_ambval(hp, AI(hp,i,j), |
566 |
> |
AI(hp,i,j+1), AI(hp,i+1,j)); |
567 |
|
/* diagonal (inner) edge */ |
568 |
< |
comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags); |
568 |
> |
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j)); |
569 |
|
if (hessrow != NULL) { |
570 |
|
comp_hessian(hessdia, &fftr, hp->rp->ron); |
571 |
|
rev_hessian(hesscol); |
577 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
578 |
|
} |
579 |
|
/* initialize edge in next row */ |
580 |
< |
comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags); |
580 |
> |
comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j)); |
581 |
|
if (hessrow != NULL) |
582 |
|
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
583 |
|
if (gradrow != NULL) |
584 |
|
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
585 |
|
/* new column edge & paired triangle */ |
586 |
< |
backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags); |
587 |
< |
comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags); |
586 |
> |
backg = back_ambval(hp, AI(hp,i+1,j+1), |
587 |
> |
AI(hp,i+1,j), AI(hp,i,j+1)); |
588 |
> |
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1)); |
589 |
|
if (hessrow != NULL) { |
590 |
|
comp_hessian(hesscol, &fftr, hp->rp->ron); |
591 |
|
rev_hessian(hessdia); |
605 |
|
/* release row buffers */ |
606 |
|
if (hessrow != NULL) free(hessrow); |
607 |
|
if (gradrow != NULL) free(gradrow); |
685 |
– |
free(vflags); |
608 |
|
|
609 |
|
if (ra != NULL) /* extract eigenvectors & radii */ |
610 |
|
eigenvectors(uv, ra, hessian); |
645 |
|
ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1) |
646 |
|
{ |
647 |
|
const double max_d = 1.0/(minarad*ambacc + 0.001); |
648 |
< |
const double ang_res = 0.5*PI/(hp->ns-1); |
649 |
< |
const double ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY)); |
648 |
> |
const double ang_res = 0.5*PI/hp->ns; |
649 |
> |
const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01); |
650 |
|
double avg_d = 0; |
651 |
|
uint32 flgs = 0; |
652 |
+ |
FVECT vec; |
653 |
+ |
double u, v; |
654 |
+ |
double ang, a1; |
655 |
|
int i, j; |
656 |
< |
/* check distances above us */ |
656 |
> |
/* don't bother for a few samples */ |
657 |
> |
if (hp->ns < 8) |
658 |
> |
return(0); |
659 |
> |
/* check distances overhead */ |
660 |
|
for (i = hp->ns*3/4; i-- > hp->ns>>2; ) |
661 |
|
for (j = hp->ns*3/4; j-- > hp->ns>>2; ) |
662 |
|
avg_d += ambsam(hp,i,j).d; |
663 |
|
avg_d *= 4.0/(hp->ns*hp->ns); |
664 |
< |
if (avg_d >= max_d) /* too close to corral? */ |
664 |
> |
if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */ |
665 |
|
return(0); |
666 |
+ |
if (avg_d >= max_d) /* insurance */ |
667 |
+ |
return(0); |
668 |
|
/* else circle around perimeter */ |
669 |
|
for (i = 0; i < hp->ns; i++) |
670 |
|
for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) { |
671 |
|
AMBSAMP *ap = &ambsam(hp,i,j); |
742 |
– |
FVECT vec; |
743 |
– |
double u, v; |
744 |
– |
double ang, a1; |
745 |
– |
int abp; |
672 |
|
if ((ap->d <= FTINY) | (ap->d >= max_d)) |
673 |
|
continue; /* too far or too near */ |
674 |
|
VSUB(vec, ap->p, hp->rp->rop); |
675 |
< |
u = DOT(vec, uv[0]) * ap->d; |
676 |
< |
v = DOT(vec, uv[1]) * ap->d; |
677 |
< |
if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0) |
675 |
> |
u = DOT(vec, uv[0]); |
676 |
> |
v = DOT(vec, uv[1]); |
677 |
> |
if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v) |
678 |
|
continue; /* occluder outside ellipse */ |
679 |
|
ang = atan2a(v, u); /* else set direction flags */ |
680 |
< |
for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step) |
680 |
> |
for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step) |
681 |
|
flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0))); |
682 |
|
} |
683 |
|
return(flgs); |
696 |
|
uint32 *crlp /* returned (optional) */ |
697 |
|
) |
698 |
|
{ |
699 |
< |
AMBHEMI *hp = inithemi(rcol, r, wt); |
774 |
< |
int cnt; |
699 |
> |
AMBHEMI *hp = samp_hemi(rcol, r, wt); |
700 |
|
FVECT my_uv[2]; |
701 |
< |
double d, K, acol[3]; |
701 |
> |
double d, K; |
702 |
|
AMBSAMP *ap; |
703 |
< |
int i, j; |
704 |
< |
/* check/initialize */ |
780 |
< |
if (hp == NULL) |
781 |
< |
return(0); |
703 |
> |
int i; |
704 |
> |
/* clear return values */ |
705 |
|
if (uv != NULL) |
706 |
|
memset(uv, 0, sizeof(FVECT)*2); |
707 |
|
if (ra != NULL) |
712 |
|
dg[0] = dg[1] = 0.0; |
713 |
|
if (crlp != NULL) |
714 |
|
*crlp = 0; |
715 |
< |
/* sample the hemisphere */ |
716 |
< |
acol[0] = acol[1] = acol[2] = 0.0; |
717 |
< |
cnt = 0; |
718 |
< |
for (i = hp->ns; i--; ) |
719 |
< |
for (j = hp->ns; j--; ) |
720 |
< |
if ((ap = ambsample(hp, i, j)) != NULL) { |
721 |
< |
addcolor(acol, ap->v); |
799 |
< |
++cnt; |
800 |
< |
} |
801 |
< |
if (!cnt) { |
802 |
< |
setcolor(rcol, 0.0, 0.0, 0.0); |
803 |
< |
free(hp); |
804 |
< |
return(0); /* no valid samples */ |
715 |
> |
if (hp == NULL) /* sampling falure? */ |
716 |
> |
return(0); |
717 |
> |
|
718 |
> |
if ((ra == NULL) & (pg == NULL) & (dg == NULL) || |
719 |
> |
(hp->sampOK < 0) | (hp->ns < MINADIV)) { |
720 |
> |
free(hp); /* Hessian not requested/possible */ |
721 |
> |
return(-1); /* value-only return value */ |
722 |
|
} |
723 |
< |
if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */ |
807 |
< |
copycolor(rcol, acol); |
808 |
< |
free(hp); |
809 |
< |
return(-1); /* return value w/o Hessian */ |
810 |
< |
} |
811 |
< |
cnt = ambssamp*wt + 0.5; /* perform super-sampling? */ |
812 |
< |
if (cnt > 8) |
813 |
< |
ambsupersamp(acol, hp, cnt); |
814 |
< |
copycolor(rcol, acol); /* final indirect irradiance/PI */ |
815 |
< |
if ((ra == NULL) & (pg == NULL) & (dg == NULL)) { |
816 |
< |
free(hp); |
817 |
< |
return(-1); /* no radius or gradient calc. */ |
818 |
< |
} |
819 |
< |
if ((d = bright(acol)) > FTINY) { /* normalize Y values */ |
723 |
> |
if ((d = bright(rcol)) > FTINY) { /* normalize Y values */ |
724 |
|
d = 0.99*(hp->ns*hp->ns)/d; |
725 |
|
K = 0.01; |
726 |
|
} else { /* or fall back on geometric Hessian */ |
727 |
|
K = 1.0; |
728 |
|
pg = NULL; |
729 |
|
dg = NULL; |
730 |
+ |
crlp = NULL; |
731 |
|
} |
732 |
|
ap = hp->sa; /* relative Y channel from here on... */ |
733 |
|
for (i = hp->ns*hp->ns; i--; ap++) |
755 |
|
if (ra[1] < minarad) |
756 |
|
ra[1] = minarad; |
757 |
|
} |
758 |
< |
ra[0] *= d = 1.0/sqrt(sqrt(wt)); |
758 |
> |
ra[0] *= d = 1.0/sqrt(wt); |
759 |
|
if ((ra[1] *= d) > 2.0*ra[0]) |
760 |
|
ra[1] = 2.0*ra[0]; |
761 |
|
if (ra[1] > maxarad) { |
763 |
|
if (ra[0] > maxarad) |
764 |
|
ra[0] = maxarad; |
765 |
|
} |
766 |
< |
if (crlp != NULL) /* flag encroached directions */ |
766 |
> |
/* flag encroached directions */ |
767 |
> |
if (crlp != NULL) /* XXX doesn't update with changes to ambacc */ |
768 |
|
*crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc); |
769 |
|
if (pg != NULL) { /* cap gradient if necessary */ |
770 |
|
d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; |
778 |
|
free(hp); /* clean up and return */ |
779 |
|
return(1); |
780 |
|
} |
875 |
– |
|
876 |
– |
|
877 |
– |
#else /* ! NEWAMB */ |
878 |
– |
|
879 |
– |
|
880 |
– |
void |
881 |
– |
inithemi( /* initialize sampling hemisphere */ |
882 |
– |
AMBHEMI *hp, |
883 |
– |
COLOR ac, |
884 |
– |
RAY *r, |
885 |
– |
double wt |
886 |
– |
) |
887 |
– |
{ |
888 |
– |
double d; |
889 |
– |
int i; |
890 |
– |
/* set number of divisions */ |
891 |
– |
if (ambacc <= FTINY && |
892 |
– |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) |
893 |
– |
wt = d; /* avoid ray termination */ |
894 |
– |
hp->nt = sqrt(ambdiv * wt / PI) + 0.5; |
895 |
– |
i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */ |
896 |
– |
if (hp->nt < i) |
897 |
– |
hp->nt = i; |
898 |
– |
hp->np = PI * hp->nt + 0.5; |
899 |
– |
/* set number of super-samples */ |
900 |
– |
hp->ns = ambssamp * wt + 0.5; |
901 |
– |
/* assign coefficient */ |
902 |
– |
copycolor(hp->acoef, ac); |
903 |
– |
d = 1.0/(hp->nt*hp->np); |
904 |
– |
scalecolor(hp->acoef, d); |
905 |
– |
/* make axes */ |
906 |
– |
VCOPY(hp->uz, r->ron); |
907 |
– |
hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; |
908 |
– |
for (i = 0; i < 3; i++) |
909 |
– |
if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6) |
910 |
– |
break; |
911 |
– |
if (i >= 3) |
912 |
– |
error(CONSISTENCY, "bad ray direction in inithemi"); |
913 |
– |
hp->uy[i] = 1.0; |
914 |
– |
fcross(hp->ux, hp->uy, hp->uz); |
915 |
– |
normalize(hp->ux); |
916 |
– |
fcross(hp->uy, hp->uz, hp->ux); |
917 |
– |
} |
918 |
– |
|
919 |
– |
|
920 |
– |
int |
921 |
– |
divsample( /* sample a division */ |
922 |
– |
AMBSAMP *dp, |
923 |
– |
AMBHEMI *h, |
924 |
– |
RAY *r |
925 |
– |
) |
926 |
– |
{ |
927 |
– |
RAY ar; |
928 |
– |
int hlist[3]; |
929 |
– |
double spt[2]; |
930 |
– |
double xd, yd, zd; |
931 |
– |
double b2; |
932 |
– |
double phi; |
933 |
– |
int i; |
934 |
– |
/* ambient coefficient for weight */ |
935 |
– |
if (ambacc > FTINY) |
936 |
– |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
937 |
– |
else |
938 |
– |
copycolor(ar.rcoef, h->acoef); |
939 |
– |
if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0) |
940 |
– |
return(-1); |
941 |
– |
if (ambacc > FTINY) { |
942 |
– |
multcolor(ar.rcoef, h->acoef); |
943 |
– |
scalecolor(ar.rcoef, 1./AVGREFL); |
944 |
– |
} |
945 |
– |
hlist[0] = r->rno; |
946 |
– |
hlist[1] = dp->t; |
947 |
– |
hlist[2] = dp->p; |
948 |
– |
multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n)); |
949 |
– |
zd = sqrt((dp->t + spt[0])/h->nt); |
950 |
– |
phi = 2.0*PI * (dp->p + spt[1])/h->np; |
951 |
– |
xd = tcos(phi) * zd; |
952 |
– |
yd = tsin(phi) * zd; |
953 |
– |
zd = sqrt(1.0 - zd*zd); |
954 |
– |
for (i = 0; i < 3; i++) |
955 |
– |
ar.rdir[i] = xd*h->ux[i] + |
956 |
– |
yd*h->uy[i] + |
957 |
– |
zd*h->uz[i]; |
958 |
– |
checknorm(ar.rdir); |
959 |
– |
dimlist[ndims++] = dp->t*h->np + dp->p + 90171; |
960 |
– |
rayvalue(&ar); |
961 |
– |
ndims--; |
962 |
– |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
963 |
– |
addcolor(dp->v, ar.rcol); |
964 |
– |
/* use rt to improve gradient calc */ |
965 |
– |
if (ar.rt > FTINY && ar.rt < FHUGE) |
966 |
– |
dp->r += 1.0/ar.rt; |
967 |
– |
/* (re)initialize error */ |
968 |
– |
if (dp->n++) { |
969 |
– |
b2 = bright(dp->v)/dp->n - bright(ar.rcol); |
970 |
– |
b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1)); |
971 |
– |
dp->k = b2/(dp->n*dp->n); |
972 |
– |
} else |
973 |
– |
dp->k = 0.0; |
974 |
– |
return(0); |
975 |
– |
} |
976 |
– |
|
977 |
– |
|
978 |
– |
static int |
979 |
– |
ambcmp( /* decreasing order */ |
980 |
– |
const void *p1, |
981 |
– |
const void *p2 |
982 |
– |
) |
983 |
– |
{ |
984 |
– |
const AMBSAMP *d1 = (const AMBSAMP *)p1; |
985 |
– |
const AMBSAMP *d2 = (const AMBSAMP *)p2; |
986 |
– |
|
987 |
– |
if (d1->k < d2->k) |
988 |
– |
return(1); |
989 |
– |
if (d1->k > d2->k) |
990 |
– |
return(-1); |
991 |
– |
return(0); |
992 |
– |
} |
993 |
– |
|
994 |
– |
|
995 |
– |
static int |
996 |
– |
ambnorm( /* standard order */ |
997 |
– |
const void *p1, |
998 |
– |
const void *p2 |
999 |
– |
) |
1000 |
– |
{ |
1001 |
– |
const AMBSAMP *d1 = (const AMBSAMP *)p1; |
1002 |
– |
const AMBSAMP *d2 = (const AMBSAMP *)p2; |
1003 |
– |
int c; |
1004 |
– |
|
1005 |
– |
if ( (c = d1->t - d2->t) ) |
1006 |
– |
return(c); |
1007 |
– |
return(d1->p - d2->p); |
1008 |
– |
} |
1009 |
– |
|
1010 |
– |
|
1011 |
– |
double |
1012 |
– |
doambient( /* compute ambient component */ |
1013 |
– |
COLOR rcol, |
1014 |
– |
RAY *r, |
1015 |
– |
double wt, |
1016 |
– |
FVECT pg, |
1017 |
– |
FVECT dg |
1018 |
– |
) |
1019 |
– |
{ |
1020 |
– |
double b, d=0; |
1021 |
– |
AMBHEMI hemi; |
1022 |
– |
AMBSAMP *div; |
1023 |
– |
AMBSAMP dnew; |
1024 |
– |
double acol[3]; |
1025 |
– |
AMBSAMP *dp; |
1026 |
– |
double arad; |
1027 |
– |
int divcnt; |
1028 |
– |
int i, j; |
1029 |
– |
/* initialize hemisphere */ |
1030 |
– |
inithemi(&hemi, rcol, r, wt); |
1031 |
– |
divcnt = hemi.nt * hemi.np; |
1032 |
– |
/* initialize */ |
1033 |
– |
if (pg != NULL) |
1034 |
– |
pg[0] = pg[1] = pg[2] = 0.0; |
1035 |
– |
if (dg != NULL) |
1036 |
– |
dg[0] = dg[1] = dg[2] = 0.0; |
1037 |
– |
setcolor(rcol, 0.0, 0.0, 0.0); |
1038 |
– |
if (divcnt == 0) |
1039 |
– |
return(0.0); |
1040 |
– |
/* allocate super-samples */ |
1041 |
– |
if (hemi.ns > 0 || pg != NULL || dg != NULL) { |
1042 |
– |
div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP)); |
1043 |
– |
if (div == NULL) |
1044 |
– |
error(SYSTEM, "out of memory in doambient"); |
1045 |
– |
} else |
1046 |
– |
div = NULL; |
1047 |
– |
/* sample the divisions */ |
1048 |
– |
arad = 0.0; |
1049 |
– |
acol[0] = acol[1] = acol[2] = 0.0; |
1050 |
– |
if ((dp = div) == NULL) |
1051 |
– |
dp = &dnew; |
1052 |
– |
divcnt = 0; |
1053 |
– |
for (i = 0; i < hemi.nt; i++) |
1054 |
– |
for (j = 0; j < hemi.np; j++) { |
1055 |
– |
dp->t = i; dp->p = j; |
1056 |
– |
setcolor(dp->v, 0.0, 0.0, 0.0); |
1057 |
– |
dp->r = 0.0; |
1058 |
– |
dp->n = 0; |
1059 |
– |
if (divsample(dp, &hemi, r) < 0) { |
1060 |
– |
if (div != NULL) |
1061 |
– |
dp++; |
1062 |
– |
continue; |
1063 |
– |
} |
1064 |
– |
arad += dp->r; |
1065 |
– |
divcnt++; |
1066 |
– |
if (div != NULL) |
1067 |
– |
dp++; |
1068 |
– |
else |
1069 |
– |
addcolor(acol, dp->v); |
1070 |
– |
} |
1071 |
– |
if (!divcnt) { |
1072 |
– |
if (div != NULL) |
1073 |
– |
free((void *)div); |
1074 |
– |
return(0.0); /* no samples taken */ |
1075 |
– |
} |
1076 |
– |
if (divcnt < hemi.nt*hemi.np) { |
1077 |
– |
pg = dg = NULL; /* incomplete sampling */ |
1078 |
– |
hemi.ns = 0; |
1079 |
– |
} else if (arad > FTINY && divcnt/arad < minarad) { |
1080 |
– |
hemi.ns = 0; /* close enough */ |
1081 |
– |
} else if (hemi.ns > 0) { /* else perform super-sampling? */ |
1082 |
– |
comperrs(div, &hemi); /* compute errors */ |
1083 |
– |
qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */ |
1084 |
– |
/* super-sample */ |
1085 |
– |
for (i = hemi.ns; i > 0; i--) { |
1086 |
– |
dnew = *div; |
1087 |
– |
if (divsample(&dnew, &hemi, r) < 0) { |
1088 |
– |
dp++; |
1089 |
– |
continue; |
1090 |
– |
} |
1091 |
– |
dp = div; /* reinsert */ |
1092 |
– |
j = divcnt < i ? divcnt : i; |
1093 |
– |
while (--j > 0 && dnew.k < dp[1].k) { |
1094 |
– |
*dp = *(dp+1); |
1095 |
– |
dp++; |
1096 |
– |
} |
1097 |
– |
*dp = dnew; |
1098 |
– |
} |
1099 |
– |
if (pg != NULL || dg != NULL) /* restore order */ |
1100 |
– |
qsort(div, divcnt, sizeof(AMBSAMP), ambnorm); |
1101 |
– |
} |
1102 |
– |
/* compute returned values */ |
1103 |
– |
if (div != NULL) { |
1104 |
– |
arad = 0.0; /* note: divcnt may be < nt*np */ |
1105 |
– |
for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) { |
1106 |
– |
arad += dp->r; |
1107 |
– |
if (dp->n > 1) { |
1108 |
– |
b = 1.0/dp->n; |
1109 |
– |
scalecolor(dp->v, b); |
1110 |
– |
dp->r *= b; |
1111 |
– |
dp->n = 1; |
1112 |
– |
} |
1113 |
– |
addcolor(acol, dp->v); |
1114 |
– |
} |
1115 |
– |
b = bright(acol); |
1116 |
– |
if (b > FTINY) { |
1117 |
– |
b = 1.0/b; /* compute & normalize gradient(s) */ |
1118 |
– |
if (pg != NULL) { |
1119 |
– |
posgradient(pg, div, &hemi); |
1120 |
– |
for (i = 0; i < 3; i++) |
1121 |
– |
pg[i] *= b; |
1122 |
– |
} |
1123 |
– |
if (dg != NULL) { |
1124 |
– |
dirgradient(dg, div, &hemi); |
1125 |
– |
for (i = 0; i < 3; i++) |
1126 |
– |
dg[i] *= b; |
1127 |
– |
} |
1128 |
– |
} |
1129 |
– |
free((void *)div); |
1130 |
– |
} |
1131 |
– |
copycolor(rcol, acol); |
1132 |
– |
if (arad <= FTINY) |
1133 |
– |
arad = maxarad; |
1134 |
– |
else |
1135 |
– |
arad = (divcnt+hemi.ns)/arad; |
1136 |
– |
if (pg != NULL) { /* reduce radius if gradient large */ |
1137 |
– |
d = DOT(pg,pg); |
1138 |
– |
if (d*arad*arad > 1.0) |
1139 |
– |
arad = 1.0/sqrt(d); |
1140 |
– |
} |
1141 |
– |
if (arad < minarad) { |
1142 |
– |
arad = minarad; |
1143 |
– |
if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */ |
1144 |
– |
d = 1.0/arad/sqrt(d); |
1145 |
– |
for (i = 0; i < 3; i++) |
1146 |
– |
pg[i] *= d; |
1147 |
– |
} |
1148 |
– |
} |
1149 |
– |
if ((arad /= sqrt(wt)) > maxarad) |
1150 |
– |
arad = maxarad; |
1151 |
– |
return(arad); |
1152 |
– |
} |
1153 |
– |
|
1154 |
– |
|
1155 |
– |
void |
1156 |
– |
comperrs( /* compute initial error estimates */ |
1157 |
– |
AMBSAMP *da, /* assumes standard ordering */ |
1158 |
– |
AMBHEMI *hp |
1159 |
– |
) |
1160 |
– |
{ |
1161 |
– |
double b, b2; |
1162 |
– |
int i, j; |
1163 |
– |
AMBSAMP *dp; |
1164 |
– |
/* sum differences from neighbors */ |
1165 |
– |
dp = da; |
1166 |
– |
for (i = 0; i < hp->nt; i++) |
1167 |
– |
for (j = 0; j < hp->np; j++) { |
1168 |
– |
#ifdef DEBUG |
1169 |
– |
if (dp->t != i || dp->p != j) |
1170 |
– |
error(CONSISTENCY, |
1171 |
– |
"division order in comperrs"); |
1172 |
– |
#endif |
1173 |
– |
b = bright(dp[0].v); |
1174 |
– |
if (i > 0) { /* from above */ |
1175 |
– |
b2 = bright(dp[-hp->np].v) - b; |
1176 |
– |
b2 *= b2 * 0.25; |
1177 |
– |
dp[0].k += b2; |
1178 |
– |
dp[-hp->np].k += b2; |
1179 |
– |
} |
1180 |
– |
if (j > 0) { /* from behind */ |
1181 |
– |
b2 = bright(dp[-1].v) - b; |
1182 |
– |
b2 *= b2 * 0.25; |
1183 |
– |
dp[0].k += b2; |
1184 |
– |
dp[-1].k += b2; |
1185 |
– |
} else { /* around */ |
1186 |
– |
b2 = bright(dp[hp->np-1].v) - b; |
1187 |
– |
b2 *= b2 * 0.25; |
1188 |
– |
dp[0].k += b2; |
1189 |
– |
dp[hp->np-1].k += b2; |
1190 |
– |
} |
1191 |
– |
dp++; |
1192 |
– |
} |
1193 |
– |
/* divide by number of neighbors */ |
1194 |
– |
dp = da; |
1195 |
– |
for (j = 0; j < hp->np; j++) /* top row */ |
1196 |
– |
(dp++)->k *= 1.0/3.0; |
1197 |
– |
if (hp->nt < 2) |
1198 |
– |
return; |
1199 |
– |
for (i = 1; i < hp->nt-1; i++) /* central region */ |
1200 |
– |
for (j = 0; j < hp->np; j++) |
1201 |
– |
(dp++)->k *= 0.25; |
1202 |
– |
for (j = 0; j < hp->np; j++) /* bottom row */ |
1203 |
– |
(dp++)->k *= 1.0/3.0; |
1204 |
– |
} |
1205 |
– |
|
1206 |
– |
|
1207 |
– |
void |
1208 |
– |
posgradient( /* compute position gradient */ |
1209 |
– |
FVECT gv, |
1210 |
– |
AMBSAMP *da, /* assumes standard ordering */ |
1211 |
– |
AMBHEMI *hp |
1212 |
– |
) |
1213 |
– |
{ |
1214 |
– |
int i, j; |
1215 |
– |
double nextsine, lastsine, b, d; |
1216 |
– |
double mag0, mag1; |
1217 |
– |
double phi, cosp, sinp, xd, yd; |
1218 |
– |
AMBSAMP *dp; |
1219 |
– |
|
1220 |
– |
xd = yd = 0.0; |
1221 |
– |
for (j = 0; j < hp->np; j++) { |
1222 |
– |
dp = da + j; |
1223 |
– |
mag0 = mag1 = 0.0; |
1224 |
– |
lastsine = 0.0; |
1225 |
– |
for (i = 0; i < hp->nt; i++) { |
1226 |
– |
#ifdef DEBUG |
1227 |
– |
if (dp->t != i || dp->p != j) |
1228 |
– |
error(CONSISTENCY, |
1229 |
– |
"division order in posgradient"); |
1230 |
– |
#endif |
1231 |
– |
b = bright(dp->v); |
1232 |
– |
if (i > 0) { |
1233 |
– |
d = dp[-hp->np].r; |
1234 |
– |
if (dp[0].r > d) d = dp[0].r; |
1235 |
– |
/* sin(t)*cos(t)^2 */ |
1236 |
– |
d *= lastsine * (1.0 - (double)i/hp->nt); |
1237 |
– |
mag0 += d*(b - bright(dp[-hp->np].v)); |
1238 |
– |
} |
1239 |
– |
nextsine = sqrt((double)(i+1)/hp->nt); |
1240 |
– |
if (j > 0) { |
1241 |
– |
d = dp[-1].r; |
1242 |
– |
if (dp[0].r > d) d = dp[0].r; |
1243 |
– |
mag1 += d * (nextsine - lastsine) * |
1244 |
– |
(b - bright(dp[-1].v)); |
1245 |
– |
} else { |
1246 |
– |
d = dp[hp->np-1].r; |
1247 |
– |
if (dp[0].r > d) d = dp[0].r; |
1248 |
– |
mag1 += d * (nextsine - lastsine) * |
1249 |
– |
(b - bright(dp[hp->np-1].v)); |
1250 |
– |
} |
1251 |
– |
dp += hp->np; |
1252 |
– |
lastsine = nextsine; |
1253 |
– |
} |
1254 |
– |
mag0 *= 2.0*PI / hp->np; |
1255 |
– |
phi = 2.0*PI * (double)j/hp->np; |
1256 |
– |
cosp = tcos(phi); sinp = tsin(phi); |
1257 |
– |
xd += mag0*cosp - mag1*sinp; |
1258 |
– |
yd += mag0*sinp + mag1*cosp; |
1259 |
– |
} |
1260 |
– |
for (i = 0; i < 3; i++) |
1261 |
– |
gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI; |
1262 |
– |
} |
1263 |
– |
|
1264 |
– |
|
1265 |
– |
void |
1266 |
– |
dirgradient( /* compute direction gradient */ |
1267 |
– |
FVECT gv, |
1268 |
– |
AMBSAMP *da, /* assumes standard ordering */ |
1269 |
– |
AMBHEMI *hp |
1270 |
– |
) |
1271 |
– |
{ |
1272 |
– |
int i, j; |
1273 |
– |
double mag; |
1274 |
– |
double phi, xd, yd; |
1275 |
– |
AMBSAMP *dp; |
1276 |
– |
|
1277 |
– |
xd = yd = 0.0; |
1278 |
– |
for (j = 0; j < hp->np; j++) { |
1279 |
– |
dp = da + j; |
1280 |
– |
mag = 0.0; |
1281 |
– |
for (i = 0; i < hp->nt; i++) { |
1282 |
– |
#ifdef DEBUG |
1283 |
– |
if (dp->t != i || dp->p != j) |
1284 |
– |
error(CONSISTENCY, |
1285 |
– |
"division order in dirgradient"); |
1286 |
– |
#endif |
1287 |
– |
/* tan(t) */ |
1288 |
– |
mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0); |
1289 |
– |
dp += hp->np; |
1290 |
– |
} |
1291 |
– |
phi = 2.0*PI * (j+.5)/hp->np + PI/2.0; |
1292 |
– |
xd += mag * tcos(phi); |
1293 |
– |
yd += mag * tsin(phi); |
1294 |
– |
} |
1295 |
– |
for (i = 0; i < 3; i++) |
1296 |
– |
gv[i] = xd*hp->ux[i] + yd*hp->uy[i]; |
1297 |
– |
} |
1298 |
– |
|
1299 |
– |
#endif /* ! NEWAMB */ |