| 21 |
|
#include "ambient.h" |
| 22 |
|
#include "random.h" |
| 23 |
|
|
| 24 |
< |
#ifdef NEWAMB |
| 24 |
> |
#ifndef OLDAMB |
| 25 |
|
|
| 26 |
|
extern void SDsquare2disk(double ds[2], double seedx, double seedy); |
| 27 |
|
|
| 28 |
– |
/* vertex direction bit positions */ |
| 29 |
– |
#define VDB_xy 0 |
| 30 |
– |
#define VDB_y 01 |
| 31 |
– |
#define VDB_x 02 |
| 32 |
– |
#define VDB_Xy 03 |
| 33 |
– |
#define VDB_xY 04 |
| 34 |
– |
#define VDB_X 05 |
| 35 |
– |
#define VDB_Y 06 |
| 36 |
– |
#define VDB_XY 07 |
| 37 |
– |
/* get opposite vertex direction bit */ |
| 38 |
– |
#define VDB_OPP(f) (~(f) & 07) |
| 39 |
– |
/* adjacent triangle vertex flags */ |
| 40 |
– |
static const int adjacent_trifl[8] = { |
| 41 |
– |
0, /* forbidden diagonal */ |
| 42 |
– |
1<<VDB_x|1<<VDB_y|1<<VDB_Xy, |
| 43 |
– |
1<<VDB_y|1<<VDB_x|1<<VDB_xY, |
| 44 |
– |
1<<VDB_y|1<<VDB_Xy|1<<VDB_X, |
| 45 |
– |
1<<VDB_x|1<<VDB_xY|1<<VDB_Y, |
| 46 |
– |
1<<VDB_Xy|1<<VDB_X|1<<VDB_Y, |
| 47 |
– |
1<<VDB_xY|1<<VDB_Y|1<<VDB_X, |
| 48 |
– |
0, /* forbidden diagonal */ |
| 49 |
– |
}; |
| 50 |
– |
|
| 28 |
|
typedef struct { |
| 29 |
|
COLOR v; /* hemisphere sample value */ |
| 30 |
|
float d; /* reciprocal distance (1/rt) */ |
| 33 |
|
|
| 34 |
|
typedef struct { |
| 35 |
|
RAY *rp; /* originating ray sample */ |
| 59 |
– |
FVECT ux, uy; /* tangent axis unit vectors */ |
| 36 |
|
int ns; /* number of samples per axis */ |
| 37 |
+ |
int sampOK; /* acquired full sample set? */ |
| 38 |
|
COLOR acoef; /* division contribution coefficient */ |
| 39 |
+ |
double acol[3]; /* accumulated color */ |
| 40 |
+ |
FVECT ux, uy; /* tangent axis unit vectors */ |
| 41 |
|
AMBSAMP sa[1]; /* sample array (extends struct) */ |
| 42 |
|
} AMBHEMI; /* ambient sample hemisphere */ |
| 43 |
|
|
| 44 |
< |
#define ambndx(h,i,j) ((i)*(h)->ns + (j)) |
| 45 |
< |
#define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)] |
| 44 |
> |
#define AI(h,i,j) ((i)*(h)->ns + (j)) |
| 45 |
> |
#define ambsam(h,i,j) (h)->sa[AI(h,i,j)] |
| 46 |
|
|
| 47 |
|
typedef struct { |
| 48 |
|
FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; |
| 49 |
|
double I1, I2; |
| 71 |
– |
int valid; |
| 50 |
|
} FFTRI; /* vectors and coefficients for Hessian calculation */ |
| 51 |
|
|
| 52 |
|
|
| 75 |
– |
/* Get index for adjacent vertex */ |
| 53 |
|
static int |
| 54 |
< |
adjacent_verti(AMBHEMI *hp, int i, int j, int dbit) |
| 54 |
> |
ambcollision( /* proposed direciton collides? */ |
| 55 |
> |
AMBHEMI *hp, |
| 56 |
> |
int i, |
| 57 |
> |
int j, |
| 58 |
> |
FVECT dv |
| 59 |
> |
) |
| 60 |
|
{ |
| 61 |
< |
int i0 = i*hp->ns + j; |
| 62 |
< |
|
| 63 |
< |
switch (dbit) { |
| 64 |
< |
case VDB_y: return(i0 - hp->ns); |
| 65 |
< |
case VDB_x: return(i0 - 1); |
| 66 |
< |
case VDB_Xy: return(i0 - hp->ns + 1); |
| 67 |
< |
case VDB_xY: return(i0 + hp->ns - 1); |
| 68 |
< |
case VDB_X: return(i0 + 1); |
| 69 |
< |
case VDB_Y: return(i0 + hp->ns); |
| 70 |
< |
/* the following should never occur */ |
| 71 |
< |
case VDB_xy: return(i0 - hp->ns - 1); |
| 72 |
< |
case VDB_XY: return(i0 + hp->ns + 1); |
| 61 |
> |
double cos_thresh; |
| 62 |
> |
int ii, jj; |
| 63 |
> |
/* min. spacing = 1/4th division */ |
| 64 |
> |
cos_thresh = (PI/4.)/(double)hp->ns; |
| 65 |
> |
cos_thresh = 1. - .5*cos_thresh*cos_thresh; |
| 66 |
> |
/* check existing neighbors */ |
| 67 |
> |
for (ii = i-1; ii <= i+1; ii++) { |
| 68 |
> |
if (ii < 0) continue; |
| 69 |
> |
if (ii >= hp->ns) break; |
| 70 |
> |
for (jj = j-1; jj <= j+1; jj++) { |
| 71 |
> |
AMBSAMP *ap; |
| 72 |
> |
FVECT avec; |
| 73 |
> |
double dprod; |
| 74 |
> |
if (jj < 0) continue; |
| 75 |
> |
if (jj >= hp->ns) break; |
| 76 |
> |
if ((ii==i) & (jj==j)) continue; |
| 77 |
> |
ap = &ambsam(hp,ii,jj); |
| 78 |
> |
if (ap->d <= .5/FHUGE) |
| 79 |
> |
continue; /* no one home */ |
| 80 |
> |
VSUB(avec, ap->p, hp->rp->rop); |
| 81 |
> |
dprod = DOT(avec, dv); |
| 82 |
> |
if (dprod >= cos_thresh*VLEN(avec)) |
| 83 |
> |
return(1); /* collision */ |
| 84 |
> |
} |
| 85 |
|
} |
| 86 |
< |
return(-1); |
| 86 |
> |
return(0); /* nothing to worry about */ |
| 87 |
|
} |
| 88 |
|
|
| 89 |
|
|
| 96 |
– |
/* Get vertex direction bit for the opposite edge to complete triangle */ |
| 90 |
|
static int |
| 91 |
< |
vdb_edge(int db1, int db2) |
| 92 |
< |
{ |
| 93 |
< |
switch (db1) { |
| 94 |
< |
case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y); |
| 95 |
< |
case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X); |
| 103 |
< |
case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY); |
| 104 |
< |
case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy); |
| 105 |
< |
case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X); |
| 106 |
< |
case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y); |
| 107 |
< |
} |
| 108 |
< |
error(INTERNAL, "forbidden diagonal in vdb_edge()"); |
| 109 |
< |
return(-1); |
| 110 |
< |
} |
| 111 |
< |
|
| 112 |
< |
|
| 113 |
< |
static AMBHEMI * |
| 114 |
< |
inithemi( /* initialize sampling hemisphere */ |
| 115 |
< |
COLOR ac, |
| 116 |
< |
RAY *r, |
| 117 |
< |
double wt |
| 91 |
> |
ambsample( /* initial ambient division sample */ |
| 92 |
> |
AMBHEMI *hp, |
| 93 |
> |
int i, |
| 94 |
> |
int j, |
| 95 |
> |
int n |
| 96 |
|
) |
| 97 |
|
{ |
| 98 |
< |
AMBHEMI *hp; |
| 99 |
< |
double d; |
| 122 |
< |
int n, i; |
| 123 |
< |
/* set number of divisions */ |
| 124 |
< |
if (ambacc <= FTINY && |
| 125 |
< |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) |
| 126 |
< |
wt = d; /* avoid ray termination */ |
| 127 |
< |
n = sqrt(ambdiv * wt) + 0.5; |
| 128 |
< |
i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ |
| 129 |
< |
if (n < i) |
| 130 |
< |
n = i; |
| 131 |
< |
/* allocate sampling array */ |
| 132 |
< |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
| 133 |
< |
if (hp == NULL) |
| 134 |
< |
return(NULL); |
| 135 |
< |
hp->rp = r; |
| 136 |
< |
hp->ns = n; |
| 137 |
< |
/* assign coefficient */ |
| 138 |
< |
copycolor(hp->acoef, ac); |
| 139 |
< |
d = 1.0/(n*n); |
| 140 |
< |
scalecolor(hp->acoef, d); |
| 141 |
< |
/* make tangent plane axes */ |
| 142 |
< |
hp->uy[0] = 0.5 - frandom(); |
| 143 |
< |
hp->uy[1] = 0.5 - frandom(); |
| 144 |
< |
hp->uy[2] = 0.5 - frandom(); |
| 145 |
< |
for (i = 3; i--; ) |
| 146 |
< |
if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6)) |
| 147 |
< |
break; |
| 148 |
< |
if (i < 0) |
| 149 |
< |
error(CONSISTENCY, "bad ray direction in inithemi"); |
| 150 |
< |
hp->uy[i] = 1.0; |
| 151 |
< |
VCROSS(hp->ux, hp->uy, r->ron); |
| 152 |
< |
normalize(hp->ux); |
| 153 |
< |
VCROSS(hp->uy, r->ron, hp->ux); |
| 154 |
< |
/* we're ready to sample */ |
| 155 |
< |
return(hp); |
| 156 |
< |
} |
| 157 |
< |
|
| 158 |
< |
|
| 159 |
< |
/* Sample ambient division and apply weighting coefficient */ |
| 160 |
< |
static int |
| 161 |
< |
getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n) |
| 162 |
< |
{ |
| 98 |
> |
AMBSAMP *ap = &ambsam(hp,i,j); |
| 99 |
> |
RAY ar; |
| 100 |
|
int hlist[3], ii; |
| 101 |
|
double spt[2], zd; |
| 102 |
+ |
/* generate hemispherical sample */ |
| 103 |
|
/* ambient coefficient for weight */ |
| 104 |
|
if (ambacc > FTINY) |
| 105 |
< |
setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL); |
| 105 |
> |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
| 106 |
|
else |
| 107 |
< |
copycolor(arp->rcoef, hp->acoef); |
| 108 |
< |
if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0) |
| 107 |
> |
copycolor(ar.rcoef, hp->acoef); |
| 108 |
> |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) |
| 109 |
|
return(0); |
| 110 |
|
if (ambacc > FTINY) { |
| 111 |
< |
multcolor(arp->rcoef, hp->acoef); |
| 112 |
< |
scalecolor(arp->rcoef, 1./AVGREFL); |
| 111 |
> |
multcolor(ar.rcoef, hp->acoef); |
| 112 |
> |
scalecolor(ar.rcoef, 1./AVGREFL); |
| 113 |
|
} |
| 114 |
|
hlist[0] = hp->rp->rno; |
| 115 |
|
hlist[1] = j; |
| 116 |
|
hlist[2] = i; |
| 117 |
|
multisamp(spt, 2, urand(ilhash(hlist,3)+n)); |
| 118 |
< |
if (!n) { /* avoid border samples for n==0 */ |
| 181 |
< |
if ((spt[0] < 0.1) | (spt[0] >= 0.9)) |
| 182 |
< |
spt[0] = 0.1 + 0.8*frandom(); |
| 183 |
< |
if ((spt[1] < 0.1) | (spt[1] >= 0.9)) |
| 184 |
< |
spt[1] = 0.1 + 0.8*frandom(); |
| 185 |
< |
} |
| 118 |
> |
resample: |
| 119 |
|
SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns); |
| 120 |
|
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
| 121 |
|
for (ii = 3; ii--; ) |
| 122 |
< |
arp->rdir[ii] = spt[0]*hp->ux[ii] + |
| 122 |
> |
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
| 123 |
|
spt[1]*hp->uy[ii] + |
| 124 |
|
zd*hp->rp->ron[ii]; |
| 125 |
< |
checknorm(arp->rdir); |
| 126 |
< |
dimlist[ndims++] = ambndx(hp,i,j) + 90171; |
| 127 |
< |
rayvalue(arp); /* evaluate ray */ |
| 128 |
< |
ndims--; /* apply coefficient */ |
| 129 |
< |
multcolor(arp->rcol, arp->rcoef); |
| 125 |
> |
checknorm(ar.rdir); |
| 126 |
> |
/* avoid coincident samples */ |
| 127 |
> |
if (!n && ambcollision(hp, i, j, ar.rdir)) { |
| 128 |
> |
spt[0] = frandom(); spt[1] = frandom(); |
| 129 |
> |
goto resample; /* reject this sample */ |
| 130 |
> |
} |
| 131 |
> |
dimlist[ndims++] = AI(hp,i,j) + 90171; |
| 132 |
> |
rayvalue(&ar); /* evaluate ray */ |
| 133 |
> |
ndims--; |
| 134 |
> |
if (ar.rt <= FTINY) |
| 135 |
> |
return(0); /* should never happen */ |
| 136 |
> |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
| 137 |
> |
if (ar.rt*ap->d < 1.0) /* new/closer distance? */ |
| 138 |
> |
ap->d = 1.0/ar.rt; |
| 139 |
> |
if (!n) { /* record first vertex & value */ |
| 140 |
> |
if (ar.rt > 10.0*thescene.cusize + 1000.) |
| 141 |
> |
ar.rt = 10.0*thescene.cusize + 1000.; |
| 142 |
> |
VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); |
| 143 |
> |
copycolor(ap->v, ar.rcol); |
| 144 |
> |
} else { /* else update recorded value */ |
| 145 |
> |
hp->acol[RED] -= colval(ap->v,RED); |
| 146 |
> |
hp->acol[GRN] -= colval(ap->v,GRN); |
| 147 |
> |
hp->acol[BLU] -= colval(ap->v,BLU); |
| 148 |
> |
zd = 1.0/(double)(n+1); |
| 149 |
> |
scalecolor(ar.rcol, zd); |
| 150 |
> |
zd *= (double)n; |
| 151 |
> |
scalecolor(ap->v, zd); |
| 152 |
> |
addcolor(ap->v, ar.rcol); |
| 153 |
> |
} |
| 154 |
> |
addcolor(hp->acol, ap->v); /* add to our sum */ |
| 155 |
|
return(1); |
| 156 |
|
} |
| 157 |
|
|
| 158 |
|
|
| 201 |
– |
static AMBSAMP * |
| 202 |
– |
ambsample( /* initial ambient division sample */ |
| 203 |
– |
AMBHEMI *hp, |
| 204 |
– |
int i, |
| 205 |
– |
int j |
| 206 |
– |
) |
| 207 |
– |
{ |
| 208 |
– |
AMBSAMP *ap = &ambsam(hp,i,j); |
| 209 |
– |
RAY ar; |
| 210 |
– |
/* generate hemispherical sample */ |
| 211 |
– |
if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) { |
| 212 |
– |
memset(ap, 0, sizeof(AMBSAMP)); |
| 213 |
– |
return(NULL); |
| 214 |
– |
} |
| 215 |
– |
ap->d = 1.0/ar.rt; /* limit vertex distance */ |
| 216 |
– |
if (ar.rt > 10.0*thescene.cusize) |
| 217 |
– |
ar.rt = 10.0*thescene.cusize; |
| 218 |
– |
VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); |
| 219 |
– |
copycolor(ap->v, ar.rcol); |
| 220 |
– |
return(ap); |
| 221 |
– |
} |
| 222 |
– |
|
| 223 |
– |
|
| 159 |
|
/* Estimate errors based on ambient division differences */ |
| 160 |
|
static float * |
| 161 |
|
getambdiffs(AMBHEMI *hp) |
| 162 |
|
{ |
| 163 |
+ |
const double normf = 1./bright(hp->acoef); |
| 164 |
|
float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float)); |
| 165 |
|
float *ep; |
| 166 |
|
AMBSAMP *ap; |
| 174 |
|
for (j = 0; j < hp->ns; j++, ap++, ep++) { |
| 175 |
|
b = bright(ap[0].v); |
| 176 |
|
if (i) { /* from above */ |
| 177 |
< |
d2 = b - bright(ap[-hp->ns].v); |
| 177 |
> |
d2 = normf*(b - bright(ap[-hp->ns].v)); |
| 178 |
|
d2 *= d2; |
| 179 |
|
ep[0] += d2; |
| 180 |
|
ep[-hp->ns] += d2; |
| 181 |
|
} |
| 182 |
< |
if (j) { /* from behind */ |
| 183 |
< |
d2 = b - bright(ap[-1].v); |
| 184 |
< |
d2 *= d2; |
| 185 |
< |
ep[0] += d2; |
| 186 |
< |
ep[-1] += d2; |
| 187 |
< |
} |
| 182 |
> |
if (!j) continue; |
| 183 |
> |
/* from behind */ |
| 184 |
> |
d2 = normf*(b - bright(ap[-1].v)); |
| 185 |
> |
d2 *= d2; |
| 186 |
> |
ep[0] += d2; |
| 187 |
> |
ep[-1] += d2; |
| 188 |
> |
if (!i) continue; |
| 189 |
> |
/* diagonal */ |
| 190 |
> |
d2 = normf*(b - bright(ap[-hp->ns-1].v)); |
| 191 |
> |
d2 *= d2; |
| 192 |
> |
ep[0] += d2; |
| 193 |
> |
ep[-hp->ns-1] += d2; |
| 194 |
|
} |
| 195 |
|
/* correct for number of neighbors */ |
| 196 |
< |
earr[0] *= 2.f; |
| 197 |
< |
earr[hp->ns-1] *= 2.f; |
| 198 |
< |
earr[(hp->ns-1)*hp->ns] *= 2.f; |
| 199 |
< |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f; |
| 196 |
> |
earr[0] *= 8./3.; |
| 197 |
> |
earr[hp->ns-1] *= 8./3.; |
| 198 |
> |
earr[(hp->ns-1)*hp->ns] *= 8./3.; |
| 199 |
> |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.; |
| 200 |
|
for (i = 1; i < hp->ns-1; i++) { |
| 201 |
< |
earr[i*hp->ns] *= 4./3.; |
| 202 |
< |
earr[i*hp->ns + hp->ns-1] *= 4./3.; |
| 201 |
> |
earr[i*hp->ns] *= 8./5.; |
| 202 |
> |
earr[i*hp->ns + hp->ns-1] *= 8./5.; |
| 203 |
|
} |
| 204 |
|
for (j = 1; j < hp->ns-1; j++) { |
| 205 |
< |
earr[j] *= 4./3.; |
| 206 |
< |
earr[(hp->ns-1)*hp->ns + j] *= 4./3.; |
| 205 |
> |
earr[j] *= 8./5.; |
| 206 |
> |
earr[(hp->ns-1)*hp->ns + j] *= 8./5.; |
| 207 |
|
} |
| 208 |
|
return(earr); |
| 209 |
|
} |
| 211 |
|
|
| 212 |
|
/* Perform super-sampling on hemisphere (introduces bias) */ |
| 213 |
|
static void |
| 214 |
< |
ambsupersamp(double acol[3], AMBHEMI *hp, int cnt) |
| 214 |
> |
ambsupersamp(AMBHEMI *hp, int cnt) |
| 215 |
|
{ |
| 216 |
|
float *earr = getambdiffs(hp); |
| 217 |
< |
double e2sum = 0.0; |
| 217 |
> |
double e2rem = 0; |
| 218 |
|
AMBSAMP *ap; |
| 277 |
– |
RAY ar; |
| 278 |
– |
double asum[3]; |
| 219 |
|
float *ep; |
| 220 |
< |
int i, j, n; |
| 220 |
> |
int i, j, n, nss; |
| 221 |
|
|
| 222 |
|
if (earr == NULL) /* just skip calc. if no memory */ |
| 223 |
|
return; |
| 224 |
< |
/* add up estimated variances */ |
| 225 |
< |
for (ep = earr + hp->ns*hp->ns; ep-- > earr; ) |
| 226 |
< |
e2sum += *ep; |
| 224 |
> |
/* accumulate estimated variances */ |
| 225 |
> |
for (ep = earr + hp->ns*hp->ns; ep > earr; ) |
| 226 |
> |
e2rem += *--ep; |
| 227 |
|
ep = earr; /* perform super-sampling */ |
| 228 |
|
for (ap = hp->sa, i = 0; i < hp->ns; i++) |
| 229 |
|
for (j = 0; j < hp->ns; j++, ap++) { |
| 230 |
< |
int nss = *ep/e2sum*cnt + frandom(); |
| 231 |
< |
asum[0] = asum[1] = asum[2] = 0.0; |
| 232 |
< |
for (n = 1; n <= nss; n++) { |
| 233 |
< |
if (!getambsamp(&ar, hp, i, j, n)) { |
| 234 |
< |
nss = n-1; |
| 235 |
< |
break; |
| 296 |
< |
} |
| 297 |
< |
addcolor(asum, ar.rcol); |
| 298 |
< |
} |
| 299 |
< |
if (nss) { /* update returned ambient value */ |
| 300 |
< |
const double ssf = 1./(nss + 1); |
| 301 |
< |
for (n = 3; n--; ) |
| 302 |
< |
acol[n] += ssf*asum[n] + |
| 303 |
< |
(ssf - 1.)*colval(ap->v,n); |
| 304 |
< |
} |
| 305 |
< |
e2sum -= *ep++; /* update remainders */ |
| 306 |
< |
cnt -= nss; |
| 230 |
> |
if (e2rem <= FTINY) |
| 231 |
> |
goto done; /* nothing left to do */ |
| 232 |
> |
nss = *ep/e2rem*cnt + frandom(); |
| 233 |
> |
for (n = 1; n <= nss && ambsample(hp,i,j,n); n++) |
| 234 |
> |
if (!--cnt) goto done; |
| 235 |
> |
e2rem -= *ep++; /* update remainder */ |
| 236 |
|
} |
| 237 |
+ |
done: |
| 238 |
|
free(earr); |
| 239 |
|
} |
| 240 |
|
|
| 241 |
|
|
| 242 |
< |
/* Compute vertex flags, indicating farthest in each direction */ |
| 243 |
< |
static uby8 * |
| 244 |
< |
vertex_flags(AMBHEMI *hp) |
| 242 |
> |
static AMBHEMI * |
| 243 |
> |
samp_hemi( /* sample indirect hemisphere */ |
| 244 |
> |
COLOR rcol, |
| 245 |
> |
RAY *r, |
| 246 |
> |
double wt |
| 247 |
> |
) |
| 248 |
|
{ |
| 249 |
< |
uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8)); |
| 250 |
< |
uby8 *vf; |
| 251 |
< |
AMBSAMP *ap; |
| 252 |
< |
int i, j; |
| 253 |
< |
|
| 254 |
< |
if (vflags == NULL) |
| 255 |
< |
error(SYSTEM, "out of memory in vertex_flags()"); |
| 256 |
< |
vf = vflags; |
| 257 |
< |
ap = hp->sa; /* compute farthest along first row */ |
| 258 |
< |
for (j = 0; j < hp->ns-1; j++, vf++, ap++) |
| 259 |
< |
if (ap[0].d <= ap[1].d) |
| 260 |
< |
vf[0] |= 1<<VDB_X; |
| 261 |
< |
else |
| 262 |
< |
vf[1] |= 1<<VDB_x; |
| 263 |
< |
++vf; ++ap; |
| 264 |
< |
/* flag subsequent rows */ |
| 265 |
< |
for (i = 1; i < hp->ns; i++) { |
| 266 |
< |
for (j = 0; j < hp->ns-1; j++, vf++, ap++) { |
| 267 |
< |
if (ap[0].d <= ap[-hp->ns].d) /* row before */ |
| 268 |
< |
vf[0] |= 1<<VDB_y; |
| 269 |
< |
else |
| 270 |
< |
vf[-hp->ns] |= 1<<VDB_Y; |
| 271 |
< |
if (ap[0].d <= ap[1-hp->ns].d) /* diagonal we care about */ |
| 272 |
< |
vf[0] |= 1<<VDB_Xy; |
| 273 |
< |
else |
| 274 |
< |
vf[1-hp->ns] |= 1<<VDB_xY; |
| 275 |
< |
if (ap[0].d <= ap[1].d) /* column after */ |
| 276 |
< |
vf[0] |= 1<<VDB_X; |
| 277 |
< |
else |
| 278 |
< |
vf[1] |= 1<<VDB_x; |
| 279 |
< |
} |
| 280 |
< |
if (ap[0].d <= ap[-hp->ns].d) /* final column edge */ |
| 281 |
< |
vf[0] |= 1<<VDB_y; |
| 282 |
< |
else |
| 283 |
< |
vf[-hp->ns] |= 1<<VDB_Y; |
| 284 |
< |
++vf; ++ap; |
| 249 |
> |
AMBHEMI *hp; |
| 250 |
> |
double d; |
| 251 |
> |
int n, i, j; |
| 252 |
> |
/* insignificance check */ |
| 253 |
> |
if (bright(rcol) <= FTINY) |
| 254 |
> |
return(NULL); |
| 255 |
> |
/* set number of divisions */ |
| 256 |
> |
if (ambacc <= FTINY && |
| 257 |
> |
wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight))) |
| 258 |
> |
wt = d; /* avoid ray termination */ |
| 259 |
> |
n = sqrt(ambdiv * wt) + 0.5; |
| 260 |
> |
i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ |
| 261 |
> |
if (n < i) |
| 262 |
> |
n = i; |
| 263 |
> |
/* allocate sampling array */ |
| 264 |
> |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
| 265 |
> |
if (hp == NULL) |
| 266 |
> |
error(SYSTEM, "out of memory in samp_hemi"); |
| 267 |
> |
hp->rp = r; |
| 268 |
> |
hp->ns = n; |
| 269 |
> |
hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0; |
| 270 |
> |
memset(hp->sa, 0, sizeof(AMBSAMP)*n*n); |
| 271 |
> |
hp->sampOK = 0; |
| 272 |
> |
/* assign coefficient */ |
| 273 |
> |
copycolor(hp->acoef, rcol); |
| 274 |
> |
d = 1.0/(n*n); |
| 275 |
> |
scalecolor(hp->acoef, d); |
| 276 |
> |
/* make tangent plane axes */ |
| 277 |
> |
if (!getperpendicular(hp->ux, r->ron, 1)) |
| 278 |
> |
error(CONSISTENCY, "bad ray direction in samp_hemi"); |
| 279 |
> |
VCROSS(hp->uy, r->ron, hp->ux); |
| 280 |
> |
/* sample divisions */ |
| 281 |
> |
for (i = hp->ns; i--; ) |
| 282 |
> |
for (j = hp->ns; j--; ) |
| 283 |
> |
hp->sampOK += ambsample(hp, i, j, 0); |
| 284 |
> |
copycolor(rcol, hp->acol); |
| 285 |
> |
if (!hp->sampOK) { /* utter failure? */ |
| 286 |
> |
free(hp); |
| 287 |
> |
return(NULL); |
| 288 |
|
} |
| 289 |
< |
return(vflags); |
| 289 |
> |
if (hp->sampOK < hp->ns*hp->ns) { |
| 290 |
> |
hp->sampOK *= -1; /* soft failure */ |
| 291 |
> |
return(hp); |
| 292 |
> |
} |
| 293 |
> |
n = ambssamp*wt + 0.5; |
| 294 |
> |
if (n > 8) { /* perform super-sampling? */ |
| 295 |
> |
ambsupersamp(hp, n); |
| 296 |
> |
copycolor(rcol, hp->acol); |
| 297 |
> |
} |
| 298 |
> |
return(hp); /* all is well */ |
| 299 |
|
} |
| 300 |
|
|
| 301 |
|
|
| 302 |
|
/* Return brightness of farthest ambient sample */ |
| 303 |
|
static double |
| 304 |
< |
back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags) |
| 304 |
> |
back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3) |
| 305 |
|
{ |
| 306 |
< |
const int v0 = ambndx(hp,i,j); |
| 307 |
< |
const int tflags = (1<<dbit1 | 1<<dbit2); |
| 308 |
< |
int v1, v2; |
| 309 |
< |
|
| 310 |
< |
if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */ |
| 311 |
< |
return(colval(hp->sa[v0].v,CIEY)); |
| 312 |
< |
v1 = adjacent_verti(hp, i, j, dbit1); |
| 313 |
< |
if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */ |
| 369 |
< |
return(colval(hp->sa[v1].v,CIEY)); |
| 370 |
< |
v2 = adjacent_verti(hp, i, j, dbit2); |
| 371 |
< |
if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */ |
| 372 |
< |
return(colval(hp->sa[v2].v,CIEY)); |
| 373 |
< |
/* else check if v1>v2 */ |
| 374 |
< |
if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2)) |
| 375 |
< |
return(colval(hp->sa[v1].v,CIEY)); |
| 376 |
< |
return(colval(hp->sa[v2].v,CIEY)); |
| 306 |
> |
if (hp->sa[n1].d <= hp->sa[n2].d) { |
| 307 |
> |
if (hp->sa[n1].d <= hp->sa[n3].d) |
| 308 |
> |
return(colval(hp->sa[n1].v,CIEY)); |
| 309 |
> |
return(colval(hp->sa[n3].v,CIEY)); |
| 310 |
> |
} |
| 311 |
> |
if (hp->sa[n2].d <= hp->sa[n3].d) |
| 312 |
> |
return(colval(hp->sa[n2].v,CIEY)); |
| 313 |
> |
return(colval(hp->sa[n3].v,CIEY)); |
| 314 |
|
} |
| 315 |
|
|
| 316 |
|
|
| 317 |
|
/* Compute vectors and coefficients for Hessian/gradient calcs */ |
| 318 |
|
static void |
| 319 |
< |
comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags) |
| 319 |
> |
comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1) |
| 320 |
|
{ |
| 321 |
< |
const int i0 = ambndx(hp,i,j); |
| 322 |
< |
double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; |
| 386 |
< |
int i1, ii; |
| 321 |
> |
double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; |
| 322 |
> |
int ii; |
| 323 |
|
|
| 324 |
< |
ftp->valid = 0; /* check if we can skip this edge */ |
| 325 |
< |
ii = adjacent_trifl[dbit]; |
| 326 |
< |
if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */ |
| 391 |
< |
return; |
| 392 |
< |
i1 = adjacent_verti(hp, i, j, dbit); |
| 393 |
< |
ii = adjacent_trifl[VDB_OPP(dbit)]; |
| 394 |
< |
if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */ |
| 395 |
< |
return; |
| 396 |
< |
/* else go ahead with calculation */ |
| 397 |
< |
VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop); |
| 398 |
< |
VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop); |
| 399 |
< |
VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p); |
| 324 |
> |
VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop); |
| 325 |
> |
VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop); |
| 326 |
> |
VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p); |
| 327 |
|
VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); |
| 328 |
|
rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); |
| 329 |
|
dot_e = DOT(ftp->e_i,ftp->e_i); |
| 337 |
|
J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; |
| 338 |
|
for (ii = 3; ii--; ) |
| 339 |
|
ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii]; |
| 413 |
– |
ftp->valid++; |
| 340 |
|
} |
| 341 |
|
|
| 342 |
|
|
| 362 |
|
double d1, d2, d3, d4; |
| 363 |
|
double I3, J3, K3; |
| 364 |
|
int i, j; |
| 439 |
– |
|
| 440 |
– |
if (!ftp->valid) { /* preemptive test */ |
| 441 |
– |
memset(hess, 0, sizeof(FVECT)*3); |
| 442 |
– |
return; |
| 443 |
– |
} |
| 365 |
|
/* compute intermediate coefficients */ |
| 366 |
|
d1 = 1.0/DOT(ftp->r_i,ftp->r_i); |
| 367 |
|
d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
| 425 |
|
double f1; |
| 426 |
|
int i; |
| 427 |
|
|
| 507 |
– |
if (!ftp->valid) { /* preemptive test */ |
| 508 |
– |
memset(grad, 0, sizeof(FVECT)); |
| 509 |
– |
return; |
| 510 |
– |
} |
| 428 |
|
f1 = 2.0*DOT(nrm, ftp->rcp); |
| 429 |
|
VCROSS(ncp, nrm, ftp->e_i); |
| 430 |
|
for (i = 3; i--; ) |
| 454 |
|
|
| 455 |
|
|
| 456 |
|
/* Compute anisotropic radii and eigenvector directions */ |
| 457 |
< |
static int |
| 457 |
> |
static void |
| 458 |
|
eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3]) |
| 459 |
|
{ |
| 460 |
|
double hess2[2][2]; |
| 476 |
|
if (i == 1) /* double-root (circle) */ |
| 477 |
|
evalue[1] = evalue[0]; |
| 478 |
|
if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | |
| 479 |
< |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) |
| 480 |
< |
error(INTERNAL, "bad eigenvalue calculation"); |
| 481 |
< |
|
| 479 |
> |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) { |
| 480 |
> |
ra[0] = ra[1] = maxarad; |
| 481 |
> |
return; |
| 482 |
> |
} |
| 483 |
|
if (evalue[0] > evalue[1]) { |
| 484 |
|
ra[0] = sqrt(sqrt(4.0/evalue[0])); |
| 485 |
|
ra[1] = sqrt(sqrt(4.0/evalue[1])); |
| 514 |
|
static char memerrmsg[] = "out of memory in ambHessian()"; |
| 515 |
|
FVECT (*hessrow)[3] = NULL; |
| 516 |
|
FVECT *gradrow = NULL; |
| 599 |
– |
uby8 *vflags; |
| 517 |
|
FVECT hessian[3]; |
| 518 |
|
FVECT gradient; |
| 519 |
|
FFTRI fftr; |
| 535 |
|
error(SYSTEM, memerrmsg); |
| 536 |
|
memset(gradient, 0, sizeof(gradient)); |
| 537 |
|
} |
| 621 |
– |
/* get vertex position flags */ |
| 622 |
– |
vflags = vertex_flags(hp); |
| 538 |
|
/* compute first row of edges */ |
| 539 |
|
for (j = 0; j < hp->ns-1; j++) { |
| 540 |
< |
comp_fftri(&fftr, hp, 0, j, VDB_X, vflags); |
| 540 |
> |
comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1)); |
| 541 |
|
if (hessrow != NULL) |
| 542 |
|
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
| 543 |
|
if (gradrow != NULL) |
| 547 |
|
for (i = 0; i < hp->ns-1; i++) { |
| 548 |
|
FVECT hesscol[3]; /* compute first vertical edge */ |
| 549 |
|
FVECT gradcol; |
| 550 |
< |
comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags); |
| 550 |
> |
comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0)); |
| 551 |
|
if (hessrow != NULL) |
| 552 |
|
comp_hessian(hesscol, &fftr, hp->rp->ron); |
| 553 |
|
if (gradrow != NULL) |
| 556 |
|
FVECT hessdia[3]; /* compute triangle contributions */ |
| 557 |
|
FVECT graddia; |
| 558 |
|
double backg; |
| 559 |
< |
backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags); |
| 559 |
> |
backg = back_ambval(hp, AI(hp,i,j), |
| 560 |
> |
AI(hp,i,j+1), AI(hp,i+1,j)); |
| 561 |
|
/* diagonal (inner) edge */ |
| 562 |
< |
comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags); |
| 562 |
> |
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j)); |
| 563 |
|
if (hessrow != NULL) { |
| 564 |
|
comp_hessian(hessdia, &fftr, hp->rp->ron); |
| 565 |
|
rev_hessian(hesscol); |
| 571 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
| 572 |
|
} |
| 573 |
|
/* initialize edge in next row */ |
| 574 |
< |
comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags); |
| 574 |
> |
comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j)); |
| 575 |
|
if (hessrow != NULL) |
| 576 |
|
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
| 577 |
|
if (gradrow != NULL) |
| 578 |
|
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
| 579 |
|
/* new column edge & paired triangle */ |
| 580 |
< |
backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags); |
| 581 |
< |
comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags); |
| 580 |
> |
backg = back_ambval(hp, AI(hp,i+1,j+1), |
| 581 |
> |
AI(hp,i+1,j), AI(hp,i,j+1)); |
| 582 |
> |
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1)); |
| 583 |
|
if (hessrow != NULL) { |
| 584 |
|
comp_hessian(hesscol, &fftr, hp->rp->ron); |
| 585 |
|
rev_hessian(hessdia); |
| 599 |
|
/* release row buffers */ |
| 600 |
|
if (hessrow != NULL) free(hessrow); |
| 601 |
|
if (gradrow != NULL) free(gradrow); |
| 685 |
– |
free(vflags); |
| 602 |
|
|
| 603 |
|
if (ra != NULL) /* extract eigenvectors & radii */ |
| 604 |
|
eigenvectors(uv, ra, hessian); |
| 639 |
|
ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1) |
| 640 |
|
{ |
| 641 |
|
const double max_d = 1.0/(minarad*ambacc + 0.001); |
| 642 |
< |
const double ang_res = 0.5*PI/(hp->ns-1); |
| 643 |
< |
const double ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY)); |
| 642 |
> |
const double ang_res = 0.5*PI/hp->ns; |
| 643 |
> |
const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01); |
| 644 |
|
double avg_d = 0; |
| 645 |
|
uint32 flgs = 0; |
| 646 |
+ |
FVECT vec; |
| 647 |
+ |
double u, v; |
| 648 |
+ |
double ang, a1; |
| 649 |
+ |
OBJREC *m; |
| 650 |
|
int i, j; |
| 651 |
< |
/* check distances above us */ |
| 651 |
> |
/* don't bother for a few samples */ |
| 652 |
> |
if (hp->ns < 8) |
| 653 |
> |
return(0); |
| 654 |
> |
/* check distances overhead */ |
| 655 |
|
for (i = hp->ns*3/4; i-- > hp->ns>>2; ) |
| 656 |
|
for (j = hp->ns*3/4; j-- > hp->ns>>2; ) |
| 657 |
|
avg_d += ambsam(hp,i,j).d; |
| 658 |
|
avg_d *= 4.0/(hp->ns*hp->ns); |
| 659 |
< |
if (avg_d >= max_d) /* too close to corral? */ |
| 659 |
> |
if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */ |
| 660 |
|
return(0); |
| 661 |
+ |
if (avg_d >= max_d) /* insurance */ |
| 662 |
+ |
return(0); |
| 663 |
|
/* else circle around perimeter */ |
| 664 |
|
for (i = 0; i < hp->ns; i++) |
| 665 |
|
for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) { |
| 666 |
|
AMBSAMP *ap = &ambsam(hp,i,j); |
| 742 |
– |
FVECT vec; |
| 743 |
– |
double u, v; |
| 744 |
– |
double ang, a1; |
| 745 |
– |
int abp; |
| 667 |
|
if ((ap->d <= FTINY) | (ap->d >= max_d)) |
| 668 |
|
continue; /* too far or too near */ |
| 669 |
|
VSUB(vec, ap->p, hp->rp->rop); |
| 670 |
< |
u = DOT(vec, uv[0]) * ap->d; |
| 671 |
< |
v = DOT(vec, uv[1]) * ap->d; |
| 672 |
< |
if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0) |
| 670 |
> |
u = DOT(vec, uv[0]); |
| 671 |
> |
v = DOT(vec, uv[1]); |
| 672 |
> |
if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v) |
| 673 |
|
continue; /* occluder outside ellipse */ |
| 674 |
|
ang = atan2a(v, u); /* else set direction flags */ |
| 675 |
< |
for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step) |
| 675 |
> |
for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step) |
| 676 |
|
flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0))); |
| 677 |
|
} |
| 678 |
|
return(flgs); |
| 691 |
|
uint32 *crlp /* returned (optional) */ |
| 692 |
|
) |
| 693 |
|
{ |
| 694 |
< |
AMBHEMI *hp = inithemi(rcol, r, wt); |
| 774 |
< |
int cnt; |
| 694 |
> |
AMBHEMI *hp = samp_hemi(rcol, r, wt); |
| 695 |
|
FVECT my_uv[2]; |
| 696 |
< |
double d, K, acol[3]; |
| 696 |
> |
double d, K; |
| 697 |
|
AMBSAMP *ap; |
| 698 |
< |
int i, j; |
| 699 |
< |
/* check/initialize */ |
| 780 |
< |
if (hp == NULL) |
| 781 |
< |
return(0); |
| 698 |
> |
int i; |
| 699 |
> |
/* clear return values */ |
| 700 |
|
if (uv != NULL) |
| 701 |
|
memset(uv, 0, sizeof(FVECT)*2); |
| 702 |
|
if (ra != NULL) |
| 707 |
|
dg[0] = dg[1] = 0.0; |
| 708 |
|
if (crlp != NULL) |
| 709 |
|
*crlp = 0; |
| 710 |
< |
/* sample the hemisphere */ |
| 711 |
< |
acol[0] = acol[1] = acol[2] = 0.0; |
| 712 |
< |
cnt = 0; |
| 713 |
< |
for (i = hp->ns; i--; ) |
| 714 |
< |
for (j = hp->ns; j--; ) |
| 715 |
< |
if ((ap = ambsample(hp, i, j)) != NULL) { |
| 716 |
< |
addcolor(acol, ap->v); |
| 799 |
< |
++cnt; |
| 800 |
< |
} |
| 801 |
< |
if (!cnt) { |
| 802 |
< |
setcolor(rcol, 0.0, 0.0, 0.0); |
| 803 |
< |
free(hp); |
| 804 |
< |
return(0); /* no valid samples */ |
| 710 |
> |
if (hp == NULL) /* sampling falure? */ |
| 711 |
> |
return(0); |
| 712 |
> |
|
| 713 |
> |
if ((ra == NULL) & (pg == NULL) & (dg == NULL) || |
| 714 |
> |
(hp->sampOK < 0) | (hp->ns < 6)) { |
| 715 |
> |
free(hp); /* Hessian not requested/possible */ |
| 716 |
> |
return(-1); /* value-only return value */ |
| 717 |
|
} |
| 718 |
< |
if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */ |
| 807 |
< |
copycolor(rcol, acol); |
| 808 |
< |
free(hp); |
| 809 |
< |
return(-1); /* return value w/o Hessian */ |
| 810 |
< |
} |
| 811 |
< |
cnt = ambssamp*wt + 0.5; /* perform super-sampling? */ |
| 812 |
< |
if (cnt > 8) |
| 813 |
< |
ambsupersamp(acol, hp, cnt); |
| 814 |
< |
copycolor(rcol, acol); /* final indirect irradiance/PI */ |
| 815 |
< |
if ((ra == NULL) & (pg == NULL) & (dg == NULL)) { |
| 816 |
< |
free(hp); |
| 817 |
< |
return(-1); /* no radius or gradient calc. */ |
| 818 |
< |
} |
| 819 |
< |
if ((d = bright(acol)) > FTINY) { /* normalize Y values */ |
| 718 |
> |
if ((d = bright(rcol)) > FTINY) { /* normalize Y values */ |
| 719 |
|
d = 0.99*(hp->ns*hp->ns)/d; |
| 720 |
|
K = 0.01; |
| 721 |
|
} else { /* or fall back on geometric Hessian */ |
| 722 |
|
K = 1.0; |
| 723 |
|
pg = NULL; |
| 724 |
|
dg = NULL; |
| 725 |
+ |
crlp = NULL; |
| 726 |
|
} |
| 727 |
|
ap = hp->sa; /* relative Y channel from here on... */ |
| 728 |
|
for (i = hp->ns*hp->ns; i--; ap++) |
| 750 |
|
if (ra[1] < minarad) |
| 751 |
|
ra[1] = minarad; |
| 752 |
|
} |
| 753 |
< |
ra[0] *= d = 1.0/sqrt(sqrt(wt)); |
| 753 |
> |
ra[0] *= d = 1.0/sqrt(wt); |
| 754 |
|
if ((ra[1] *= d) > 2.0*ra[0]) |
| 755 |
|
ra[1] = 2.0*ra[0]; |
| 756 |
|
if (ra[1] > maxarad) { |
| 758 |
|
if (ra[0] > maxarad) |
| 759 |
|
ra[0] = maxarad; |
| 760 |
|
} |
| 761 |
< |
if (crlp != NULL) /* flag encroached directions */ |
| 761 |
> |
/* flag encroached directions */ |
| 762 |
> |
if (crlp != NULL) |
| 763 |
|
*crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc); |
| 764 |
|
if (pg != NULL) { /* cap gradient if necessary */ |
| 765 |
|
d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; |