| 22 |
|
extern void SDsquare2disk(double ds[2], double seedx, double seedy); |
| 23 |
|
|
| 24 |
|
typedef struct { |
| 25 |
+ |
COLOR v; /* hemisphere sample value */ |
| 26 |
+ |
FVECT p; /* intersection point */ |
| 27 |
+ |
} AMBSAMP; /* sample value */ |
| 28 |
+ |
|
| 29 |
+ |
typedef struct { |
| 30 |
|
RAY *rp; /* originating ray sample */ |
| 31 |
|
FVECT ux, uy; /* tangent axis unit vectors */ |
| 32 |
|
int ns; /* number of samples per axis */ |
| 33 |
|
COLOR acoef; /* division contribution coefficient */ |
| 34 |
< |
struct s_ambsamp { |
| 30 |
< |
COLOR v; /* hemisphere sample value */ |
| 31 |
< |
FVECT p; /* intersection point */ |
| 32 |
< |
} sa[1]; /* sample array (extends struct) */ |
| 34 |
> |
AMBSAMP sa[1]; /* sample array (extends struct) */ |
| 35 |
|
} AMBHEMI; /* ambient sample hemisphere */ |
| 36 |
|
|
| 37 |
< |
#define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)] |
| 37 |
> |
#define ambsam(h,i,j) (h)->sa[(i)*(h)->ns + (j)] |
| 38 |
|
|
| 39 |
|
typedef struct { |
| 40 |
< |
FVECT r_i, r_i1, e_i, rI2_eJ2; |
| 41 |
< |
double nf, I1, I2; |
| 40 |
> |
FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; |
| 41 |
> |
double I1, I2; |
| 42 |
|
} FFTRI; /* vectors and coefficients for Hessian calculation */ |
| 43 |
|
|
| 44 |
|
|
| 61 |
|
if (n < i) |
| 62 |
|
n = i; |
| 63 |
|
/* allocate sampling array */ |
| 64 |
< |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + |
| 63 |
< |
sizeof(struct s_ambsamp)*(n*n - 1)); |
| 64 |
> |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
| 65 |
|
if (hp == NULL) |
| 66 |
|
return(NULL); |
| 67 |
|
hp->rp = r; |
| 71 |
|
d = 1.0/(n*n); |
| 72 |
|
scalecolor(hp->acoef, d); |
| 73 |
|
/* make tangent plane axes */ |
| 74 |
< |
hp->uy[0] = 0.1 - 0.2*frandom(); |
| 75 |
< |
hp->uy[1] = 0.1 - 0.2*frandom(); |
| 76 |
< |
hp->uy[2] = 0.1 - 0.2*frandom(); |
| 77 |
< |
for (i = 0; i < 3; i++) |
| 78 |
< |
if (r->ron[i] < 0.6 && r->ron[i] > -0.6) |
| 74 |
> |
hp->uy[0] = 0.5 - frandom(); |
| 75 |
> |
hp->uy[1] = 0.5 - frandom(); |
| 76 |
> |
hp->uy[2] = 0.5 - frandom(); |
| 77 |
> |
for (i = 3; i--; ) |
| 78 |
> |
if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6)) |
| 79 |
|
break; |
| 80 |
< |
if (i >= 3) |
| 81 |
< |
error(CONSISTENCY, "bad ray direction in inithemi()"); |
| 80 |
> |
if (i < 0) |
| 81 |
> |
error(CONSISTENCY, "bad ray direction in inithemi"); |
| 82 |
|
hp->uy[i] = 1.0; |
| 83 |
|
VCROSS(hp->ux, hp->uy, r->ron); |
| 84 |
|
normalize(hp->ux); |
| 88 |
|
} |
| 89 |
|
|
| 90 |
|
|
| 91 |
< |
static struct s_ambsamp * |
| 92 |
< |
ambsample( /* sample an ambient direction */ |
| 93 |
< |
AMBHEMI *hp, |
| 93 |
< |
int i, |
| 94 |
< |
int j |
| 95 |
< |
) |
| 91 |
> |
/* Sample ambient division and apply weighting coefficient */ |
| 92 |
> |
static int |
| 93 |
> |
getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n) |
| 94 |
|
{ |
| 95 |
< |
struct s_ambsamp *ap = &ambsamp(hp,i,j); |
| 96 |
< |
RAY ar; |
| 99 |
< |
double spt[2], zd; |
| 100 |
< |
int ii; |
| 95 |
> |
int hlist[3], ii; |
| 96 |
> |
double spt[2], zd; |
| 97 |
|
/* ambient coefficient for weight */ |
| 98 |
|
if (ambacc > FTINY) |
| 99 |
< |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
| 99 |
> |
setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL); |
| 100 |
|
else |
| 101 |
< |
copycolor(ar.rcoef, hp->acoef); |
| 102 |
< |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) |
| 103 |
< |
goto badsample; |
| 101 |
> |
copycolor(arp->rcoef, hp->acoef); |
| 102 |
> |
if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0) |
| 103 |
> |
return(0); |
| 104 |
|
if (ambacc > FTINY) { |
| 105 |
< |
multcolor(ar.rcoef, hp->acoef); |
| 106 |
< |
scalecolor(ar.rcoef, 1./AVGREFL); |
| 105 |
> |
multcolor(arp->rcoef, hp->acoef); |
| 106 |
> |
scalecolor(arp->rcoef, 1./AVGREFL); |
| 107 |
|
} |
| 108 |
< |
/* generate hemispherical sample */ |
| 109 |
< |
SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns, |
| 110 |
< |
(j+.1+.8*frandom())/hp->ns ); |
| 108 |
> |
hlist[0] = hp->rp->rno; |
| 109 |
> |
hlist[1] = i; |
| 110 |
> |
hlist[2] = j; |
| 111 |
> |
multisamp(spt, 2, urand(ilhash(hlist,3)+n)); |
| 112 |
> |
if (!n) { /* avoid border samples for n==0 */ |
| 113 |
> |
if ((spt[0] < 0.1) | (spt[0] > 0.9)) |
| 114 |
> |
spt[0] = 0.1 + 0.8*frandom(); |
| 115 |
> |
if ((spt[1] < 0.1) | (spt[1] > 0.9)) |
| 116 |
> |
spt[1] = 0.1 + 0.8*frandom(); |
| 117 |
> |
} |
| 118 |
> |
SDsquare2disk(spt, (i+spt[0])/hp->ns, (j+spt[1])/hp->ns); |
| 119 |
|
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
| 120 |
|
for (ii = 3; ii--; ) |
| 121 |
< |
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
| 121 |
> |
arp->rdir[ii] = spt[0]*hp->ux[ii] + |
| 122 |
|
spt[1]*hp->uy[ii] + |
| 123 |
|
zd*hp->rp->ron[ii]; |
| 124 |
< |
checknorm(ar.rdir); |
| 124 |
> |
checknorm(arp->rdir); |
| 125 |
|
dimlist[ndims++] = i*hp->ns + j + 90171; |
| 126 |
< |
rayvalue(&ar); /* evaluate ray */ |
| 127 |
< |
ndims--; |
| 128 |
< |
if (ar.rt > 20.0*maxarad) /* limit vertex distance */ |
| 129 |
< |
ar.rt = 20.0*maxarad; |
| 126 |
> |
rayvalue(arp); /* evaluate ray */ |
| 127 |
> |
ndims--; /* apply coefficient */ |
| 128 |
> |
multcolor(arp->rcol, arp->rcoef); |
| 129 |
> |
return(1); |
| 130 |
> |
} |
| 131 |
> |
|
| 132 |
> |
|
| 133 |
> |
static AMBSAMP * |
| 134 |
> |
ambsample( /* initial ambient division sample */ |
| 135 |
> |
AMBHEMI *hp, |
| 136 |
> |
int i, |
| 137 |
> |
int j |
| 138 |
> |
) |
| 139 |
> |
{ |
| 140 |
> |
AMBSAMP *ap = &ambsam(hp,i,j); |
| 141 |
> |
RAY ar; |
| 142 |
> |
/* generate hemispherical sample */ |
| 143 |
> |
if (!getambsamp(&ar, hp, i, j, 0)) |
| 144 |
> |
goto badsample; |
| 145 |
> |
/* limit vertex distance */ |
| 146 |
> |
if (ar.rt > 10.0*thescene.cusize) |
| 147 |
> |
ar.rt = 10.0*thescene.cusize; |
| 148 |
|
else if (ar.rt <= FTINY) /* should never happen! */ |
| 149 |
|
goto badsample; |
| 150 |
|
VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); |
| 129 |
– |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
| 151 |
|
copycolor(ap->v, ar.rcol); |
| 152 |
|
return(ap); |
| 153 |
|
badsample: |
| 157 |
|
} |
| 158 |
|
|
| 159 |
|
|
| 160 |
+ |
/* Estimate errors based on ambient division differences */ |
| 161 |
+ |
static float * |
| 162 |
+ |
getambdiffs(AMBHEMI *hp) |
| 163 |
+ |
{ |
| 164 |
+ |
float *earr = calloc(hp->ns*hp->ns, sizeof(float)); |
| 165 |
+ |
float *ep; |
| 166 |
+ |
AMBSAMP *ap; |
| 167 |
+ |
double b, d2; |
| 168 |
+ |
int i, j; |
| 169 |
+ |
|
| 170 |
+ |
if (earr == NULL) /* out of memory? */ |
| 171 |
+ |
return(NULL); |
| 172 |
+ |
/* compute squared neighbor diffs */ |
| 173 |
+ |
for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) |
| 174 |
+ |
for (j = 0; j < hp->ns; j++, ap++, ep++) { |
| 175 |
+ |
b = bright(ap[0].v); |
| 176 |
+ |
if (i) { /* from above */ |
| 177 |
+ |
d2 = b - bright(ap[-hp->ns].v); |
| 178 |
+ |
d2 *= d2; |
| 179 |
+ |
ep[0] += d2; |
| 180 |
+ |
ep[-hp->ns] += d2; |
| 181 |
+ |
} |
| 182 |
+ |
if (j) { /* from behind */ |
| 183 |
+ |
d2 = b - bright(ap[-1].v); |
| 184 |
+ |
d2 *= d2; |
| 185 |
+ |
ep[0] += d2; |
| 186 |
+ |
ep[-1] += d2; |
| 187 |
+ |
} |
| 188 |
+ |
} |
| 189 |
+ |
/* correct for number of neighbors */ |
| 190 |
+ |
earr[0] *= 2.f; |
| 191 |
+ |
earr[hp->ns-1] *= 2.f; |
| 192 |
+ |
earr[(hp->ns-1)*hp->ns] *= 2.f; |
| 193 |
+ |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f; |
| 194 |
+ |
for (i = 1; i < hp->ns-1; i++) { |
| 195 |
+ |
earr[i*hp->ns] *= 4./3.; |
| 196 |
+ |
earr[i*hp->ns + hp->ns-1] *= 4./3.; |
| 197 |
+ |
} |
| 198 |
+ |
for (j = 1; j < hp->ns-1; j++) { |
| 199 |
+ |
earr[j] *= 4./3.; |
| 200 |
+ |
earr[(hp->ns-1)*hp->ns + j] *= 4./3.; |
| 201 |
+ |
} |
| 202 |
+ |
return(earr); |
| 203 |
+ |
} |
| 204 |
+ |
|
| 205 |
+ |
|
| 206 |
+ |
/* Perform super-sampling on hemisphere (introduces bias) */ |
| 207 |
+ |
static void |
| 208 |
+ |
ambsupersamp(double acol[3], AMBHEMI *hp, int cnt) |
| 209 |
+ |
{ |
| 210 |
+ |
float *earr = getambdiffs(hp); |
| 211 |
+ |
double e2sum = 0; |
| 212 |
+ |
AMBSAMP *ap; |
| 213 |
+ |
RAY ar; |
| 214 |
+ |
COLOR asum; |
| 215 |
+ |
float *ep; |
| 216 |
+ |
int i, j, n; |
| 217 |
+ |
|
| 218 |
+ |
if (earr == NULL) /* just skip calc. if no memory */ |
| 219 |
+ |
return; |
| 220 |
+ |
/* add up estimated variances */ |
| 221 |
+ |
for (ep = earr + hp->ns*hp->ns; ep-- > earr; ) |
| 222 |
+ |
e2sum += *ep; |
| 223 |
+ |
ep = earr; /* perform super-sampling */ |
| 224 |
+ |
for (ap = hp->sa, i = 0; i < hp->ns; i++) |
| 225 |
+ |
for (j = 0; j < hp->ns; j++, ap++) { |
| 226 |
+ |
int nss = *ep/e2sum*cnt + frandom(); |
| 227 |
+ |
setcolor(asum, 0., 0., 0.); |
| 228 |
+ |
for (n = 1; n <= nss; n++) { |
| 229 |
+ |
if (!getambsamp(&ar, hp, i, j, n)) { |
| 230 |
+ |
nss = n-1; |
| 231 |
+ |
break; |
| 232 |
+ |
} |
| 233 |
+ |
addcolor(asum, ar.rcol); |
| 234 |
+ |
} |
| 235 |
+ |
if (nss) { /* update returned ambient value */ |
| 236 |
+ |
const double ssf = 1./(nss + 1); |
| 237 |
+ |
for (n = 3; n--; ) |
| 238 |
+ |
acol[n] += ssf*colval(asum,n) + |
| 239 |
+ |
(ssf - 1.)*colval(ap->v,n); |
| 240 |
+ |
} |
| 241 |
+ |
e2sum -= *ep++; /* update remainders */ |
| 242 |
+ |
cnt -= nss; |
| 243 |
+ |
} |
| 244 |
+ |
free(earr); |
| 245 |
+ |
} |
| 246 |
+ |
|
| 247 |
+ |
|
| 248 |
|
/* Compute vectors and coefficients for Hessian/gradient calcs */ |
| 249 |
|
static void |
| 250 |
|
comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop) |
| 251 |
|
{ |
| 252 |
< |
FVECT vcp; |
| 144 |
< |
double dot_e, dot_er, rdot_r, rdot_r1, J2; |
| 252 |
> |
double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; |
| 253 |
|
int i; |
| 254 |
|
|
| 255 |
|
VSUB(ftp->r_i, ap0, rop); |
| 256 |
|
VSUB(ftp->r_i1, ap1, rop); |
| 257 |
|
VSUB(ftp->e_i, ap1, ap0); |
| 258 |
< |
VCROSS(vcp, ftp->e_i, ftp->r_i); |
| 259 |
< |
ftp->nf = 1.0/DOT(vcp,vcp); |
| 258 |
> |
VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); |
| 259 |
> |
rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); |
| 260 |
|
dot_e = DOT(ftp->e_i,ftp->e_i); |
| 261 |
|
dot_er = DOT(ftp->e_i, ftp->r_i); |
| 262 |
|
rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i); |
| 263 |
|
rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
| 264 |
|
ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) * |
| 265 |
< |
sqrt( ftp->nf ); |
| 265 |
> |
sqrt( rdot_cp ); |
| 266 |
|
ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r + |
| 267 |
< |
dot_e*ftp->I1 )*0.5*ftp->nf; |
| 267 |
> |
dot_e*ftp->I1 )*0.5*rdot_cp; |
| 268 |
|
J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; |
| 269 |
|
for (i = 3; i--; ) |
| 270 |
|
ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i]; |
| 288 |
|
static void |
| 289 |
|
comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) |
| 290 |
|
{ |
| 291 |
< |
FVECT vcp; |
| 291 |
> |
FVECT ncp; |
| 292 |
|
FVECT m1[3], m2[3], m3[3], m4[3]; |
| 293 |
|
double d1, d2, d3, d4; |
| 294 |
|
double I3, J3, K3; |
| 298 |
|
d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
| 299 |
|
d3 = 1.0/DOT(ftp->e_i,ftp->e_i); |
| 300 |
|
d4 = DOT(ftp->e_i, ftp->r_i); |
| 301 |
< |
I3 = 0.25*ftp->nf*( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + |
| 302 |
< |
3.0/d3*ftp->I2 ); |
| 301 |
> |
I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 ) |
| 302 |
> |
/ ( 4.0*DOT(ftp->rcp,ftp->rcp) ); |
| 303 |
|
J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3; |
| 304 |
|
K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3); |
| 305 |
|
/* intermediate matrices */ |
| 306 |
< |
VCROSS(vcp, nrm, ftp->e_i); |
| 307 |
< |
compose_matrix(m1, vcp, ftp->rI2_eJ2); |
| 306 |
> |
VCROSS(ncp, nrm, ftp->e_i); |
| 307 |
> |
compose_matrix(m1, ncp, ftp->rI2_eJ2); |
| 308 |
|
compose_matrix(m2, ftp->r_i, ftp->r_i); |
| 309 |
|
compose_matrix(m3, ftp->e_i, ftp->e_i); |
| 310 |
|
compose_matrix(m4, ftp->r_i, ftp->e_i); |
| 311 |
< |
VCROSS(vcp, ftp->r_i, ftp->e_i); |
| 204 |
< |
d1 = DOT(nrm, vcp); |
| 311 |
> |
d1 = DOT(nrm, ftp->rcp); |
| 312 |
|
d2 = -d1*ftp->I2; |
| 313 |
|
d1 *= 2.0; |
| 314 |
|
for (i = 3; i--; ) /* final matrix sum */ |
| 352 |
|
static void |
| 353 |
|
comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm) |
| 354 |
|
{ |
| 355 |
< |
FVECT vcp; |
| 355 |
> |
FVECT ncp; |
| 356 |
|
double f1; |
| 357 |
|
int i; |
| 358 |
|
|
| 359 |
< |
VCROSS(vcp, ftp->r_i, ftp->r_i1); |
| 360 |
< |
f1 = 2.0*DOT(nrm, vcp); |
| 254 |
< |
VCROSS(vcp, nrm, ftp->e_i); |
| 359 |
> |
f1 = 2.0*DOT(nrm, ftp->rcp); |
| 360 |
> |
VCROSS(ncp, nrm, ftp->e_i); |
| 361 |
|
for (i = 3; i--; ) |
| 362 |
< |
grad[i] = (-0.5/PI)*( ftp->I1*vcp[i] + f1*ftp->rI2_eJ2[i] ); |
| 362 |
> |
grad[i] = (-0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); |
| 363 |
|
} |
| 364 |
|
|
| 365 |
|
|
| 386 |
|
|
| 387 |
|
/* Return brightness of furthest ambient sample */ |
| 388 |
|
static COLORV |
| 389 |
< |
back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2, |
| 284 |
< |
struct s_ambsamp *ap3, FVECT orig) |
| 389 |
> |
back_ambval(AMBSAMP *ap1, AMBSAMP *ap2, AMBSAMP *ap3, FVECT orig) |
| 390 |
|
{ |
| 391 |
|
COLORV vback; |
| 392 |
|
FVECT vec; |
| 426 |
|
hess2[0][1] = DOT(uv[0], b); |
| 427 |
|
hess2[1][0] = DOT(uv[1], a); |
| 428 |
|
hess2[1][1] = DOT(uv[1], b); |
| 429 |
< |
/* compute eigenvalues */ |
| 430 |
< |
if ( quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], |
| 431 |
< |
hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 || |
| 432 |
< |
(evalue[0] = fabs(evalue[0])) <= FTINY*FTINY || |
| 433 |
< |
(evalue[1] = fabs(evalue[1])) <= FTINY*FTINY ) |
| 429 |
> |
/* compute eigenvalue(s) */ |
| 430 |
> |
i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], |
| 431 |
> |
hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]); |
| 432 |
> |
if (i == 1) /* double-root (circle) */ |
| 433 |
> |
evalue[1] = evalue[0]; |
| 434 |
> |
if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | |
| 435 |
> |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) |
| 436 |
|
error(INTERNAL, "bad eigenvalue calculation"); |
| 437 |
|
|
| 438 |
|
if (evalue[0] > evalue[1]) { |
| 492 |
|
} |
| 493 |
|
/* compute first row of edges */ |
| 494 |
|
for (j = 0; j < hp->ns-1; j++) { |
| 495 |
< |
comp_fftri(&fftr, ambsamp(hp,0,j).p, |
| 496 |
< |
ambsamp(hp,0,j+1).p, hp->rp->rop); |
| 495 |
> |
comp_fftri(&fftr, ambsam(hp,0,j).p, |
| 496 |
> |
ambsam(hp,0,j+1).p, hp->rp->rop); |
| 497 |
|
if (hessrow != NULL) |
| 498 |
|
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
| 499 |
|
if (gradrow != NULL) |
| 503 |
|
for (i = 0; i < hp->ns-1; i++) { |
| 504 |
|
FVECT hesscol[3]; /* compute first vertical edge */ |
| 505 |
|
FVECT gradcol; |
| 506 |
< |
comp_fftri(&fftr, ambsamp(hp,i,0).p, |
| 507 |
< |
ambsamp(hp,i+1,0).p, hp->rp->rop); |
| 506 |
> |
comp_fftri(&fftr, ambsam(hp,i,0).p, |
| 507 |
> |
ambsam(hp,i+1,0).p, hp->rp->rop); |
| 508 |
|
if (hessrow != NULL) |
| 509 |
|
comp_hessian(hesscol, &fftr, hp->rp->ron); |
| 510 |
|
if (gradrow != NULL) |
| 513 |
|
FVECT hessdia[3]; /* compute triangle contributions */ |
| 514 |
|
FVECT graddia; |
| 515 |
|
COLORV backg; |
| 516 |
< |
backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1), |
| 517 |
< |
&ambsamp(hp,i+1,j), hp->rp->rop); |
| 516 |
> |
backg = back_ambval(&ambsam(hp,i,j), &ambsam(hp,i,j+1), |
| 517 |
> |
&ambsam(hp,i+1,j), hp->rp->rop); |
| 518 |
|
/* diagonal (inner) edge */ |
| 519 |
< |
comp_fftri(&fftr, ambsamp(hp,i,j+1).p, |
| 520 |
< |
ambsamp(hp,i+1,j).p, hp->rp->rop); |
| 519 |
> |
comp_fftri(&fftr, ambsam(hp,i,j+1).p, |
| 520 |
> |
ambsam(hp,i+1,j).p, hp->rp->rop); |
| 521 |
|
if (hessrow != NULL) { |
| 522 |
|
comp_hessian(hessdia, &fftr, hp->rp->ron); |
| 523 |
|
rev_hessian(hesscol); |
| 524 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
| 525 |
|
} |
| 526 |
< |
if (gradient != NULL) { |
| 526 |
> |
if (gradrow != NULL) { |
| 527 |
|
comp_gradient(graddia, &fftr, hp->rp->ron); |
| 528 |
|
rev_gradient(gradcol); |
| 529 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
| 530 |
|
} |
| 531 |
|
/* initialize edge in next row */ |
| 532 |
< |
comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p, |
| 533 |
< |
ambsamp(hp,i+1,j).p, hp->rp->rop); |
| 532 |
> |
comp_fftri(&fftr, ambsam(hp,i+1,j+1).p, |
| 533 |
> |
ambsam(hp,i+1,j).p, hp->rp->rop); |
| 534 |
|
if (hessrow != NULL) |
| 535 |
|
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
| 536 |
|
if (gradrow != NULL) |
| 537 |
|
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
| 538 |
|
/* new column edge & paired triangle */ |
| 539 |
< |
backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1), |
| 540 |
< |
&ambsamp(hp,i+1,j), hp->rp->rop); |
| 541 |
< |
comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p, |
| 539 |
> |
backg = back_ambval(&ambsam(hp,i,j+1), &ambsam(hp,i+1,j+1), |
| 540 |
> |
&ambsam(hp,i+1,j), hp->rp->rop); |
| 541 |
> |
comp_fftri(&fftr, ambsam(hp,i,j+1).p, ambsam(hp,i+1,j+1).p, |
| 542 |
|
hp->rp->rop); |
| 543 |
|
if (hessrow != NULL) { |
| 544 |
|
comp_hessian(hesscol, &fftr, hp->rp->ron); |
| 573 |
|
static void |
| 574 |
|
ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) |
| 575 |
|
{ |
| 576 |
< |
struct s_ambsamp *ap; |
| 577 |
< |
double dgsum[2]; |
| 578 |
< |
int n; |
| 579 |
< |
FVECT vd; |
| 580 |
< |
double gfact; |
| 576 |
> |
AMBSAMP *ap; |
| 577 |
> |
double dgsum[2]; |
| 578 |
> |
int n; |
| 579 |
> |
FVECT vd; |
| 580 |
> |
double gfact; |
| 581 |
|
|
| 582 |
|
dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */ |
| 583 |
|
for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) { |
| 585 |
|
VSUB(vd, ap->p, hp->rp->rop); |
| 586 |
|
/* brightness over cosine factor */ |
| 587 |
|
gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); |
| 588 |
< |
/* -sine = -proj_radius/vd_length */ |
| 589 |
< |
dgsum[0] += DOT(uv[1], vd) * gfact; |
| 590 |
< |
dgsum[1] -= DOT(uv[0], vd) * gfact; |
| 588 |
> |
/* sine = proj_radius/vd_length */ |
| 589 |
> |
dgsum[0] -= DOT(uv[1], vd) * gfact; |
| 590 |
> |
dgsum[1] += DOT(uv[0], vd) * gfact; |
| 591 |
|
} |
| 592 |
|
dg[0] = dgsum[0] / (hp->ns*hp->ns); |
| 593 |
|
dg[1] = dgsum[1] / (hp->ns*hp->ns); |
| 605 |
|
float dg[2] /* returned (optional) */ |
| 606 |
|
) |
| 607 |
|
{ |
| 608 |
< |
AMBHEMI *hp = inithemi(rcol, r, wt); |
| 609 |
< |
int cnt = 0; |
| 610 |
< |
FVECT my_uv[2]; |
| 611 |
< |
double d, acol[3]; |
| 612 |
< |
struct s_ambsamp *ap; |
| 613 |
< |
int i, j; |
| 608 |
> |
AMBHEMI *hp = inithemi(rcol, r, wt); |
| 609 |
> |
int cnt = 0; |
| 610 |
> |
FVECT my_uv[2]; |
| 611 |
> |
double d, K, acol[3]; |
| 612 |
> |
AMBSAMP *ap; |
| 613 |
> |
int i, j; |
| 614 |
|
/* check/initialize */ |
| 615 |
|
if (hp == NULL) |
| 616 |
|
return(0); |
| 635 |
|
free(hp); |
| 636 |
|
return(0); /* no valid samples */ |
| 637 |
|
} |
| 638 |
+ |
if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */ |
| 639 |
+ |
copycolor(rcol, acol); |
| 640 |
+ |
free(hp); |
| 641 |
+ |
return(-1); /* return value w/o Hessian */ |
| 642 |
+ |
} |
| 643 |
+ |
cnt = ambssamp*wt + 0.5; /* perform super-sampling? */ |
| 644 |
+ |
if (cnt > 0) |
| 645 |
+ |
ambsupersamp(acol, hp, cnt); |
| 646 |
|
copycolor(rcol, acol); /* final indirect irradiance/PI */ |
| 647 |
< |
if (cnt < hp->ns*hp->ns || /* incomplete sampling? */ |
| 533 |
< |
(ra == NULL) & (pg == NULL) & (dg == NULL)) { |
| 647 |
> |
if ((ra == NULL) & (pg == NULL) & (dg == NULL)) { |
| 648 |
|
free(hp); |
| 649 |
|
return(-1); /* no radius or gradient calc. */ |
| 650 |
|
} |
| 651 |
< |
if (bright(acol) > FTINY) /* normalize Y values */ |
| 652 |
< |
d = cnt/bright(acol); |
| 653 |
< |
else |
| 651 |
> |
if (bright(acol) > FTINY) { /* normalize Y values */ |
| 652 |
> |
d = 0.99*cnt/bright(acol); |
| 653 |
> |
K = 0.01; |
| 654 |
> |
} else { /* geometric Hessian fall-back */ |
| 655 |
|
d = 0.0; |
| 656 |
+ |
K = 1.0; |
| 657 |
+ |
pg = NULL; |
| 658 |
+ |
dg = NULL; |
| 659 |
+ |
} |
| 660 |
|
ap = hp->sa; /* relative Y channel from here on... */ |
| 661 |
|
for (i = hp->ns*hp->ns; i--; ap++) |
| 662 |
< |
colval(ap->v,CIEY) = bright(ap->v)*d + 0.01; |
| 662 |
> |
colval(ap->v,CIEY) = bright(ap->v)*d + K; |
| 663 |
|
|
| 664 |
|
if (uv == NULL) /* make sure we have axis pointers */ |
| 665 |
|
uv = my_uv; |
| 670 |
|
ambdirgrad(hp, uv, dg); |
| 671 |
|
|
| 672 |
|
if (ra != NULL) { /* scale/clamp radii */ |
| 673 |
+ |
if (pg != NULL) { |
| 674 |
+ |
if (ra[0]*(d = fabs(pg[0])) > 1.0) |
| 675 |
+ |
ra[0] = 1.0/d; |
| 676 |
+ |
if (ra[1]*(d = fabs(pg[1])) > 1.0) |
| 677 |
+ |
ra[1] = 1.0/d; |
| 678 |
+ |
if (ra[0] > ra[1]) |
| 679 |
+ |
ra[0] = ra[1]; |
| 680 |
+ |
} |
| 681 |
|
if (ra[0] < minarad) { |
| 682 |
|
ra[0] = minarad; |
| 683 |
|
if (ra[1] < minarad) |
| 690 |
|
ra[1] = maxarad; |
| 691 |
|
if (ra[0] > maxarad) |
| 692 |
|
ra[0] = maxarad; |
| 693 |
+ |
} |
| 694 |
+ |
if (pg != NULL) { /* cap gradient if necessary */ |
| 695 |
+ |
d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; |
| 696 |
+ |
if (d > 1.0) { |
| 697 |
+ |
d = 1.0/sqrt(d); |
| 698 |
+ |
pg[0] *= d; |
| 699 |
+ |
pg[1] *= d; |
| 700 |
+ |
} |
| 701 |
|
} |
| 702 |
|
} |
| 703 |
|
free(hp); /* clean up and return */ |