32 |
|
} sa[1]; /* sample array (extends struct) */ |
33 |
|
} AMBHEMI; /* ambient sample hemisphere */ |
34 |
|
|
35 |
+ |
typedef struct s_ambsamp AMBSAMP; |
36 |
+ |
|
37 |
|
#define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)] |
38 |
|
|
39 |
|
typedef struct { |
61 |
|
if (n < i) |
62 |
|
n = i; |
63 |
|
/* allocate sampling array */ |
64 |
< |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + |
63 |
< |
sizeof(struct s_ambsamp)*(n*n - 1)); |
64 |
> |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
65 |
|
if (hp == NULL) |
66 |
|
return(NULL); |
67 |
|
hp->rp = r; |
71 |
|
d = 1.0/(n*n); |
72 |
|
scalecolor(hp->acoef, d); |
73 |
|
/* make tangent plane axes */ |
74 |
< |
hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; |
74 |
> |
hp->uy[0] = 0.5 - frandom(); |
75 |
> |
hp->uy[1] = 0.5 - frandom(); |
76 |
> |
hp->uy[2] = 0.5 - frandom(); |
77 |
|
for (i = 3; i--; ) |
78 |
|
if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6)) |
79 |
|
break; |
88 |
|
} |
89 |
|
|
90 |
|
|
91 |
< |
static struct s_ambsamp * |
92 |
< |
ambsample( /* sample an ambient direction */ |
93 |
< |
AMBHEMI *hp, |
91 |
< |
int i, |
92 |
< |
int j |
93 |
< |
) |
91 |
> |
/* Prepare ambient division sample */ |
92 |
> |
static int |
93 |
> |
prepambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n) |
94 |
|
{ |
95 |
< |
struct s_ambsamp *ap = &ambsamp(hp,i,j); |
96 |
< |
RAY ar; |
97 |
< |
double spt[2], zd; |
98 |
< |
int ii; |
95 |
> |
int hlist[3], ii; |
96 |
> |
double spt[2], zd; |
97 |
|
/* ambient coefficient for weight */ |
98 |
|
if (ambacc > FTINY) |
99 |
< |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
99 |
> |
setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL); |
100 |
|
else |
101 |
< |
copycolor(ar.rcoef, hp->acoef); |
102 |
< |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) |
103 |
< |
goto badsample; |
101 |
> |
copycolor(arp->rcoef, hp->acoef); |
102 |
> |
if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0) |
103 |
> |
return(0); |
104 |
|
if (ambacc > FTINY) { |
105 |
< |
multcolor(ar.rcoef, hp->acoef); |
106 |
< |
scalecolor(ar.rcoef, 1./AVGREFL); |
105 |
> |
multcolor(arp->rcoef, hp->acoef); |
106 |
> |
scalecolor(arp->rcoef, 1./AVGREFL); |
107 |
|
} |
108 |
< |
/* generate hemispherical sample */ |
109 |
< |
SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns, |
110 |
< |
(j+.1+.8*frandom())/hp->ns ); |
108 |
> |
hlist[0] = hp->rp->rno; |
109 |
> |
hlist[1] = i; |
110 |
> |
hlist[2] = j; |
111 |
> |
multisamp(spt, 2, urand(ilhash(hlist,3)+n)); |
112 |
> |
if (!n) { /* avoid border samples for n==0 */ |
113 |
> |
if ((spt[0] < 0.1) | (spt[0] > 0.9)) |
114 |
> |
spt[0] = 0.1 + 0.8*frandom(); |
115 |
> |
if ((spt[1] < 0.1) | (spt[1] > 0.9)) |
116 |
> |
spt[1] = 0.1 + 0.8*frandom(); |
117 |
> |
} |
118 |
> |
SDsquare2disk(spt, (i+spt[0])/hp->ns, (j+spt[1])/hp->ns); |
119 |
|
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
120 |
|
for (ii = 3; ii--; ) |
121 |
< |
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
121 |
> |
arp->rdir[ii] = spt[0]*hp->ux[ii] + |
122 |
|
spt[1]*hp->uy[ii] + |
123 |
|
zd*hp->rp->ron[ii]; |
124 |
< |
checknorm(ar.rdir); |
124 |
> |
checknorm(arp->rdir); |
125 |
> |
return(1); |
126 |
> |
} |
127 |
> |
|
128 |
> |
|
129 |
> |
static AMBSAMP * |
130 |
> |
ambsample( /* sample an ambient direction */ |
131 |
> |
AMBHEMI *hp, |
132 |
> |
int i, |
133 |
> |
int j |
134 |
> |
) |
135 |
> |
{ |
136 |
> |
AMBSAMP *ap = &ambsamp(hp,i,j); |
137 |
> |
RAY ar; |
138 |
> |
/* generate hemispherical sample */ |
139 |
> |
if (!prepambsamp(&ar, hp, i, j, 0)) |
140 |
> |
goto badsample; |
141 |
|
dimlist[ndims++] = i*hp->ns + j + 90171; |
142 |
|
rayvalue(&ar); /* evaluate ray */ |
143 |
|
ndims--; |
157 |
|
} |
158 |
|
|
159 |
|
|
160 |
+ |
/* Estimate errors based on ambient division differences */ |
161 |
+ |
static float * |
162 |
+ |
getambdiffs(AMBHEMI *hp) |
163 |
+ |
{ |
164 |
+ |
float *earr = calloc(hp->ns*hp->ns, sizeof(float)); |
165 |
+ |
float *ep; |
166 |
+ |
double b, d2; |
167 |
+ |
int i, j; |
168 |
+ |
|
169 |
+ |
if (earr == NULL) /* out of memory? */ |
170 |
+ |
return(NULL); |
171 |
+ |
/* compute squared neighbor diffs */ |
172 |
+ |
for (ep = earr, i = 0; i < hp->ns; i++) |
173 |
+ |
for (j = 0; j < hp->ns; j++, ep++) { |
174 |
+ |
b = bright(ambsamp(hp,i,j).v); |
175 |
+ |
if (i) { /* from above */ |
176 |
+ |
d2 = b - bright(ambsamp(hp,i-1,j).v); |
177 |
+ |
d2 *= d2; |
178 |
+ |
ep[0] += d2; |
179 |
+ |
ep[-hp->ns] += d2; |
180 |
+ |
} |
181 |
+ |
if (j) { /* from behind */ |
182 |
+ |
d2 = b - bright(ambsamp(hp,i,j-1).v); |
183 |
+ |
d2 *= d2; |
184 |
+ |
ep[0] += d2; |
185 |
+ |
ep[-1] += d2; |
186 |
+ |
} |
187 |
+ |
} |
188 |
+ |
/* correct for number of neighbors */ |
189 |
+ |
earr[0] *= 2.f; |
190 |
+ |
earr[hp->ns-1] *= 2.f; |
191 |
+ |
earr[(hp->ns-1)*hp->ns] *= 2.f; |
192 |
+ |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f; |
193 |
+ |
for (i = 1; i < hp->ns-1; i++) { |
194 |
+ |
earr[i*hp->ns] *= 4./3.; |
195 |
+ |
earr[i*hp->ns + hp->ns-1] *= 4./3.; |
196 |
+ |
} |
197 |
+ |
for (j = 1; j < hp->ns-1; j++) { |
198 |
+ |
earr[j] *= 4./3.; |
199 |
+ |
earr[(hp->ns-1)*hp->ns + j] *= 4./3.; |
200 |
+ |
} |
201 |
+ |
return(earr); |
202 |
+ |
} |
203 |
+ |
|
204 |
+ |
|
205 |
+ |
/* Perform super-sampling on hemisphere */ |
206 |
+ |
static void |
207 |
+ |
ambsupersamp(double acol[3], AMBHEMI *hp, int cnt) |
208 |
+ |
{ |
209 |
+ |
float *earr = getambdiffs(hp); |
210 |
+ |
double e2sum = 0; |
211 |
+ |
AMBSAMP *ap; |
212 |
+ |
RAY ar; |
213 |
+ |
COLOR asum; |
214 |
+ |
float *ep; |
215 |
+ |
int i, j, n; |
216 |
+ |
|
217 |
+ |
if (earr == NULL) /* just skip calc. if no memory */ |
218 |
+ |
return; |
219 |
+ |
/* add up estimated variances */ |
220 |
+ |
for (ep = earr + hp->ns*hp->ns; ep-- > earr; ) |
221 |
+ |
e2sum += *ep; |
222 |
+ |
ep = earr; /* perform super-sampling */ |
223 |
+ |
for (ap = hp->sa, i = 0; i < hp->ns; i++) |
224 |
+ |
for (j = 0; j < hp->ns; j++, ap++) { |
225 |
+ |
int nss = *ep/e2sum*cnt + frandom(); |
226 |
+ |
setcolor(asum, 0., 0., 0.); |
227 |
+ |
for (n = 1; n <= nss; n++) { |
228 |
+ |
if (!prepambsamp(&ar, hp, i, j, n)) { |
229 |
+ |
nss = n-1; |
230 |
+ |
break; |
231 |
+ |
} |
232 |
+ |
dimlist[ndims++] = i*hp->ns + j + 90171; |
233 |
+ |
rayvalue(&ar); /* evaluate super-sample */ |
234 |
+ |
ndims--; |
235 |
+ |
multcolor(ar.rcol, ar.rcoef); |
236 |
+ |
addcolor(asum, ar.rcol); |
237 |
+ |
} |
238 |
+ |
if (nss) { /* update returned ambient value */ |
239 |
+ |
const double ssf = 1./(nss + 1); |
240 |
+ |
for (n = 3; n--; ) |
241 |
+ |
acol[n] += ssf*colval(asum,n) + |
242 |
+ |
(ssf - 1.)*colval(ap->v,n); |
243 |
+ |
} |
244 |
+ |
e2sum -= *ep++; /* update remainders */ |
245 |
+ |
cnt -= nss; |
246 |
+ |
} |
247 |
+ |
free(earr); |
248 |
+ |
} |
249 |
+ |
|
250 |
+ |
|
251 |
|
/* Compute vectors and coefficients for Hessian/gradient calcs */ |
252 |
|
static void |
253 |
|
comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop) |
389 |
|
|
390 |
|
/* Return brightness of furthest ambient sample */ |
391 |
|
static COLORV |
392 |
< |
back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2, |
280 |
< |
struct s_ambsamp *ap3, FVECT orig) |
392 |
> |
back_ambval(AMBSAMP *ap1, AMBSAMP *ap2, AMBSAMP *ap3, FVECT orig) |
393 |
|
{ |
394 |
|
COLORV vback; |
395 |
|
FVECT vec; |
429 |
|
hess2[0][1] = DOT(uv[0], b); |
430 |
|
hess2[1][0] = DOT(uv[1], a); |
431 |
|
hess2[1][1] = DOT(uv[1], b); |
432 |
< |
/* compute eigenvalues */ |
433 |
< |
if ( quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], |
434 |
< |
hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 || |
435 |
< |
((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | |
432 |
> |
/* compute eigenvalue(s) */ |
433 |
> |
i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], |
434 |
> |
hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]); |
435 |
> |
if (i == 1) /* double-root (circle) */ |
436 |
> |
evalue[1] = evalue[0]; |
437 |
> |
if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | |
438 |
|
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) |
439 |
|
error(INTERNAL, "bad eigenvalue calculation"); |
440 |
|
|
526 |
|
rev_hessian(hesscol); |
527 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
528 |
|
} |
529 |
< |
if (gradient != NULL) { |
529 |
> |
if (gradrow != NULL) { |
530 |
|
comp_gradient(graddia, &fftr, hp->rp->ron); |
531 |
|
rev_gradient(gradcol); |
532 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
576 |
|
static void |
577 |
|
ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) |
578 |
|
{ |
579 |
< |
struct s_ambsamp *ap; |
580 |
< |
double dgsum[2]; |
581 |
< |
int n; |
582 |
< |
FVECT vd; |
583 |
< |
double gfact; |
579 |
> |
AMBSAMP *ap; |
580 |
> |
double dgsum[2]; |
581 |
> |
int n; |
582 |
> |
FVECT vd; |
583 |
> |
double gfact; |
584 |
|
|
585 |
|
dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */ |
586 |
|
for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) { |
588 |
|
VSUB(vd, ap->p, hp->rp->rop); |
589 |
|
/* brightness over cosine factor */ |
590 |
|
gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); |
591 |
< |
/* -sine = -proj_radius/vd_length */ |
592 |
< |
dgsum[0] += DOT(uv[1], vd) * gfact; |
593 |
< |
dgsum[1] -= DOT(uv[0], vd) * gfact; |
591 |
> |
/* sine = proj_radius/vd_length */ |
592 |
> |
dgsum[0] -= DOT(uv[1], vd) * gfact; |
593 |
> |
dgsum[1] += DOT(uv[0], vd) * gfact; |
594 |
|
} |
595 |
|
dg[0] = dgsum[0] / (hp->ns*hp->ns); |
596 |
|
dg[1] = dgsum[1] / (hp->ns*hp->ns); |
608 |
|
float dg[2] /* returned (optional) */ |
609 |
|
) |
610 |
|
{ |
611 |
< |
AMBHEMI *hp = inithemi(rcol, r, wt); |
612 |
< |
int cnt = 0; |
613 |
< |
FVECT my_uv[2]; |
614 |
< |
double d, acol[3]; |
615 |
< |
struct s_ambsamp *ap; |
616 |
< |
int i, j; |
611 |
> |
AMBHEMI *hp = inithemi(rcol, r, wt); |
612 |
> |
int cnt = 0; |
613 |
> |
FVECT my_uv[2]; |
614 |
> |
double d, K, acol[3]; |
615 |
> |
AMBSAMP *ap; |
616 |
> |
int i, j; |
617 |
|
/* check/initialize */ |
618 |
|
if (hp == NULL) |
619 |
|
return(0); |
638 |
|
free(hp); |
639 |
|
return(0); /* no valid samples */ |
640 |
|
} |
641 |
+ |
if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */ |
642 |
+ |
copycolor(rcol, acol); |
643 |
+ |
free(hp); |
644 |
+ |
return(-1); /* return value w/o Hessian */ |
645 |
+ |
} |
646 |
+ |
cnt = ambssamp*wt + 0.5; /* perform super-sampling? */ |
647 |
+ |
if (cnt > 0) |
648 |
+ |
ambsupersamp(acol, hp, cnt); |
649 |
|
copycolor(rcol, acol); /* final indirect irradiance/PI */ |
650 |
< |
if (cnt < hp->ns*hp->ns || /* incomplete sampling? */ |
529 |
< |
(ra == NULL) & (pg == NULL) & (dg == NULL)) { |
650 |
> |
if ((ra == NULL) & (pg == NULL) & (dg == NULL)) { |
651 |
|
free(hp); |
652 |
|
return(-1); /* no radius or gradient calc. */ |
653 |
|
} |
654 |
< |
if (bright(acol) > FTINY) /* normalize Y values */ |
655 |
< |
d = cnt/bright(acol); |
656 |
< |
else |
654 |
> |
if (bright(acol) > FTINY) { /* normalize Y values */ |
655 |
> |
d = 0.99*cnt/bright(acol); |
656 |
> |
K = 0.01; |
657 |
> |
} else { /* geometric Hessian fall-back */ |
658 |
|
d = 0.0; |
659 |
+ |
K = 1.0; |
660 |
+ |
pg = NULL; |
661 |
+ |
dg = NULL; |
662 |
+ |
} |
663 |
|
ap = hp->sa; /* relative Y channel from here on... */ |
664 |
|
for (i = hp->ns*hp->ns; i--; ap++) |
665 |
< |
colval(ap->v,CIEY) = bright(ap->v)*d + 0.01; |
665 |
> |
colval(ap->v,CIEY) = bright(ap->v)*d + K; |
666 |
|
|
667 |
|
if (uv == NULL) /* make sure we have axis pointers */ |
668 |
|
uv = my_uv; |