8 |
|
* for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz |
9 |
|
* from ACM SIGGRAPH Asia 2012 conference proceedings. |
10 |
|
* |
11 |
+ |
* Added book-keeping optimization to avoid calculations that would |
12 |
+ |
* cancel due to traversal both directions on edges that are adjacent |
13 |
+ |
* to same-valued triangles. This cuts about half of Hessian math. |
14 |
+ |
* |
15 |
|
* Declarations of external symbols in ambient.h |
16 |
|
*/ |
17 |
|
|
21 |
|
#include "ambient.h" |
22 |
|
#include "random.h" |
23 |
|
|
24 |
< |
#ifdef NEWAMB |
24 |
> |
#ifndef MINADIV |
25 |
> |
#define MINADIV 7 /* minimum # divisions in each dimension */ |
26 |
> |
#endif |
27 |
> |
#ifndef MINSDIST |
28 |
> |
#define MINSDIST 0.25 /* def. min. spacing = 1/4th division */ |
29 |
> |
#endif |
30 |
|
|
31 |
< |
extern void SDsquare2disk(double ds[2], double seedx, double seedy); |
31 |
> |
typedef struct { |
32 |
> |
FVECT p; /* intersection point */ |
33 |
> |
float d; /* reciprocal distance */ |
34 |
> |
SCOLOR v; /* hemisphere sample value */ |
35 |
> |
} AMBSAMP; /* sample value */ |
36 |
|
|
37 |
|
typedef struct { |
38 |
|
RAY *rp; /* originating ray sample */ |
26 |
– |
FVECT ux, uy; /* tangent axis unit vectors */ |
39 |
|
int ns; /* number of samples per axis */ |
40 |
< |
COLOR acoef; /* division contribution coefficient */ |
41 |
< |
struct s_ambsamp { |
42 |
< |
COLOR v; /* hemisphere sample value */ |
43 |
< |
FVECT p; /* intersection point */ |
44 |
< |
} sa[1]; /* sample array (extends struct) */ |
40 |
> |
int sampOK; /* acquired full sample set? */ |
41 |
> |
int atyp; /* RAMBIENT or TAMBIENT */ |
42 |
> |
SCOLOR acoef; /* division contribution coefficient */ |
43 |
> |
SCOLOR acol; /* accumulated color */ |
44 |
> |
FVECT onrm; /* oriented unperturbed surface normal */ |
45 |
> |
FVECT ux, uy; /* tangent axis unit vectors */ |
46 |
> |
AMBSAMP sa[1]; /* sample array (extends struct) */ |
47 |
|
} AMBHEMI; /* ambient sample hemisphere */ |
48 |
|
|
49 |
< |
typedef struct s_ambsamp AMBSAMP; |
49 |
> |
#define AI(h,i,j) ((i)*(h)->ns + (j)) |
50 |
> |
#define ambsam(h,i,j) (h)->sa[AI(h,i,j)] |
51 |
|
|
37 |
– |
#define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)] |
38 |
– |
|
52 |
|
typedef struct { |
53 |
|
FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; |
54 |
|
double I1, I2; |
55 |
|
} FFTRI; /* vectors and coefficients for Hessian calculation */ |
56 |
|
|
57 |
|
|
58 |
< |
static AMBHEMI * |
59 |
< |
inithemi( /* initialize sampling hemisphere */ |
60 |
< |
COLOR ac, |
61 |
< |
RAY *r, |
62 |
< |
double wt |
58 |
> |
static int |
59 |
> |
ambcollision( /* proposed direciton collides? */ |
60 |
> |
AMBHEMI *hp, |
61 |
> |
int i, |
62 |
> |
int j, |
63 |
> |
FVECT dv |
64 |
|
) |
65 |
|
{ |
66 |
< |
AMBHEMI *hp; |
67 |
< |
double d; |
68 |
< |
int n, i; |
69 |
< |
/* set number of divisions */ |
70 |
< |
if (ambacc <= FTINY && |
71 |
< |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) |
72 |
< |
wt = d; /* avoid ray termination */ |
73 |
< |
n = sqrt(ambdiv * wt) + 0.5; |
74 |
< |
i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ |
75 |
< |
if (n < i) |
76 |
< |
n = i; |
77 |
< |
/* allocate sampling array */ |
78 |
< |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
79 |
< |
if (hp == NULL) |
80 |
< |
return(NULL); |
81 |
< |
hp->rp = r; |
82 |
< |
hp->ns = n; |
83 |
< |
/* assign coefficient */ |
84 |
< |
copycolor(hp->acoef, ac); |
85 |
< |
d = 1.0/(n*n); |
86 |
< |
scalecolor(hp->acoef, d); |
87 |
< |
/* make tangent plane axes */ |
88 |
< |
hp->uy[0] = 0.5 - frandom(); |
89 |
< |
hp->uy[1] = 0.5 - frandom(); |
90 |
< |
hp->uy[2] = 0.5 - frandom(); |
91 |
< |
for (i = 3; i--; ) |
78 |
< |
if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6)) |
79 |
< |
break; |
80 |
< |
if (i < 0) |
81 |
< |
error(CONSISTENCY, "bad ray direction in inithemi"); |
82 |
< |
hp->uy[i] = 1.0; |
83 |
< |
VCROSS(hp->ux, hp->uy, r->ron); |
84 |
< |
normalize(hp->ux); |
85 |
< |
VCROSS(hp->uy, r->ron, hp->ux); |
86 |
< |
/* we're ready to sample */ |
87 |
< |
return(hp); |
66 |
> |
double cos_thresh; |
67 |
> |
int ii, jj; |
68 |
> |
|
69 |
> |
cos_thresh = (PI*MINSDIST)/(double)hp->ns; |
70 |
> |
cos_thresh = 1. - .5*cos_thresh*cos_thresh; |
71 |
> |
/* check existing neighbors */ |
72 |
> |
for (ii = i-1; ii <= i+1; ii++) { |
73 |
> |
if (ii < 0) continue; |
74 |
> |
if (ii >= hp->ns) break; |
75 |
> |
for (jj = j-1; jj <= j+1; jj++) { |
76 |
> |
AMBSAMP *ap; |
77 |
> |
FVECT avec; |
78 |
> |
double dprod; |
79 |
> |
if (jj < 0) continue; |
80 |
> |
if (jj >= hp->ns) break; |
81 |
> |
if ((ii==i) & (jj==j)) continue; |
82 |
> |
ap = &ambsam(hp,ii,jj); |
83 |
> |
if (ap->d <= .5/FHUGE) |
84 |
> |
continue; /* no one home */ |
85 |
> |
VSUB(avec, ap->p, hp->rp->rop); |
86 |
> |
dprod = DOT(avec, dv); |
87 |
> |
if (dprod >= cos_thresh*VLEN(avec)) |
88 |
> |
return(1); /* collision */ |
89 |
> |
} |
90 |
> |
} |
91 |
> |
return(0); /* nothing to worry about */ |
92 |
|
} |
93 |
|
|
94 |
|
|
95 |
< |
/* Prepare ambient division sample */ |
95 |
> |
#define XLOTSIZ 251 /* size of used car lot */ |
96 |
> |
#define CFIRST 0 /* first corner */ |
97 |
> |
#define COTHER (CFIRST+4) /* non-corner sample */ |
98 |
> |
#define CMAXTARGET (int)(XLOTSIZ*MINSDIST/(1-MINSDIST)) |
99 |
> |
#define CXCOPY(d,s) (excharr[d][0]=excharr[s][0], excharr[d][1]=excharr[s][1]) |
100 |
> |
|
101 |
|
static int |
102 |
< |
prepambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n) |
102 |
> |
psample_class(double ss[2]) /* classify patch sample */ |
103 |
|
{ |
104 |
< |
int hlist[3], ii; |
105 |
< |
double spt[2], zd; |
106 |
< |
/* ambient coefficient for weight */ |
107 |
< |
if (ambacc > FTINY) |
108 |
< |
setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL); |
109 |
< |
else |
110 |
< |
copycolor(arp->rcoef, hp->acoef); |
111 |
< |
if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0) |
112 |
< |
return(0); |
113 |
< |
if (ambacc > FTINY) { |
105 |
< |
multcolor(arp->rcoef, hp->acoef); |
106 |
< |
scalecolor(arp->rcoef, 1./AVGREFL); |
104 |
> |
if (ss[0] < MINSDIST) { |
105 |
> |
if (ss[1] < MINSDIST) |
106 |
> |
return(CFIRST); |
107 |
> |
if (ss[1] > 1.-MINSDIST) |
108 |
> |
return(CFIRST+2); |
109 |
> |
} else if (ss[0] > 1.-MINSDIST) { |
110 |
> |
if (ss[1] < MINSDIST) |
111 |
> |
return(CFIRST+1); |
112 |
> |
if (ss[1] > 1.-MINSDIST) |
113 |
> |
return(CFIRST+3); |
114 |
|
} |
115 |
< |
hlist[0] = hp->rp->rno; |
116 |
< |
hlist[1] = i; |
117 |
< |
hlist[2] = j; |
118 |
< |
multisamp(spt, 2, urand(ilhash(hlist,3)+n)); |
119 |
< |
if (!n) { /* avoid border samples for n==0 */ |
120 |
< |
if ((spt[0] < 0.1) | (spt[0] > 0.9)) |
121 |
< |
spt[0] = 0.1 + 0.8*frandom(); |
122 |
< |
if ((spt[1] < 0.1) | (spt[1] > 0.9)) |
123 |
< |
spt[1] = 0.1 + 0.8*frandom(); |
115 |
> |
return(COTHER); /* not in a corner */ |
116 |
> |
} |
117 |
> |
|
118 |
> |
static void |
119 |
> |
trade_patchsamp(double ss[2]) /* trade in problem patch position */ |
120 |
> |
{ |
121 |
> |
static float excharr[XLOTSIZ][2]; |
122 |
> |
static short gterm[COTHER+1]; |
123 |
> |
double srep[2]; |
124 |
> |
int sclass, rclass; |
125 |
> |
int x; |
126 |
> |
/* reset on corner overload */ |
127 |
> |
if (gterm[COTHER-1] >= (CMAXTARGET+XLOTSIZ)/2) |
128 |
> |
memset(gterm, 0, sizeof(gterm)); |
129 |
> |
/* (re-)initialize? */ |
130 |
> |
while (gterm[COTHER] < XLOTSIZ) { |
131 |
> |
excharr[gterm[COTHER]][0] = frandom(); |
132 |
> |
excharr[gterm[COTHER]][1] = frandom(); |
133 |
> |
++gterm[COTHER]; |
134 |
> |
} /* get trade-in candidate... */ |
135 |
> |
sclass = psample_class(ss); /* submitted corner or not? */ |
136 |
> |
switch (sclass) { |
137 |
> |
case COTHER: /* trade mid-edge with corner/any */ |
138 |
> |
x = irandom( gterm[COTHER-1] > CMAXTARGET |
139 |
> |
? gterm[COTHER-1] : XLOTSIZ ); |
140 |
> |
break; |
141 |
> |
case CFIRST: /* kick out of first corner */ |
142 |
> |
x = gterm[CFIRST] + irandom(XLOTSIZ - gterm[CFIRST]); |
143 |
> |
break; |
144 |
> |
default: /* kick out of 2nd-4th corner */ |
145 |
> |
x = irandom(XLOTSIZ - (gterm[sclass] - gterm[sclass-1])); |
146 |
> |
x += (x >= gterm[sclass-1])*(gterm[sclass] - gterm[sclass-1]); |
147 |
> |
break; |
148 |
|
} |
149 |
< |
SDsquare2disk(spt, (i+spt[0])/hp->ns, (j+spt[1])/hp->ns); |
150 |
< |
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
151 |
< |
for (ii = 3; ii--; ) |
152 |
< |
arp->rdir[ii] = spt[0]*hp->ux[ii] + |
153 |
< |
spt[1]*hp->uy[ii] + |
154 |
< |
zd*hp->rp->ron[ii]; |
155 |
< |
checknorm(arp->rdir); |
156 |
< |
return(1); |
149 |
> |
srep[0] = excharr[x][0]; /* save selected replacement (result) */ |
150 |
> |
srep[1] = excharr[x][1]; |
151 |
> |
/* identify replacement class */ |
152 |
> |
for (rclass = CFIRST; rclass < COTHER; rclass++) |
153 |
> |
if (x < gterm[rclass]) |
154 |
> |
break; /* repark to keep classes grouped */ |
155 |
> |
while (rclass > sclass) { /* replacement group after submitted? */ |
156 |
> |
CXCOPY(x, gterm[rclass-1]); |
157 |
> |
x = gterm[--rclass]++; |
158 |
> |
} |
159 |
> |
while (rclass < sclass) { /* replacement group before submitted? */ |
160 |
> |
--gterm[rclass]; |
161 |
> |
CXCOPY(x, gterm[rclass]); |
162 |
> |
x = gterm[rclass++]; |
163 |
> |
} |
164 |
> |
excharr[x][0] = ss[0]; /* complete the trade-in */ |
165 |
> |
excharr[x][1] = ss[1]; |
166 |
> |
ss[0] = srep[0]; |
167 |
> |
ss[1] = srep[1]; |
168 |
|
} |
169 |
|
|
170 |
+ |
#undef CXCOPY |
171 |
+ |
#undef XLOTSIZ |
172 |
+ |
#undef COTHER |
173 |
+ |
#undef CFIRST |
174 |
|
|
175 |
< |
static AMBSAMP * |
176 |
< |
ambsample( /* sample an ambient direction */ |
175 |
> |
|
176 |
> |
static int |
177 |
> |
ambsample( /* initial ambient division sample */ |
178 |
|
AMBHEMI *hp, |
179 |
|
int i, |
180 |
< |
int j |
180 |
> |
int j, |
181 |
> |
int n |
182 |
|
) |
183 |
|
{ |
184 |
< |
AMBSAMP *ap = &ambsamp(hp,i,j); |
184 |
> |
AMBSAMP *ap = &ambsam(hp,i,j); |
185 |
|
RAY ar; |
186 |
+ |
int hlist[3], ii; |
187 |
+ |
double ss[2]; |
188 |
+ |
RREAL spt[2]; |
189 |
+ |
double zd; |
190 |
|
/* generate hemispherical sample */ |
191 |
< |
if (!prepambsamp(&ar, hp, i, j, 0)) |
192 |
< |
goto badsample; |
193 |
< |
dimlist[ndims++] = i*hp->ns + j + 90171; |
191 |
> |
/* ambient coefficient for weight */ |
192 |
> |
if (ambacc > FTINY) |
193 |
> |
setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
194 |
> |
else |
195 |
> |
copyscolor(ar.rcoef, hp->acoef); |
196 |
> |
if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0) |
197 |
> |
return(0); |
198 |
> |
if (ambacc > FTINY) { |
199 |
> |
smultscolor(ar.rcoef, hp->acoef); |
200 |
> |
scalescolor(ar.rcoef, 1./AVGREFL); |
201 |
> |
} |
202 |
> |
hlist[0] = hp->rp->rno; |
203 |
> |
hlist[1] = AI(hp,i,j); |
204 |
> |
hlist[2] = samplendx; |
205 |
> |
multisamp(ss, 2, urand(ilhash(hlist,3)+n)); |
206 |
> |
patch_redo: |
207 |
> |
square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns); |
208 |
> |
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
209 |
> |
for (ii = 3; ii--; ) |
210 |
> |
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
211 |
> |
spt[1]*hp->uy[ii] + |
212 |
> |
zd*hp->onrm[ii]; |
213 |
> |
checknorm(ar.rdir); |
214 |
> |
/* avoid coincident samples */ |
215 |
> |
if (!n & (hp->ns >= 4) && ambcollision(hp, i, j, ar.rdir)) { |
216 |
> |
trade_patchsamp(ss); |
217 |
> |
goto patch_redo; |
218 |
> |
} |
219 |
> |
dimlist[ndims++] = AI(hp,i,j) + 90171; |
220 |
|
rayvalue(&ar); /* evaluate ray */ |
221 |
|
ndims--; |
222 |
< |
/* limit vertex distance */ |
223 |
< |
if (ar.rt > 10.0*thescene.cusize) |
224 |
< |
ar.rt = 10.0*thescene.cusize; |
225 |
< |
else if (ar.rt <= FTINY) /* should never happen! */ |
226 |
< |
goto badsample; |
227 |
< |
VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); |
228 |
< |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
229 |
< |
copycolor(ap->v, ar.rcol); |
230 |
< |
return(ap); |
231 |
< |
badsample: |
232 |
< |
setcolor(ap->v, 0., 0., 0.); |
233 |
< |
VCOPY(ap->p, hp->rp->rop); |
234 |
< |
return(NULL); |
222 |
> |
zd = raydistance(&ar); |
223 |
> |
if (zd <= FTINY) |
224 |
> |
return(0); /* should never happen */ |
225 |
> |
smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
226 |
> |
if (zd*ap->d < 1.0) /* new/closer distance? */ |
227 |
> |
ap->d = 1.0/zd; |
228 |
> |
if (!n) { /* record first vertex & value */ |
229 |
> |
if (zd > 10.0*thescene.cusize + 1000.) |
230 |
> |
zd = 10.0*thescene.cusize + 1000.; |
231 |
> |
VSUM(ap->p, ar.rorg, ar.rdir, zd); |
232 |
> |
copyscolor(ap->v, ar.rcol); |
233 |
> |
} else { /* else update recorded value */ |
234 |
> |
sopscolor(hp->acol, -=, ap->v); |
235 |
> |
zd = 1.0/(double)(n+1); |
236 |
> |
scalescolor(ar.rcol, zd); |
237 |
> |
zd *= (double)n; |
238 |
> |
scalescolor(ap->v, zd); |
239 |
> |
saddscolor(ap->v, ar.rcol); |
240 |
> |
} |
241 |
> |
saddscolor(hp->acol, ap->v); /* add to our sum */ |
242 |
> |
return(1); |
243 |
|
} |
244 |
|
|
245 |
|
|
246 |
< |
/* Estimate errors based on ambient division differences */ |
246 |
> |
/* Estimate variance based on ambient division differences */ |
247 |
|
static float * |
248 |
|
getambdiffs(AMBHEMI *hp) |
249 |
|
{ |
250 |
< |
float *earr = calloc(hp->ns*hp->ns, sizeof(float)); |
250 |
> |
const double normf = 1./(pbright(hp->acoef) + FTINY); |
251 |
> |
float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float)); |
252 |
|
float *ep; |
253 |
< |
double b, d2; |
253 |
> |
AMBSAMP *ap; |
254 |
> |
double b, b1, d2; |
255 |
|
int i, j; |
256 |
|
|
257 |
|
if (earr == NULL) /* out of memory? */ |
258 |
|
return(NULL); |
259 |
< |
/* compute squared neighbor diffs */ |
260 |
< |
for (ep = earr, i = 0; i < hp->ns; i++) |
261 |
< |
for (j = 0; j < hp->ns; j++, ep++) { |
262 |
< |
b = bright(ambsamp(hp,i,j).v); |
259 |
> |
/* sum squared neighbor diffs */ |
260 |
> |
ap = hp->sa; |
261 |
> |
ep = earr + hp->ns*hp->ns; /* original estimates to scratch */ |
262 |
> |
for (i = 0; i < hp->ns; i++) |
263 |
> |
for (j = 0; j < hp->ns; j++, ap++, ep++) { |
264 |
> |
b = pbright(ap[0].v); |
265 |
|
if (i) { /* from above */ |
266 |
< |
d2 = b - bright(ambsamp(hp,i-1,j).v); |
267 |
< |
d2 *= d2; |
266 |
> |
b1 = pbright(ap[-hp->ns].v); |
267 |
> |
d2 = b - b1; |
268 |
> |
d2 *= d2*normf/(b + b1 + FTINY); |
269 |
|
ep[0] += d2; |
270 |
|
ep[-hp->ns] += d2; |
271 |
|
} |
272 |
< |
if (j) { /* from behind */ |
273 |
< |
d2 = b - bright(ambsamp(hp,i,j-1).v); |
274 |
< |
d2 *= d2; |
275 |
< |
ep[0] += d2; |
276 |
< |
ep[-1] += d2; |
277 |
< |
} |
272 |
> |
if (!j) continue; |
273 |
> |
/* from behind */ |
274 |
> |
b1 = pbright(ap[-1].v); |
275 |
> |
d2 = b - b1; |
276 |
> |
d2 *= d2*normf/(b + b1 + FTINY); |
277 |
> |
ep[0] += d2; |
278 |
> |
ep[-1] += d2; |
279 |
> |
if (!i) continue; |
280 |
> |
/* diagonal */ |
281 |
> |
b1 = pbright(ap[-hp->ns-1].v); |
282 |
> |
d2 = b - b1; |
283 |
> |
d2 *= d2*normf/(b + b1 + FTINY); |
284 |
> |
ep[0] += d2; |
285 |
> |
ep[-hp->ns-1] += d2; |
286 |
|
} |
287 |
|
/* correct for number of neighbors */ |
288 |
< |
earr[0] *= 2.f; |
289 |
< |
earr[hp->ns-1] *= 2.f; |
290 |
< |
earr[(hp->ns-1)*hp->ns] *= 2.f; |
291 |
< |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f; |
288 |
> |
ep = earr + hp->ns*hp->ns; |
289 |
> |
ep[0] *= 6./3.; |
290 |
> |
ep[hp->ns-1] *= 6./3.; |
291 |
> |
ep[(hp->ns-1)*hp->ns] *= 6./3.; |
292 |
> |
ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.; |
293 |
|
for (i = 1; i < hp->ns-1; i++) { |
294 |
< |
earr[i*hp->ns] *= 4./3.; |
295 |
< |
earr[i*hp->ns + hp->ns-1] *= 4./3.; |
294 |
> |
ep[i*hp->ns] *= 6./5.; |
295 |
> |
ep[i*hp->ns + hp->ns-1] *= 6./5.; |
296 |
|
} |
297 |
|
for (j = 1; j < hp->ns-1; j++) { |
298 |
< |
earr[j] *= 4./3.; |
299 |
< |
earr[(hp->ns-1)*hp->ns + j] *= 4./3.; |
298 |
> |
ep[j] *= 6./5.; |
299 |
> |
ep[(hp->ns-1)*hp->ns + j] *= 6./5.; |
300 |
|
} |
301 |
+ |
/* blur final map to reduce bias */ |
302 |
+ |
for (i = 0; i < hp->ns-1; i++) { |
303 |
+ |
float *ep2; |
304 |
+ |
ep = earr + i*hp->ns; |
305 |
+ |
ep2 = ep + hp->ns*hp->ns; |
306 |
+ |
for (j = 0; j < hp->ns-1; j++, ep++, ep2++) { |
307 |
+ |
ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]); |
308 |
+ |
ep[1] += .125*ep2[0]; |
309 |
+ |
ep[hp->ns] += .125*ep2[0]; |
310 |
+ |
} |
311 |
+ |
} |
312 |
|
return(earr); |
313 |
|
} |
314 |
|
|
315 |
|
|
316 |
< |
/* Perform super-sampling on hemisphere */ |
316 |
> |
/* Perform super-sampling on hemisphere (introduces bias) */ |
317 |
|
static void |
318 |
< |
ambsupersamp(double acol[3], AMBHEMI *hp, int cnt) |
318 |
> |
ambsupersamp(AMBHEMI *hp, int cnt) |
319 |
|
{ |
320 |
|
float *earr = getambdiffs(hp); |
321 |
< |
double e2sum = 0; |
211 |
< |
AMBSAMP *ap; |
212 |
< |
RAY ar; |
213 |
< |
COLOR asum; |
321 |
> |
double e2rem = 0; |
322 |
|
float *ep; |
323 |
< |
int i, j, n; |
323 |
> |
int i, j, n, nss; |
324 |
|
|
325 |
|
if (earr == NULL) /* just skip calc. if no memory */ |
326 |
|
return; |
327 |
< |
/* add up estimated variances */ |
328 |
< |
for (ep = earr + hp->ns*hp->ns; ep-- > earr; ) |
329 |
< |
e2sum += *ep; |
327 |
> |
/* accumulate estimated variances */ |
328 |
> |
for (ep = earr + hp->ns*hp->ns; ep > earr; ) |
329 |
> |
e2rem += *--ep; |
330 |
|
ep = earr; /* perform super-sampling */ |
331 |
< |
for (ap = hp->sa, i = 0; i < hp->ns; i++) |
332 |
< |
for (j = 0; j < hp->ns; j++, ap++) { |
333 |
< |
int nss = *ep/e2sum*cnt + frandom(); |
334 |
< |
setcolor(asum, 0., 0., 0.); |
335 |
< |
for (n = 1; n <= nss; n++) { |
336 |
< |
if (!prepambsamp(&ar, hp, i, j, n)) { |
337 |
< |
nss = n-1; |
338 |
< |
break; |
231 |
< |
} |
232 |
< |
dimlist[ndims++] = i*hp->ns + j + 90171; |
233 |
< |
rayvalue(&ar); /* evaluate super-sample */ |
234 |
< |
ndims--; |
235 |
< |
multcolor(ar.rcol, ar.rcoef); |
236 |
< |
addcolor(asum, ar.rcol); |
237 |
< |
} |
238 |
< |
if (nss) { /* update returned ambient value */ |
239 |
< |
const double ssf = 1./(nss + 1); |
240 |
< |
for (n = 3; n--; ) |
241 |
< |
acol[n] += ssf*colval(asum,n) + |
242 |
< |
(ssf - 1.)*colval(ap->v,n); |
243 |
< |
} |
244 |
< |
e2sum -= *ep++; /* update remainders */ |
245 |
< |
cnt -= nss; |
331 |
> |
for (i = 0; i < hp->ns; i++) |
332 |
> |
for (j = 0; j < hp->ns; j++) { |
333 |
> |
if (e2rem <= FTINY) |
334 |
> |
goto done; /* nothing left to do */ |
335 |
> |
nss = *ep/e2rem*cnt + frandom(); |
336 |
> |
for (n = 1; n <= nss && ambsample(hp,i,j,n); n++) |
337 |
> |
if (!--cnt) goto done; |
338 |
> |
e2rem -= *ep++; /* update remainder */ |
339 |
|
} |
340 |
+ |
done: |
341 |
|
free(earr); |
342 |
|
} |
343 |
|
|
344 |
|
|
345 |
+ |
static AMBHEMI * |
346 |
+ |
samp_hemi( /* sample indirect hemisphere */ |
347 |
+ |
SCOLOR rcol, |
348 |
+ |
RAY *r, |
349 |
+ |
double wt |
350 |
+ |
) |
351 |
+ |
{ |
352 |
+ |
int backside = (wt < 0); |
353 |
+ |
AMBHEMI *hp; |
354 |
+ |
double d; |
355 |
+ |
int n, i, j; |
356 |
+ |
/* insignificance check */ |
357 |
+ |
d = sintens(rcol); |
358 |
+ |
if (d <= FTINY) |
359 |
+ |
return(NULL); |
360 |
+ |
/* set number of divisions */ |
361 |
+ |
if (backside) wt = -wt; |
362 |
+ |
if (ambacc <= FTINY && |
363 |
+ |
wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20))) |
364 |
+ |
wt = d; /* avoid ray termination */ |
365 |
+ |
n = sqrt(ambdiv * wt) + 0.5; |
366 |
+ |
i = 1 + (MINADIV-1)*(ambacc > FTINY); |
367 |
+ |
if (n < i) /* use minimum number of samples? */ |
368 |
+ |
n = i; |
369 |
+ |
/* allocate sampling array */ |
370 |
+ |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
371 |
+ |
if (hp == NULL) |
372 |
+ |
error(SYSTEM, "out of memory in samp_hemi"); |
373 |
+ |
|
374 |
+ |
if (backside) { |
375 |
+ |
hp->atyp = TAMBIENT; |
376 |
+ |
hp->onrm[0] = -r->ron[0]; |
377 |
+ |
hp->onrm[1] = -r->ron[1]; |
378 |
+ |
hp->onrm[2] = -r->ron[2]; |
379 |
+ |
} else { |
380 |
+ |
hp->atyp = RAMBIENT; |
381 |
+ |
VCOPY(hp->onrm, r->ron); |
382 |
+ |
} |
383 |
+ |
hp->rp = r; |
384 |
+ |
hp->ns = n; |
385 |
+ |
scolorblack(hp->acol); |
386 |
+ |
memset(hp->sa, 0, sizeof(AMBSAMP)*n*n); |
387 |
+ |
hp->sampOK = 0; |
388 |
+ |
/* assign coefficient */ |
389 |
+ |
copyscolor(hp->acoef, rcol); |
390 |
+ |
d = 1.0/(n*n); |
391 |
+ |
scalescolor(hp->acoef, d); |
392 |
+ |
/* make tangent plane axes */ |
393 |
+ |
if (!getperpendicular(hp->ux, hp->onrm, 1)) |
394 |
+ |
error(CONSISTENCY, "bad ray direction in samp_hemi"); |
395 |
+ |
VCROSS(hp->uy, hp->onrm, hp->ux); |
396 |
+ |
/* sample divisions */ |
397 |
+ |
for (i = hp->ns; i--; ) |
398 |
+ |
for (j = hp->ns; j--; ) |
399 |
+ |
hp->sampOK += ambsample(hp, i, j, 0); |
400 |
+ |
copyscolor(rcol, hp->acol); |
401 |
+ |
if (!hp->sampOK) { /* utter failure? */ |
402 |
+ |
free(hp); |
403 |
+ |
return(NULL); |
404 |
+ |
} |
405 |
+ |
if (hp->sampOK < hp->ns*hp->ns) { |
406 |
+ |
hp->sampOK *= -1; /* soft failure */ |
407 |
+ |
return(hp); |
408 |
+ |
} |
409 |
+ |
if (hp->sampOK <= MINADIV*MINADIV) |
410 |
+ |
return(hp); /* don't bother super-sampling */ |
411 |
+ |
n = ambssamp*wt + 0.5; |
412 |
+ |
if (n >= 4*hp->ns) { /* perform super-sampling? */ |
413 |
+ |
ambsupersamp(hp, n); |
414 |
+ |
copyscolor(rcol, hp->acol); |
415 |
+ |
} |
416 |
+ |
return(hp); /* all is well */ |
417 |
+ |
} |
418 |
+ |
|
419 |
+ |
|
420 |
+ |
/* Return brightness of farthest ambient sample */ |
421 |
+ |
static double |
422 |
+ |
back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3) |
423 |
+ |
{ |
424 |
+ |
if (hp->sa[n1].d <= hp->sa[n2].d) { |
425 |
+ |
if (hp->sa[n1].d <= hp->sa[n3].d) |
426 |
+ |
return(hp->sa[n1].v[0]); |
427 |
+ |
return(hp->sa[n3].v[0]); |
428 |
+ |
} |
429 |
+ |
if (hp->sa[n2].d <= hp->sa[n3].d) |
430 |
+ |
return(hp->sa[n2].v[0]); |
431 |
+ |
return(hp->sa[n3].v[0]); |
432 |
+ |
} |
433 |
+ |
|
434 |
+ |
|
435 |
|
/* Compute vectors and coefficients for Hessian/gradient calcs */ |
436 |
|
static void |
437 |
< |
comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop) |
437 |
> |
comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1) |
438 |
|
{ |
439 |
|
double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; |
440 |
< |
int i; |
440 |
> |
int ii; |
441 |
|
|
442 |
< |
VSUB(ftp->r_i, ap0, rop); |
443 |
< |
VSUB(ftp->r_i1, ap1, rop); |
444 |
< |
VSUB(ftp->e_i, ap1, ap0); |
442 |
> |
VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop); |
443 |
> |
VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop); |
444 |
> |
VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p); |
445 |
|
VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); |
446 |
|
rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); |
447 |
|
dot_e = DOT(ftp->e_i,ftp->e_i); |
453 |
|
ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r + |
454 |
|
dot_e*ftp->I1 )*0.5*rdot_cp; |
455 |
|
J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; |
456 |
< |
for (i = 3; i--; ) |
457 |
< |
ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i]; |
456 |
> |
for (ii = 3; ii--; ) |
457 |
> |
ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii]; |
458 |
|
} |
459 |
|
|
460 |
|
|
503 |
|
hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] + |
504 |
|
2.0*J3*m4[i][j] ); |
505 |
|
hess[i][j] += d2*(i==j); |
506 |
< |
hess[i][j] *= 1.0/PI; |
506 |
> |
hess[i][j] *= -1.0/PI; |
507 |
|
} |
508 |
|
} |
509 |
|
|
525 |
|
/* Add to radiometric Hessian from the given triangle */ |
526 |
|
static void |
527 |
|
add2hessian(FVECT hess[3], FVECT ehess1[3], |
528 |
< |
FVECT ehess2[3], FVECT ehess3[3], COLORV v) |
528 |
> |
FVECT ehess2[3], FVECT ehess3[3], double v) |
529 |
|
{ |
530 |
|
int i, j; |
531 |
|
|
546 |
|
f1 = 2.0*DOT(nrm, ftp->rcp); |
547 |
|
VCROSS(ncp, nrm, ftp->e_i); |
548 |
|
for (i = 3; i--; ) |
549 |
< |
grad[i] = (-0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); |
549 |
> |
grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); |
550 |
|
} |
551 |
|
|
552 |
|
|
562 |
|
|
563 |
|
/* Add to displacement gradient from the given triangle */ |
564 |
|
static void |
565 |
< |
add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v) |
565 |
> |
add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v) |
566 |
|
{ |
567 |
|
int i; |
568 |
|
|
571 |
|
} |
572 |
|
|
573 |
|
|
390 |
– |
/* Return brightness of furthest ambient sample */ |
391 |
– |
static COLORV |
392 |
– |
back_ambval(AMBSAMP *ap1, AMBSAMP *ap2, AMBSAMP *ap3, FVECT orig) |
393 |
– |
{ |
394 |
– |
COLORV vback; |
395 |
– |
FVECT vec; |
396 |
– |
double d2, d2best; |
397 |
– |
|
398 |
– |
VSUB(vec, ap1->p, orig); |
399 |
– |
d2best = DOT(vec,vec); |
400 |
– |
vback = colval(ap1->v,CIEY); |
401 |
– |
VSUB(vec, ap2->p, orig); |
402 |
– |
d2 = DOT(vec,vec); |
403 |
– |
if (d2 > d2best) { |
404 |
– |
d2best = d2; |
405 |
– |
vback = colval(ap2->v,CIEY); |
406 |
– |
} |
407 |
– |
VSUB(vec, ap3->p, orig); |
408 |
– |
d2 = DOT(vec,vec); |
409 |
– |
if (d2 > d2best) |
410 |
– |
return(colval(ap3->v,CIEY)); |
411 |
– |
return(vback); |
412 |
– |
} |
413 |
– |
|
414 |
– |
|
574 |
|
/* Compute anisotropic radii and eigenvector directions */ |
575 |
< |
static int |
575 |
> |
static void |
576 |
|
eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3]) |
577 |
|
{ |
578 |
|
double hess2[2][2]; |
594 |
|
if (i == 1) /* double-root (circle) */ |
595 |
|
evalue[1] = evalue[0]; |
596 |
|
if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | |
597 |
< |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) |
598 |
< |
error(INTERNAL, "bad eigenvalue calculation"); |
599 |
< |
|
597 |
> |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) { |
598 |
> |
ra[0] = ra[1] = maxarad; |
599 |
> |
return; |
600 |
> |
} |
601 |
|
if (evalue[0] > evalue[1]) { |
602 |
|
ra[0] = sqrt(sqrt(4.0/evalue[0])); |
603 |
|
ra[1] = sqrt(sqrt(4.0/evalue[1])); |
655 |
|
} |
656 |
|
/* compute first row of edges */ |
657 |
|
for (j = 0; j < hp->ns-1; j++) { |
658 |
< |
comp_fftri(&fftr, ambsamp(hp,0,j).p, |
499 |
< |
ambsamp(hp,0,j+1).p, hp->rp->rop); |
658 |
> |
comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1)); |
659 |
|
if (hessrow != NULL) |
660 |
< |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
660 |
> |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
661 |
|
if (gradrow != NULL) |
662 |
< |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
662 |
> |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
663 |
|
} |
664 |
|
/* sum each row of triangles */ |
665 |
|
for (i = 0; i < hp->ns-1; i++) { |
666 |
|
FVECT hesscol[3]; /* compute first vertical edge */ |
667 |
|
FVECT gradcol; |
668 |
< |
comp_fftri(&fftr, ambsamp(hp,i,0).p, |
510 |
< |
ambsamp(hp,i+1,0).p, hp->rp->rop); |
668 |
> |
comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0)); |
669 |
|
if (hessrow != NULL) |
670 |
< |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
670 |
> |
comp_hessian(hesscol, &fftr, hp->onrm); |
671 |
|
if (gradrow != NULL) |
672 |
< |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
672 |
> |
comp_gradient(gradcol, &fftr, hp->onrm); |
673 |
|
for (j = 0; j < hp->ns-1; j++) { |
674 |
|
FVECT hessdia[3]; /* compute triangle contributions */ |
675 |
|
FVECT graddia; |
676 |
< |
COLORV backg; |
677 |
< |
backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1), |
678 |
< |
&ambsamp(hp,i+1,j), hp->rp->rop); |
676 |
> |
double backg; |
677 |
> |
backg = back_ambval(hp, AI(hp,i,j), |
678 |
> |
AI(hp,i,j+1), AI(hp,i+1,j)); |
679 |
|
/* diagonal (inner) edge */ |
680 |
< |
comp_fftri(&fftr, ambsamp(hp,i,j+1).p, |
523 |
< |
ambsamp(hp,i+1,j).p, hp->rp->rop); |
680 |
> |
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j)); |
681 |
|
if (hessrow != NULL) { |
682 |
< |
comp_hessian(hessdia, &fftr, hp->rp->ron); |
682 |
> |
comp_hessian(hessdia, &fftr, hp->onrm); |
683 |
|
rev_hessian(hesscol); |
684 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
685 |
|
} |
686 |
|
if (gradrow != NULL) { |
687 |
< |
comp_gradient(graddia, &fftr, hp->rp->ron); |
687 |
> |
comp_gradient(graddia, &fftr, hp->onrm); |
688 |
|
rev_gradient(gradcol); |
689 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
690 |
|
} |
691 |
|
/* initialize edge in next row */ |
692 |
< |
comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p, |
536 |
< |
ambsamp(hp,i+1,j).p, hp->rp->rop); |
692 |
> |
comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j)); |
693 |
|
if (hessrow != NULL) |
694 |
< |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
694 |
> |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
695 |
|
if (gradrow != NULL) |
696 |
< |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
696 |
> |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
697 |
|
/* new column edge & paired triangle */ |
698 |
< |
backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1), |
699 |
< |
&ambsamp(hp,i+1,j), hp->rp->rop); |
700 |
< |
comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p, |
545 |
< |
hp->rp->rop); |
698 |
> |
backg = back_ambval(hp, AI(hp,i+1,j+1), |
699 |
> |
AI(hp,i+1,j), AI(hp,i,j+1)); |
700 |
> |
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1)); |
701 |
|
if (hessrow != NULL) { |
702 |
< |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
702 |
> |
comp_hessian(hesscol, &fftr, hp->onrm); |
703 |
|
rev_hessian(hessdia); |
704 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
705 |
|
if (i < hp->ns-2) |
706 |
|
rev_hessian(hessrow[j]); |
707 |
|
} |
708 |
|
if (gradrow != NULL) { |
709 |
< |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
709 |
> |
comp_gradient(gradcol, &fftr, hp->onrm); |
710 |
|
rev_gradient(graddia); |
711 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
712 |
|
if (i < hp->ns-2) |
742 |
|
/* use vector for azimuth + 90deg */ |
743 |
|
VSUB(vd, ap->p, hp->rp->rop); |
744 |
|
/* brightness over cosine factor */ |
745 |
< |
gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); |
745 |
> |
gfact = ap->v[0] / DOT(hp->onrm, vd); |
746 |
|
/* sine = proj_radius/vd_length */ |
747 |
|
dgsum[0] -= DOT(uv[1], vd) * gfact; |
748 |
|
dgsum[1] += DOT(uv[0], vd) * gfact; |
752 |
|
} |
753 |
|
|
754 |
|
|
755 |
+ |
/* Compute potential light leak direction flags for cache value */ |
756 |
+ |
static uint32 |
757 |
+ |
ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1) |
758 |
+ |
{ |
759 |
+ |
const double max_d = 1.0/(minarad*ambacc + 0.001); |
760 |
+ |
const double ang_res = 0.5*PI/hp->ns; |
761 |
+ |
const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01); |
762 |
+ |
double avg_d = 0; |
763 |
+ |
uint32 flgs = 0; |
764 |
+ |
FVECT vec; |
765 |
+ |
double u, v; |
766 |
+ |
double ang, a1; |
767 |
+ |
int i, j; |
768 |
+ |
/* don't bother for a few samples */ |
769 |
+ |
if (hp->ns < 8) |
770 |
+ |
return(0); |
771 |
+ |
/* check distances overhead */ |
772 |
+ |
for (i = hp->ns*3/4; i-- > hp->ns>>2; ) |
773 |
+ |
for (j = hp->ns*3/4; j-- > hp->ns>>2; ) |
774 |
+ |
avg_d += ambsam(hp,i,j).d; |
775 |
+ |
avg_d *= 4.0/(hp->ns*hp->ns); |
776 |
+ |
if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */ |
777 |
+ |
return(0); |
778 |
+ |
if (avg_d >= max_d) /* insurance */ |
779 |
+ |
return(0); |
780 |
+ |
/* else circle around perimeter */ |
781 |
+ |
for (i = 0; i < hp->ns; i++) |
782 |
+ |
for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) { |
783 |
+ |
AMBSAMP *ap = &ambsam(hp,i,j); |
784 |
+ |
if ((ap->d <= FTINY) | (ap->d >= max_d)) |
785 |
+ |
continue; /* too far or too near */ |
786 |
+ |
VSUB(vec, ap->p, hp->rp->rop); |
787 |
+ |
u = DOT(vec, uv[0]); |
788 |
+ |
v = DOT(vec, uv[1]); |
789 |
+ |
if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v) |
790 |
+ |
continue; /* occluder outside ellipse */ |
791 |
+ |
ang = atan2a(v, u); /* else set direction flags */ |
792 |
+ |
for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step) |
793 |
+ |
flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0))); |
794 |
+ |
} |
795 |
+ |
return(flgs); |
796 |
+ |
} |
797 |
+ |
|
798 |
+ |
|
799 |
|
int |
800 |
|
doambient( /* compute ambient component */ |
801 |
< |
COLOR rcol, /* input/output color */ |
801 |
> |
SCOLOR rcol, /* input/output color */ |
802 |
|
RAY *r, |
803 |
< |
double wt, |
803 |
> |
double wt, /* negative for back side */ |
804 |
|
FVECT uv[2], /* returned (optional) */ |
805 |
|
float ra[2], /* returned (optional) */ |
806 |
|
float pg[2], /* returned (optional) */ |
807 |
< |
float dg[2] /* returned (optional) */ |
807 |
> |
float dg[2], /* returned (optional) */ |
808 |
> |
uint32 *crlp /* returned (optional) */ |
809 |
|
) |
810 |
|
{ |
811 |
< |
AMBHEMI *hp = inithemi(rcol, r, wt); |
612 |
< |
int cnt = 0; |
811 |
> |
AMBHEMI *hp = samp_hemi(rcol, r, wt); |
812 |
|
FVECT my_uv[2]; |
813 |
< |
double d, K, acol[3]; |
813 |
> |
double d, K; |
814 |
|
AMBSAMP *ap; |
815 |
< |
int i, j; |
816 |
< |
/* check/initialize */ |
618 |
< |
if (hp == NULL) |
619 |
< |
return(0); |
815 |
> |
int i; |
816 |
> |
/* clear return values */ |
817 |
|
if (uv != NULL) |
818 |
|
memset(uv, 0, sizeof(FVECT)*2); |
819 |
|
if (ra != NULL) |
822 |
|
pg[0] = pg[1] = 0.0; |
823 |
|
if (dg != NULL) |
824 |
|
dg[0] = dg[1] = 0.0; |
825 |
< |
/* sample the hemisphere */ |
826 |
< |
acol[0] = acol[1] = acol[2] = 0.0; |
827 |
< |
for (i = hp->ns; i--; ) |
828 |
< |
for (j = hp->ns; j--; ) |
829 |
< |
if ((ap = ambsample(hp, i, j)) != NULL) { |
830 |
< |
addcolor(acol, ap->v); |
831 |
< |
++cnt; |
832 |
< |
} |
833 |
< |
if (!cnt) { |
637 |
< |
setcolor(rcol, 0.0, 0.0, 0.0); |
638 |
< |
free(hp); |
639 |
< |
return(0); /* no valid samples */ |
825 |
> |
if (crlp != NULL) |
826 |
> |
*crlp = 0; |
827 |
> |
if (hp == NULL) /* sampling falure? */ |
828 |
> |
return(0); |
829 |
> |
|
830 |
> |
if ((ra == NULL) & (pg == NULL) & (dg == NULL) || |
831 |
> |
(hp->sampOK < 0) | (hp->ns < MINADIV)) { |
832 |
> |
free(hp); /* Hessian not requested/possible */ |
833 |
> |
return(-1); /* value-only return value */ |
834 |
|
} |
835 |
< |
if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */ |
836 |
< |
copycolor(rcol, acol); |
643 |
< |
free(hp); |
644 |
< |
return(-1); /* return value w/o Hessian */ |
645 |
< |
} |
646 |
< |
cnt = ambssamp*wt + 0.5; /* perform super-sampling? */ |
647 |
< |
if (cnt > 0) |
648 |
< |
ambsupersamp(acol, hp, cnt); |
649 |
< |
copycolor(rcol, acol); /* final indirect irradiance/PI */ |
650 |
< |
if ((ra == NULL) & (pg == NULL) & (dg == NULL)) { |
651 |
< |
free(hp); |
652 |
< |
return(-1); /* no radius or gradient calc. */ |
653 |
< |
} |
654 |
< |
if (bright(acol) > FTINY) { /* normalize Y values */ |
655 |
< |
d = 0.99*cnt/bright(acol); |
835 |
> |
if ((d = scolor_mean(rcol)) > FTINY) { |
836 |
> |
d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */ |
837 |
|
K = 0.01; |
838 |
< |
} else { /* geometric Hessian fall-back */ |
658 |
< |
d = 0.0; |
838 |
> |
} else { /* or fall back on geometric Hessian */ |
839 |
|
K = 1.0; |
840 |
|
pg = NULL; |
841 |
|
dg = NULL; |
842 |
+ |
crlp = NULL; |
843 |
|
} |
844 |
< |
ap = hp->sa; /* relative Y channel from here on... */ |
844 |
> |
ap = hp->sa; /* single channel from here on... */ |
845 |
|
for (i = hp->ns*hp->ns; i--; ap++) |
846 |
< |
colval(ap->v,CIEY) = bright(ap->v)*d + K; |
846 |
> |
ap->v[0] = scolor_mean(ap->v)*d + K; |
847 |
|
|
848 |
|
if (uv == NULL) /* make sure we have axis pointers */ |
849 |
|
uv = my_uv; |
867 |
|
if (ra[1] < minarad) |
868 |
|
ra[1] = minarad; |
869 |
|
} |
870 |
< |
ra[0] *= d = 1.0/sqrt(sqrt(wt)); |
870 |
> |
ra[0] *= d = 1.0/sqrt(fabs(wt)); |
871 |
|
if ((ra[1] *= d) > 2.0*ra[0]) |
872 |
|
ra[1] = 2.0*ra[0]; |
873 |
|
if (ra[1] > maxarad) { |
875 |
|
if (ra[0] > maxarad) |
876 |
|
ra[0] = maxarad; |
877 |
|
} |
878 |
+ |
/* flag encroached directions */ |
879 |
+ |
if (crlp != NULL) /* XXX doesn't update with changes to ambacc */ |
880 |
+ |
*crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc); |
881 |
|
if (pg != NULL) { /* cap gradient if necessary */ |
882 |
|
d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; |
883 |
|
if (d > 1.0) { |
890 |
|
free(hp); /* clean up and return */ |
891 |
|
return(1); |
892 |
|
} |
709 |
– |
|
710 |
– |
|
711 |
– |
#else /* ! NEWAMB */ |
712 |
– |
|
713 |
– |
|
714 |
– |
void |
715 |
– |
inithemi( /* initialize sampling hemisphere */ |
716 |
– |
AMBHEMI *hp, |
717 |
– |
COLOR ac, |
718 |
– |
RAY *r, |
719 |
– |
double wt |
720 |
– |
) |
721 |
– |
{ |
722 |
– |
double d; |
723 |
– |
int i; |
724 |
– |
/* set number of divisions */ |
725 |
– |
if (ambacc <= FTINY && |
726 |
– |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) |
727 |
– |
wt = d; /* avoid ray termination */ |
728 |
– |
hp->nt = sqrt(ambdiv * wt / PI) + 0.5; |
729 |
– |
i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */ |
730 |
– |
if (hp->nt < i) |
731 |
– |
hp->nt = i; |
732 |
– |
hp->np = PI * hp->nt + 0.5; |
733 |
– |
/* set number of super-samples */ |
734 |
– |
hp->ns = ambssamp * wt + 0.5; |
735 |
– |
/* assign coefficient */ |
736 |
– |
copycolor(hp->acoef, ac); |
737 |
– |
d = 1.0/(hp->nt*hp->np); |
738 |
– |
scalecolor(hp->acoef, d); |
739 |
– |
/* make axes */ |
740 |
– |
VCOPY(hp->uz, r->ron); |
741 |
– |
hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; |
742 |
– |
for (i = 0; i < 3; i++) |
743 |
– |
if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6) |
744 |
– |
break; |
745 |
– |
if (i >= 3) |
746 |
– |
error(CONSISTENCY, "bad ray direction in inithemi"); |
747 |
– |
hp->uy[i] = 1.0; |
748 |
– |
fcross(hp->ux, hp->uy, hp->uz); |
749 |
– |
normalize(hp->ux); |
750 |
– |
fcross(hp->uy, hp->uz, hp->ux); |
751 |
– |
} |
752 |
– |
|
753 |
– |
|
754 |
– |
int |
755 |
– |
divsample( /* sample a division */ |
756 |
– |
AMBSAMP *dp, |
757 |
– |
AMBHEMI *h, |
758 |
– |
RAY *r |
759 |
– |
) |
760 |
– |
{ |
761 |
– |
RAY ar; |
762 |
– |
int hlist[3]; |
763 |
– |
double spt[2]; |
764 |
– |
double xd, yd, zd; |
765 |
– |
double b2; |
766 |
– |
double phi; |
767 |
– |
int i; |
768 |
– |
/* ambient coefficient for weight */ |
769 |
– |
if (ambacc > FTINY) |
770 |
– |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
771 |
– |
else |
772 |
– |
copycolor(ar.rcoef, h->acoef); |
773 |
– |
if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0) |
774 |
– |
return(-1); |
775 |
– |
if (ambacc > FTINY) { |
776 |
– |
multcolor(ar.rcoef, h->acoef); |
777 |
– |
scalecolor(ar.rcoef, 1./AVGREFL); |
778 |
– |
} |
779 |
– |
hlist[0] = r->rno; |
780 |
– |
hlist[1] = dp->t; |
781 |
– |
hlist[2] = dp->p; |
782 |
– |
multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n)); |
783 |
– |
zd = sqrt((dp->t + spt[0])/h->nt); |
784 |
– |
phi = 2.0*PI * (dp->p + spt[1])/h->np; |
785 |
– |
xd = tcos(phi) * zd; |
786 |
– |
yd = tsin(phi) * zd; |
787 |
– |
zd = sqrt(1.0 - zd*zd); |
788 |
– |
for (i = 0; i < 3; i++) |
789 |
– |
ar.rdir[i] = xd*h->ux[i] + |
790 |
– |
yd*h->uy[i] + |
791 |
– |
zd*h->uz[i]; |
792 |
– |
checknorm(ar.rdir); |
793 |
– |
dimlist[ndims++] = dp->t*h->np + dp->p + 90171; |
794 |
– |
rayvalue(&ar); |
795 |
– |
ndims--; |
796 |
– |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
797 |
– |
addcolor(dp->v, ar.rcol); |
798 |
– |
/* use rt to improve gradient calc */ |
799 |
– |
if (ar.rt > FTINY && ar.rt < FHUGE) |
800 |
– |
dp->r += 1.0/ar.rt; |
801 |
– |
/* (re)initialize error */ |
802 |
– |
if (dp->n++) { |
803 |
– |
b2 = bright(dp->v)/dp->n - bright(ar.rcol); |
804 |
– |
b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1)); |
805 |
– |
dp->k = b2/(dp->n*dp->n); |
806 |
– |
} else |
807 |
– |
dp->k = 0.0; |
808 |
– |
return(0); |
809 |
– |
} |
810 |
– |
|
811 |
– |
|
812 |
– |
static int |
813 |
– |
ambcmp( /* decreasing order */ |
814 |
– |
const void *p1, |
815 |
– |
const void *p2 |
816 |
– |
) |
817 |
– |
{ |
818 |
– |
const AMBSAMP *d1 = (const AMBSAMP *)p1; |
819 |
– |
const AMBSAMP *d2 = (const AMBSAMP *)p2; |
820 |
– |
|
821 |
– |
if (d1->k < d2->k) |
822 |
– |
return(1); |
823 |
– |
if (d1->k > d2->k) |
824 |
– |
return(-1); |
825 |
– |
return(0); |
826 |
– |
} |
827 |
– |
|
828 |
– |
|
829 |
– |
static int |
830 |
– |
ambnorm( /* standard order */ |
831 |
– |
const void *p1, |
832 |
– |
const void *p2 |
833 |
– |
) |
834 |
– |
{ |
835 |
– |
const AMBSAMP *d1 = (const AMBSAMP *)p1; |
836 |
– |
const AMBSAMP *d2 = (const AMBSAMP *)p2; |
837 |
– |
int c; |
838 |
– |
|
839 |
– |
if ( (c = d1->t - d2->t) ) |
840 |
– |
return(c); |
841 |
– |
return(d1->p - d2->p); |
842 |
– |
} |
843 |
– |
|
844 |
– |
|
845 |
– |
double |
846 |
– |
doambient( /* compute ambient component */ |
847 |
– |
COLOR rcol, |
848 |
– |
RAY *r, |
849 |
– |
double wt, |
850 |
– |
FVECT pg, |
851 |
– |
FVECT dg |
852 |
– |
) |
853 |
– |
{ |
854 |
– |
double b, d=0; |
855 |
– |
AMBHEMI hemi; |
856 |
– |
AMBSAMP *div; |
857 |
– |
AMBSAMP dnew; |
858 |
– |
double acol[3]; |
859 |
– |
AMBSAMP *dp; |
860 |
– |
double arad; |
861 |
– |
int divcnt; |
862 |
– |
int i, j; |
863 |
– |
/* initialize hemisphere */ |
864 |
– |
inithemi(&hemi, rcol, r, wt); |
865 |
– |
divcnt = hemi.nt * hemi.np; |
866 |
– |
/* initialize */ |
867 |
– |
if (pg != NULL) |
868 |
– |
pg[0] = pg[1] = pg[2] = 0.0; |
869 |
– |
if (dg != NULL) |
870 |
– |
dg[0] = dg[1] = dg[2] = 0.0; |
871 |
– |
setcolor(rcol, 0.0, 0.0, 0.0); |
872 |
– |
if (divcnt == 0) |
873 |
– |
return(0.0); |
874 |
– |
/* allocate super-samples */ |
875 |
– |
if (hemi.ns > 0 || pg != NULL || dg != NULL) { |
876 |
– |
div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP)); |
877 |
– |
if (div == NULL) |
878 |
– |
error(SYSTEM, "out of memory in doambient"); |
879 |
– |
} else |
880 |
– |
div = NULL; |
881 |
– |
/* sample the divisions */ |
882 |
– |
arad = 0.0; |
883 |
– |
acol[0] = acol[1] = acol[2] = 0.0; |
884 |
– |
if ((dp = div) == NULL) |
885 |
– |
dp = &dnew; |
886 |
– |
divcnt = 0; |
887 |
– |
for (i = 0; i < hemi.nt; i++) |
888 |
– |
for (j = 0; j < hemi.np; j++) { |
889 |
– |
dp->t = i; dp->p = j; |
890 |
– |
setcolor(dp->v, 0.0, 0.0, 0.0); |
891 |
– |
dp->r = 0.0; |
892 |
– |
dp->n = 0; |
893 |
– |
if (divsample(dp, &hemi, r) < 0) { |
894 |
– |
if (div != NULL) |
895 |
– |
dp++; |
896 |
– |
continue; |
897 |
– |
} |
898 |
– |
arad += dp->r; |
899 |
– |
divcnt++; |
900 |
– |
if (div != NULL) |
901 |
– |
dp++; |
902 |
– |
else |
903 |
– |
addcolor(acol, dp->v); |
904 |
– |
} |
905 |
– |
if (!divcnt) { |
906 |
– |
if (div != NULL) |
907 |
– |
free((void *)div); |
908 |
– |
return(0.0); /* no samples taken */ |
909 |
– |
} |
910 |
– |
if (divcnt < hemi.nt*hemi.np) { |
911 |
– |
pg = dg = NULL; /* incomplete sampling */ |
912 |
– |
hemi.ns = 0; |
913 |
– |
} else if (arad > FTINY && divcnt/arad < minarad) { |
914 |
– |
hemi.ns = 0; /* close enough */ |
915 |
– |
} else if (hemi.ns > 0) { /* else perform super-sampling? */ |
916 |
– |
comperrs(div, &hemi); /* compute errors */ |
917 |
– |
qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */ |
918 |
– |
/* super-sample */ |
919 |
– |
for (i = hemi.ns; i > 0; i--) { |
920 |
– |
dnew = *div; |
921 |
– |
if (divsample(&dnew, &hemi, r) < 0) { |
922 |
– |
dp++; |
923 |
– |
continue; |
924 |
– |
} |
925 |
– |
dp = div; /* reinsert */ |
926 |
– |
j = divcnt < i ? divcnt : i; |
927 |
– |
while (--j > 0 && dnew.k < dp[1].k) { |
928 |
– |
*dp = *(dp+1); |
929 |
– |
dp++; |
930 |
– |
} |
931 |
– |
*dp = dnew; |
932 |
– |
} |
933 |
– |
if (pg != NULL || dg != NULL) /* restore order */ |
934 |
– |
qsort(div, divcnt, sizeof(AMBSAMP), ambnorm); |
935 |
– |
} |
936 |
– |
/* compute returned values */ |
937 |
– |
if (div != NULL) { |
938 |
– |
arad = 0.0; /* note: divcnt may be < nt*np */ |
939 |
– |
for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) { |
940 |
– |
arad += dp->r; |
941 |
– |
if (dp->n > 1) { |
942 |
– |
b = 1.0/dp->n; |
943 |
– |
scalecolor(dp->v, b); |
944 |
– |
dp->r *= b; |
945 |
– |
dp->n = 1; |
946 |
– |
} |
947 |
– |
addcolor(acol, dp->v); |
948 |
– |
} |
949 |
– |
b = bright(acol); |
950 |
– |
if (b > FTINY) { |
951 |
– |
b = 1.0/b; /* compute & normalize gradient(s) */ |
952 |
– |
if (pg != NULL) { |
953 |
– |
posgradient(pg, div, &hemi); |
954 |
– |
for (i = 0; i < 3; i++) |
955 |
– |
pg[i] *= b; |
956 |
– |
} |
957 |
– |
if (dg != NULL) { |
958 |
– |
dirgradient(dg, div, &hemi); |
959 |
– |
for (i = 0; i < 3; i++) |
960 |
– |
dg[i] *= b; |
961 |
– |
} |
962 |
– |
} |
963 |
– |
free((void *)div); |
964 |
– |
} |
965 |
– |
copycolor(rcol, acol); |
966 |
– |
if (arad <= FTINY) |
967 |
– |
arad = maxarad; |
968 |
– |
else |
969 |
– |
arad = (divcnt+hemi.ns)/arad; |
970 |
– |
if (pg != NULL) { /* reduce radius if gradient large */ |
971 |
– |
d = DOT(pg,pg); |
972 |
– |
if (d*arad*arad > 1.0) |
973 |
– |
arad = 1.0/sqrt(d); |
974 |
– |
} |
975 |
– |
if (arad < minarad) { |
976 |
– |
arad = minarad; |
977 |
– |
if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */ |
978 |
– |
d = 1.0/arad/sqrt(d); |
979 |
– |
for (i = 0; i < 3; i++) |
980 |
– |
pg[i] *= d; |
981 |
– |
} |
982 |
– |
} |
983 |
– |
if ((arad /= sqrt(wt)) > maxarad) |
984 |
– |
arad = maxarad; |
985 |
– |
return(arad); |
986 |
– |
} |
987 |
– |
|
988 |
– |
|
989 |
– |
void |
990 |
– |
comperrs( /* compute initial error estimates */ |
991 |
– |
AMBSAMP *da, /* assumes standard ordering */ |
992 |
– |
AMBHEMI *hp |
993 |
– |
) |
994 |
– |
{ |
995 |
– |
double b, b2; |
996 |
– |
int i, j; |
997 |
– |
AMBSAMP *dp; |
998 |
– |
/* sum differences from neighbors */ |
999 |
– |
dp = da; |
1000 |
– |
for (i = 0; i < hp->nt; i++) |
1001 |
– |
for (j = 0; j < hp->np; j++) { |
1002 |
– |
#ifdef DEBUG |
1003 |
– |
if (dp->t != i || dp->p != j) |
1004 |
– |
error(CONSISTENCY, |
1005 |
– |
"division order in comperrs"); |
1006 |
– |
#endif |
1007 |
– |
b = bright(dp[0].v); |
1008 |
– |
if (i > 0) { /* from above */ |
1009 |
– |
b2 = bright(dp[-hp->np].v) - b; |
1010 |
– |
b2 *= b2 * 0.25; |
1011 |
– |
dp[0].k += b2; |
1012 |
– |
dp[-hp->np].k += b2; |
1013 |
– |
} |
1014 |
– |
if (j > 0) { /* from behind */ |
1015 |
– |
b2 = bright(dp[-1].v) - b; |
1016 |
– |
b2 *= b2 * 0.25; |
1017 |
– |
dp[0].k += b2; |
1018 |
– |
dp[-1].k += b2; |
1019 |
– |
} else { /* around */ |
1020 |
– |
b2 = bright(dp[hp->np-1].v) - b; |
1021 |
– |
b2 *= b2 * 0.25; |
1022 |
– |
dp[0].k += b2; |
1023 |
– |
dp[hp->np-1].k += b2; |
1024 |
– |
} |
1025 |
– |
dp++; |
1026 |
– |
} |
1027 |
– |
/* divide by number of neighbors */ |
1028 |
– |
dp = da; |
1029 |
– |
for (j = 0; j < hp->np; j++) /* top row */ |
1030 |
– |
(dp++)->k *= 1.0/3.0; |
1031 |
– |
if (hp->nt < 2) |
1032 |
– |
return; |
1033 |
– |
for (i = 1; i < hp->nt-1; i++) /* central region */ |
1034 |
– |
for (j = 0; j < hp->np; j++) |
1035 |
– |
(dp++)->k *= 0.25; |
1036 |
– |
for (j = 0; j < hp->np; j++) /* bottom row */ |
1037 |
– |
(dp++)->k *= 1.0/3.0; |
1038 |
– |
} |
1039 |
– |
|
1040 |
– |
|
1041 |
– |
void |
1042 |
– |
posgradient( /* compute position gradient */ |
1043 |
– |
FVECT gv, |
1044 |
– |
AMBSAMP *da, /* assumes standard ordering */ |
1045 |
– |
AMBHEMI *hp |
1046 |
– |
) |
1047 |
– |
{ |
1048 |
– |
int i, j; |
1049 |
– |
double nextsine, lastsine, b, d; |
1050 |
– |
double mag0, mag1; |
1051 |
– |
double phi, cosp, sinp, xd, yd; |
1052 |
– |
AMBSAMP *dp; |
1053 |
– |
|
1054 |
– |
xd = yd = 0.0; |
1055 |
– |
for (j = 0; j < hp->np; j++) { |
1056 |
– |
dp = da + j; |
1057 |
– |
mag0 = mag1 = 0.0; |
1058 |
– |
lastsine = 0.0; |
1059 |
– |
for (i = 0; i < hp->nt; i++) { |
1060 |
– |
#ifdef DEBUG |
1061 |
– |
if (dp->t != i || dp->p != j) |
1062 |
– |
error(CONSISTENCY, |
1063 |
– |
"division order in posgradient"); |
1064 |
– |
#endif |
1065 |
– |
b = bright(dp->v); |
1066 |
– |
if (i > 0) { |
1067 |
– |
d = dp[-hp->np].r; |
1068 |
– |
if (dp[0].r > d) d = dp[0].r; |
1069 |
– |
/* sin(t)*cos(t)^2 */ |
1070 |
– |
d *= lastsine * (1.0 - (double)i/hp->nt); |
1071 |
– |
mag0 += d*(b - bright(dp[-hp->np].v)); |
1072 |
– |
} |
1073 |
– |
nextsine = sqrt((double)(i+1)/hp->nt); |
1074 |
– |
if (j > 0) { |
1075 |
– |
d = dp[-1].r; |
1076 |
– |
if (dp[0].r > d) d = dp[0].r; |
1077 |
– |
mag1 += d * (nextsine - lastsine) * |
1078 |
– |
(b - bright(dp[-1].v)); |
1079 |
– |
} else { |
1080 |
– |
d = dp[hp->np-1].r; |
1081 |
– |
if (dp[0].r > d) d = dp[0].r; |
1082 |
– |
mag1 += d * (nextsine - lastsine) * |
1083 |
– |
(b - bright(dp[hp->np-1].v)); |
1084 |
– |
} |
1085 |
– |
dp += hp->np; |
1086 |
– |
lastsine = nextsine; |
1087 |
– |
} |
1088 |
– |
mag0 *= 2.0*PI / hp->np; |
1089 |
– |
phi = 2.0*PI * (double)j/hp->np; |
1090 |
– |
cosp = tcos(phi); sinp = tsin(phi); |
1091 |
– |
xd += mag0*cosp - mag1*sinp; |
1092 |
– |
yd += mag0*sinp + mag1*cosp; |
1093 |
– |
} |
1094 |
– |
for (i = 0; i < 3; i++) |
1095 |
– |
gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI; |
1096 |
– |
} |
1097 |
– |
|
1098 |
– |
|
1099 |
– |
void |
1100 |
– |
dirgradient( /* compute direction gradient */ |
1101 |
– |
FVECT gv, |
1102 |
– |
AMBSAMP *da, /* assumes standard ordering */ |
1103 |
– |
AMBHEMI *hp |
1104 |
– |
) |
1105 |
– |
{ |
1106 |
– |
int i, j; |
1107 |
– |
double mag; |
1108 |
– |
double phi, xd, yd; |
1109 |
– |
AMBSAMP *dp; |
1110 |
– |
|
1111 |
– |
xd = yd = 0.0; |
1112 |
– |
for (j = 0; j < hp->np; j++) { |
1113 |
– |
dp = da + j; |
1114 |
– |
mag = 0.0; |
1115 |
– |
for (i = 0; i < hp->nt; i++) { |
1116 |
– |
#ifdef DEBUG |
1117 |
– |
if (dp->t != i || dp->p != j) |
1118 |
– |
error(CONSISTENCY, |
1119 |
– |
"division order in dirgradient"); |
1120 |
– |
#endif |
1121 |
– |
/* tan(t) */ |
1122 |
– |
mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0); |
1123 |
– |
dp += hp->np; |
1124 |
– |
} |
1125 |
– |
phi = 2.0*PI * (j+.5)/hp->np + PI/2.0; |
1126 |
– |
xd += mag * tcos(phi); |
1127 |
– |
yd += mag * tsin(phi); |
1128 |
– |
} |
1129 |
– |
for (i = 0; i < 3; i++) |
1130 |
– |
gv[i] = xd*hp->ux[i] + yd*hp->uy[i]; |
1131 |
– |
} |
1132 |
– |
|
1133 |
– |
#endif /* ! NEWAMB */ |