| 28 |
|
COLOR acoef; /* division contribution coefficient */ |
| 29 |
|
struct s_ambsamp { |
| 30 |
|
COLOR v; /* hemisphere sample value */ |
| 31 |
< |
float p[3]; /* intersection point */ |
| 31 |
> |
FVECT p; /* intersection point */ |
| 32 |
|
} sa[1]; /* sample array (extends struct) */ |
| 33 |
|
} AMBHEMI; /* ambient sample hemisphere */ |
| 34 |
|
|
| 35 |
|
#define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)] |
| 36 |
|
|
| 37 |
|
typedef struct { |
| 38 |
< |
FVECT r_i, r_i1, e_i; |
| 39 |
< |
double nf, I1, I2, J2; |
| 38 |
> |
FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; |
| 39 |
> |
double I1, I2; |
| 40 |
|
} FFTRI; /* vectors and coefficients for Hessian calculation */ |
| 41 |
|
|
| 42 |
|
|
| 70 |
|
d = 1.0/(n*n); |
| 71 |
|
scalecolor(hp->acoef, d); |
| 72 |
|
/* make tangent plane axes */ |
| 73 |
< |
hp->uy[0] = 0.1 - 0.2*frandom(); |
| 74 |
< |
hp->uy[1] = 0.1 - 0.2*frandom(); |
| 75 |
< |
hp->uy[2] = 0.1 - 0.2*frandom(); |
| 76 |
< |
for (i = 0; i < 3; i++) |
| 77 |
< |
if (r->ron[i] < 0.6 && r->ron[i] > -0.6) |
| 73 |
> |
hp->uy[0] = 0.5 - frandom(); |
| 74 |
> |
hp->uy[1] = 0.5 - frandom(); |
| 75 |
> |
hp->uy[2] = 0.5 - frandom(); |
| 76 |
> |
for (i = 3; i--; ) |
| 77 |
> |
if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6)) |
| 78 |
|
break; |
| 79 |
< |
if (i >= 3) |
| 80 |
< |
error(CONSISTENCY, "bad ray direction in inithemi()"); |
| 79 |
> |
if (i < 0) |
| 80 |
> |
error(CONSISTENCY, "bad ray direction in inithemi"); |
| 81 |
|
hp->uy[i] = 1.0; |
| 82 |
|
VCROSS(hp->ux, hp->uy, r->ron); |
| 83 |
|
normalize(hp->ux); |
| 103 |
|
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
| 104 |
|
else |
| 105 |
|
copycolor(ar.rcoef, hp->acoef); |
| 106 |
< |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) { |
| 107 |
< |
setcolor(ap->v, 0., 0., 0.); |
| 108 |
< |
VCOPY(ap->p, hp->rp->rop); |
| 109 |
< |
return(NULL); /* no sample taken */ |
| 110 |
< |
} |
| 106 |
> |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) |
| 107 |
> |
goto badsample; |
| 108 |
|
if (ambacc > FTINY) { |
| 109 |
|
multcolor(ar.rcoef, hp->acoef); |
| 110 |
|
scalecolor(ar.rcoef, 1./AVGREFL); |
| 121 |
|
dimlist[ndims++] = i*hp->ns + j + 90171; |
| 122 |
|
rayvalue(&ar); /* evaluate ray */ |
| 123 |
|
ndims--; |
| 124 |
+ |
/* limit vertex distance */ |
| 125 |
+ |
if (ar.rt > 10.0*thescene.cusize) |
| 126 |
+ |
ar.rt = 10.0*thescene.cusize; |
| 127 |
+ |
else if (ar.rt <= FTINY) /* should never happen! */ |
| 128 |
+ |
goto badsample; |
| 129 |
+ |
VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); |
| 130 |
|
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
| 131 |
|
copycolor(ap->v, ar.rcol); |
| 129 |
– |
if (ar.rt > 20.0*maxarad) /* limit vertex distance */ |
| 130 |
– |
VSUM(ap->p, ar.rorg, ar.rdir, 20.0*maxarad); |
| 131 |
– |
else |
| 132 |
– |
VCOPY(ap->p, ar.rop); |
| 132 |
|
return(ap); |
| 133 |
+ |
badsample: |
| 134 |
+ |
setcolor(ap->v, 0., 0., 0.); |
| 135 |
+ |
VCOPY(ap->p, hp->rp->rop); |
| 136 |
+ |
return(NULL); |
| 137 |
|
} |
| 138 |
|
|
| 139 |
|
|
| 140 |
|
/* Compute vectors and coefficients for Hessian/gradient calcs */ |
| 141 |
|
static void |
| 142 |
< |
comp_fftri(FFTRI *ftp, float ap0[3], float ap1[3], FVECT rop) |
| 142 |
> |
comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop) |
| 143 |
|
{ |
| 144 |
< |
FVECT v1; |
| 145 |
< |
double dot_e, dot_er, dot_r, dot_r1; |
| 144 |
> |
double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; |
| 145 |
> |
int i; |
| 146 |
|
|
| 147 |
|
VSUB(ftp->r_i, ap0, rop); |
| 148 |
|
VSUB(ftp->r_i1, ap1, rop); |
| 149 |
|
VSUB(ftp->e_i, ap1, ap0); |
| 150 |
< |
VCROSS(v1, ftp->e_i, ftp->r_i); |
| 151 |
< |
ftp->nf = 1.0/DOT(v1,v1); |
| 150 |
> |
VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); |
| 151 |
> |
rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); |
| 152 |
|
dot_e = DOT(ftp->e_i,ftp->e_i); |
| 153 |
|
dot_er = DOT(ftp->e_i, ftp->r_i); |
| 154 |
< |
dot_r = DOT(ftp->r_i,ftp->r_i); |
| 155 |
< |
dot_r1 = DOT(ftp->r_i1,ftp->r_i1); |
| 156 |
< |
ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) / sqrt(dot_r*dot_r1) ) * |
| 157 |
< |
sqrt( ftp->nf ); |
| 158 |
< |
ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)/dot_r1 - dot_er/dot_r + |
| 159 |
< |
dot_e*ftp->I1 )*0.5*ftp->nf; |
| 160 |
< |
ftp->J2 = 0.5/dot_e*( 1.0/dot_r - 1.0/dot_r1 ) - |
| 161 |
< |
dot_er/dot_e*ftp->I2; |
| 154 |
> |
rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i); |
| 155 |
> |
rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
| 156 |
> |
ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) * |
| 157 |
> |
sqrt( rdot_cp ); |
| 158 |
> |
ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r + |
| 159 |
> |
dot_e*ftp->I1 )*0.5*rdot_cp; |
| 160 |
> |
J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; |
| 161 |
> |
for (i = 3; i--; ) |
| 162 |
> |
ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i]; |
| 163 |
|
} |
| 164 |
|
|
| 165 |
|
|
| 180 |
|
static void |
| 181 |
|
comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) |
| 182 |
|
{ |
| 183 |
< |
FVECT v1, v2; |
| 183 |
> |
FVECT ncp; |
| 184 |
|
FVECT m1[3], m2[3], m3[3], m4[3]; |
| 185 |
|
double d1, d2, d3, d4; |
| 186 |
|
double I3, J3, K3; |
| 190 |
|
d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
| 191 |
|
d3 = 1.0/DOT(ftp->e_i,ftp->e_i); |
| 192 |
|
d4 = DOT(ftp->e_i, ftp->r_i); |
| 193 |
< |
I3 = 0.25*ftp->nf*( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + |
| 194 |
< |
3.0/d3*ftp->I2 ); |
| 193 |
> |
I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 ) |
| 194 |
> |
/ ( 4.0*DOT(ftp->rcp,ftp->rcp) ); |
| 195 |
|
J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3; |
| 196 |
|
K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3); |
| 197 |
|
/* intermediate matrices */ |
| 198 |
< |
VCROSS(v1, nrm, ftp->e_i); |
| 199 |
< |
for (j = 3; j--; ) |
| 196 |
< |
v2[j] = ftp->I2*ftp->r_i[j] + ftp->J2*ftp->e_i[j]; |
| 197 |
< |
compose_matrix(m1, v1, v2); |
| 198 |
> |
VCROSS(ncp, nrm, ftp->e_i); |
| 199 |
> |
compose_matrix(m1, ncp, ftp->rI2_eJ2); |
| 200 |
|
compose_matrix(m2, ftp->r_i, ftp->r_i); |
| 201 |
|
compose_matrix(m3, ftp->e_i, ftp->e_i); |
| 202 |
|
compose_matrix(m4, ftp->r_i, ftp->e_i); |
| 203 |
< |
VCROSS(v1, ftp->r_i, ftp->e_i); |
| 202 |
< |
d1 = DOT(nrm, v1); |
| 203 |
> |
d1 = DOT(nrm, ftp->rcp); |
| 204 |
|
d2 = -d1*ftp->I2; |
| 205 |
|
d1 *= 2.0; |
| 206 |
|
for (i = 3; i--; ) /* final matrix sum */ |
| 208 |
|
hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] + |
| 209 |
|
2.0*J3*m4[i][j] ); |
| 210 |
|
hess[i][j] += d2*(i==j); |
| 211 |
< |
hess[i][j] *= -1.0/PI; |
| 211 |
> |
hess[i][j] *= 1.0/PI; |
| 212 |
|
} |
| 213 |
|
} |
| 214 |
|
|
| 244 |
|
static void |
| 245 |
|
comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm) |
| 246 |
|
{ |
| 247 |
< |
FVECT vcp; |
| 247 |
> |
FVECT ncp; |
| 248 |
|
double f1; |
| 249 |
|
int i; |
| 250 |
|
|
| 251 |
< |
VCROSS(vcp, ftp->r_i, ftp->r_i1); |
| 252 |
< |
f1 = 2.0*DOT(nrm, vcp); |
| 252 |
< |
VCROSS(vcp, nrm, ftp->e_i); |
| 251 |
> |
f1 = 2.0*DOT(nrm, ftp->rcp); |
| 252 |
> |
VCROSS(ncp, nrm, ftp->e_i); |
| 253 |
|
for (i = 3; i--; ) |
| 254 |
< |
grad[i] = (0.5/PI)*( ftp->I1*vcp[i] + |
| 255 |
< |
f1*(ftp->I2*ftp->r_i[i] + ftp->J2*ftp->e_i[i]) ); |
| 254 |
> |
grad[i] = (-0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); |
| 255 |
|
} |
| 256 |
|
|
| 257 |
|
|
| 319 |
|
hess2[0][1] = DOT(uv[0], b); |
| 320 |
|
hess2[1][0] = DOT(uv[1], a); |
| 321 |
|
hess2[1][1] = DOT(uv[1], b); |
| 322 |
< |
/* compute eigenvalues */ |
| 323 |
< |
if ( quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], |
| 324 |
< |
hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 || |
| 325 |
< |
(evalue[0] = fabs(evalue[0])) <= FTINY*FTINY || |
| 326 |
< |
(evalue[1] = fabs(evalue[1])) <= FTINY*FTINY ) |
| 322 |
> |
/* compute eigenvalue(s) */ |
| 323 |
> |
i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], |
| 324 |
> |
hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]); |
| 325 |
> |
if (i == 1) /* double-root (circle) */ |
| 326 |
> |
evalue[1] = evalue[0]; |
| 327 |
> |
if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | |
| 328 |
> |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) |
| 329 |
|
error(INTERNAL, "bad eigenvalue calculation"); |
| 330 |
|
|
| 331 |
|
if (evalue[0] > evalue[1]) { |
| 416 |
|
rev_hessian(hesscol); |
| 417 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
| 418 |
|
} |
| 419 |
< |
if (gradient != NULL) { |
| 419 |
> |
if (gradrow != NULL) { |
| 420 |
|
comp_gradient(graddia, &fftr, hp->rp->ron); |
| 421 |
|
rev_gradient(gradcol); |
| 422 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
| 455 |
|
|
| 456 |
|
if (ra != NULL) /* extract eigenvectors & radii */ |
| 457 |
|
eigenvectors(uv, ra, hessian); |
| 458 |
< |
if (pg != NULL) { /* tangential position gradient/PI */ |
| 459 |
< |
pg[0] = DOT(gradient, uv[0]) / PI; |
| 460 |
< |
pg[1] = DOT(gradient, uv[1]) / PI; |
| 458 |
> |
if (pg != NULL) { /* tangential position gradient */ |
| 459 |
> |
pg[0] = DOT(gradient, uv[0]); |
| 460 |
> |
pg[1] = DOT(gradient, uv[1]); |
| 461 |
|
} |
| 462 |
|
} |
| 463 |
|
|
| 478 |
|
VSUB(vd, ap->p, hp->rp->rop); |
| 479 |
|
/* brightness over cosine factor */ |
| 480 |
|
gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); |
| 481 |
< |
/* -sine = -proj_radius/vd_length */ |
| 482 |
< |
dgsum[0] += DOT(uv[1], vd) * gfact; |
| 483 |
< |
dgsum[1] -= DOT(uv[0], vd) * gfact; |
| 481 |
> |
/* sine = proj_radius/vd_length */ |
| 482 |
> |
dgsum[0] -= DOT(uv[1], vd) * gfact; |
| 483 |
> |
dgsum[1] += DOT(uv[0], vd) * gfact; |
| 484 |
|
} |
| 485 |
|
dg[0] = dgsum[0] / (hp->ns*hp->ns); |
| 486 |
|
dg[1] = dgsum[1] / (hp->ns*hp->ns); |
| 501 |
|
AMBHEMI *hp = inithemi(rcol, r, wt); |
| 502 |
|
int cnt = 0; |
| 503 |
|
FVECT my_uv[2]; |
| 504 |
< |
double d, acol[3]; |
| 504 |
> |
double d, K, acol[3]; |
| 505 |
|
struct s_ambsamp *ap; |
| 506 |
|
int i, j; |
| 507 |
|
/* check/initialize */ |
| 534 |
|
free(hp); |
| 535 |
|
return(-1); /* no radius or gradient calc. */ |
| 536 |
|
} |
| 537 |
< |
multcolor(acol, hp->acoef); /* normalize Y values */ |
| 538 |
< |
if ((d = bright(acol)) > FTINY) |
| 539 |
< |
d = 1.0/d; |
| 540 |
< |
else |
| 537 |
> |
if (bright(acol) > FTINY) { /* normalize Y values */ |
| 538 |
> |
d = 0.99*cnt/bright(acol); |
| 539 |
> |
K = 0.01; |
| 540 |
> |
} else { /* geometric Hessian fall-back */ |
| 541 |
|
d = 0.0; |
| 542 |
+ |
K = 1.0; |
| 543 |
+ |
pg = NULL; |
| 544 |
+ |
dg = NULL; |
| 545 |
+ |
} |
| 546 |
|
ap = hp->sa; /* relative Y channel from here on... */ |
| 547 |
|
for (i = hp->ns*hp->ns; i--; ap++) |
| 548 |
< |
colval(ap->v,CIEY) = bright(ap->v)*d + 0.0314; |
| 548 |
> |
colval(ap->v,CIEY) = bright(ap->v)*d + K; |
| 549 |
|
|
| 550 |
|
if (uv == NULL) /* make sure we have axis pointers */ |
| 551 |
|
uv = my_uv; |
| 556 |
|
ambdirgrad(hp, uv, dg); |
| 557 |
|
|
| 558 |
|
if (ra != NULL) { /* scale/clamp radii */ |
| 559 |
+ |
if (pg != NULL) { |
| 560 |
+ |
if (ra[0]*(d = fabs(pg[0])) > 1.0) |
| 561 |
+ |
ra[0] = 1.0/d; |
| 562 |
+ |
if (ra[1]*(d = fabs(pg[1])) > 1.0) |
| 563 |
+ |
ra[1] = 1.0/d; |
| 564 |
+ |
if (ra[0] > ra[1]) |
| 565 |
+ |
ra[0] = ra[1]; |
| 566 |
+ |
} |
| 567 |
|
if (ra[0] < minarad) { |
| 568 |
|
ra[0] = minarad; |
| 569 |
|
if (ra[1] < minarad) |
| 576 |
|
ra[1] = maxarad; |
| 577 |
|
if (ra[0] > maxarad) |
| 578 |
|
ra[0] = maxarad; |
| 579 |
+ |
} |
| 580 |
+ |
if (pg != NULL) { /* cap gradient if necessary */ |
| 581 |
+ |
d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; |
| 582 |
+ |
if (d > 1.0) { |
| 583 |
+ |
d = 1.0/sqrt(d); |
| 584 |
+ |
pg[0] *= d; |
| 585 |
+ |
pg[1] *= d; |
| 586 |
+ |
} |
| 587 |
|
} |
| 588 |
|
} |
| 589 |
|
free(hp); /* clean up and return */ |