4 |
|
/* |
5 |
|
* Routines to compute "ambient" values using Monte Carlo |
6 |
|
* |
7 |
+ |
* Hessian calculations based on "Practical Hessian-Based Error Control |
8 |
+ |
* for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz |
9 |
+ |
* from ACM SIGGRAPH Asia 2012 conference proceedings. |
10 |
+ |
* |
11 |
+ |
* Added book-keeping optimization to avoid calculations that would |
12 |
+ |
* cancel due to traversal both directions on edges that are adjacent |
13 |
+ |
* to same-valued triangles. This cuts about half of Hessian math. |
14 |
+ |
* |
15 |
|
* Declarations of external symbols in ambient.h |
16 |
|
*/ |
17 |
|
|
21 |
|
#include "ambient.h" |
22 |
|
#include "random.h" |
23 |
|
|
24 |
< |
#ifdef NEWAMB |
24 |
> |
#ifndef OLDAMB |
25 |
> |
|
26 |
> |
extern void SDsquare2disk(double ds[2], double seedx, double seedy); |
27 |
> |
|
28 |
> |
typedef struct { |
29 |
> |
COLOR v; /* hemisphere sample value */ |
30 |
> |
float d; /* reciprocal distance (1/rt) */ |
31 |
> |
FVECT p; /* intersection point */ |
32 |
> |
} AMBSAMP; /* sample value */ |
33 |
> |
|
34 |
> |
typedef struct { |
35 |
> |
RAY *rp; /* originating ray sample */ |
36 |
> |
int ns; /* number of samples per axis */ |
37 |
> |
int sampOK; /* acquired full sample set? */ |
38 |
> |
COLOR acoef; /* division contribution coefficient */ |
39 |
> |
double acol[3]; /* accumulated color */ |
40 |
> |
FVECT ux, uy; /* tangent axis unit vectors */ |
41 |
> |
AMBSAMP sa[1]; /* sample array (extends struct) */ |
42 |
> |
} AMBHEMI; /* ambient sample hemisphere */ |
43 |
> |
|
44 |
> |
#define AI(h,i,j) ((i)*(h)->ns + (j)) |
45 |
> |
#define ambsam(h,i,j) (h)->sa[AI(h,i,j)] |
46 |
> |
|
47 |
> |
typedef struct { |
48 |
> |
FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; |
49 |
> |
double I1, I2; |
50 |
> |
} FFTRI; /* vectors and coefficients for Hessian calculation */ |
51 |
> |
|
52 |
> |
|
53 |
> |
static int |
54 |
> |
ambcollision( /* proposed direciton collides? */ |
55 |
> |
AMBHEMI *hp, |
56 |
> |
int i, |
57 |
> |
int j, |
58 |
> |
FVECT dv |
59 |
> |
) |
60 |
> |
{ |
61 |
> |
double cos_thresh; |
62 |
> |
int ii, jj; |
63 |
> |
/* min. spacing = 1/4th division */ |
64 |
> |
cos_thresh = (PI/4.)/(double)hp->ns; |
65 |
> |
cos_thresh = 1. - .5*cos_thresh*cos_thresh; |
66 |
> |
/* check existing neighbors */ |
67 |
> |
for (ii = i-1; ii <= i+1; ii++) { |
68 |
> |
if (ii < 0) continue; |
69 |
> |
if (ii >= hp->ns) break; |
70 |
> |
for (jj = j-1; jj <= j+1; jj++) { |
71 |
> |
AMBSAMP *ap; |
72 |
> |
FVECT avec; |
73 |
> |
double dprod; |
74 |
> |
if (jj < 0) continue; |
75 |
> |
if (jj >= hp->ns) break; |
76 |
> |
if ((ii==i) & (jj==j)) continue; |
77 |
> |
ap = &ambsam(hp,ii,jj); |
78 |
> |
if (ap->d <= .5/FHUGE) |
79 |
> |
continue; /* no one home */ |
80 |
> |
VSUB(avec, ap->p, hp->rp->rop); |
81 |
> |
dprod = DOT(avec, dv); |
82 |
> |
if (dprod >= cos_thresh*VLEN(avec)) |
83 |
> |
return(1); /* collision */ |
84 |
> |
} |
85 |
> |
} |
86 |
> |
return(0); /* nothing to worry about */ |
87 |
> |
} |
88 |
> |
|
89 |
> |
|
90 |
> |
static int |
91 |
> |
ambsample( /* initial ambient division sample */ |
92 |
> |
AMBHEMI *hp, |
93 |
> |
int i, |
94 |
> |
int j, |
95 |
> |
int n |
96 |
> |
) |
97 |
> |
{ |
98 |
> |
AMBSAMP *ap = &ambsam(hp,i,j); |
99 |
> |
RAY ar; |
100 |
> |
int hlist[3], ii; |
101 |
> |
double spt[2], zd; |
102 |
> |
/* generate hemispherical sample */ |
103 |
> |
/* ambient coefficient for weight */ |
104 |
> |
if (ambacc > FTINY) |
105 |
> |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
106 |
> |
else |
107 |
> |
copycolor(ar.rcoef, hp->acoef); |
108 |
> |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) |
109 |
> |
return(0); |
110 |
> |
if (ambacc > FTINY) { |
111 |
> |
multcolor(ar.rcoef, hp->acoef); |
112 |
> |
scalecolor(ar.rcoef, 1./AVGREFL); |
113 |
> |
} |
114 |
> |
hlist[0] = hp->rp->rno; |
115 |
> |
hlist[1] = j; |
116 |
> |
hlist[2] = i; |
117 |
> |
multisamp(spt, 2, urand(ilhash(hlist,3)+n)); |
118 |
> |
resample: |
119 |
> |
SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns); |
120 |
> |
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
121 |
> |
for (ii = 3; ii--; ) |
122 |
> |
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
123 |
> |
spt[1]*hp->uy[ii] + |
124 |
> |
zd*hp->rp->ron[ii]; |
125 |
> |
checknorm(ar.rdir); |
126 |
> |
/* avoid coincident samples */ |
127 |
> |
if (!n && ambcollision(hp, i, j, ar.rdir)) { |
128 |
> |
spt[0] = frandom(); spt[1] = frandom(); |
129 |
> |
goto resample; /* reject this sample */ |
130 |
> |
} |
131 |
> |
dimlist[ndims++] = AI(hp,i,j) + 90171; |
132 |
> |
rayvalue(&ar); /* evaluate ray */ |
133 |
> |
ndims--; |
134 |
> |
if (ar.rt <= FTINY) |
135 |
> |
return(0); /* should never happen */ |
136 |
> |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
137 |
> |
if (ar.rt*ap->d < 1.0) /* new/closer distance? */ |
138 |
> |
ap->d = 1.0/ar.rt; |
139 |
> |
if (!n) { /* record first vertex & value */ |
140 |
> |
if (ar.rt > 10.0*thescene.cusize + 1000.) |
141 |
> |
ar.rt = 10.0*thescene.cusize + 1000.; |
142 |
> |
VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); |
143 |
> |
copycolor(ap->v, ar.rcol); |
144 |
> |
} else { /* else update recorded value */ |
145 |
> |
hp->acol[RED] -= colval(ap->v,RED); |
146 |
> |
hp->acol[GRN] -= colval(ap->v,GRN); |
147 |
> |
hp->acol[BLU] -= colval(ap->v,BLU); |
148 |
> |
zd = 1.0/(double)(n+1); |
149 |
> |
scalecolor(ar.rcol, zd); |
150 |
> |
zd *= (double)n; |
151 |
> |
scalecolor(ap->v, zd); |
152 |
> |
addcolor(ap->v, ar.rcol); |
153 |
> |
} |
154 |
> |
addcolor(hp->acol, ap->v); /* add to our sum */ |
155 |
> |
return(1); |
156 |
> |
} |
157 |
> |
|
158 |
> |
|
159 |
> |
/* Estimate errors based on ambient division differences */ |
160 |
> |
static float * |
161 |
> |
getambdiffs(AMBHEMI *hp) |
162 |
> |
{ |
163 |
> |
const double normf = 1./bright(hp->acoef); |
164 |
> |
float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float)); |
165 |
> |
float *ep; |
166 |
> |
AMBSAMP *ap; |
167 |
> |
double b, d2; |
168 |
> |
int i, j; |
169 |
> |
|
170 |
> |
if (earr == NULL) /* out of memory? */ |
171 |
> |
return(NULL); |
172 |
> |
/* compute squared neighbor diffs */ |
173 |
> |
for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) |
174 |
> |
for (j = 0; j < hp->ns; j++, ap++, ep++) { |
175 |
> |
b = bright(ap[0].v); |
176 |
> |
if (i) { /* from above */ |
177 |
> |
d2 = normf*(b - bright(ap[-hp->ns].v)); |
178 |
> |
d2 *= d2; |
179 |
> |
ep[0] += d2; |
180 |
> |
ep[-hp->ns] += d2; |
181 |
> |
} |
182 |
> |
if (!j) continue; |
183 |
> |
/* from behind */ |
184 |
> |
d2 = normf*(b - bright(ap[-1].v)); |
185 |
> |
d2 *= d2; |
186 |
> |
ep[0] += d2; |
187 |
> |
ep[-1] += d2; |
188 |
> |
if (!i) continue; |
189 |
> |
/* diagonal */ |
190 |
> |
d2 = normf*(b - bright(ap[-hp->ns-1].v)); |
191 |
> |
d2 *= d2; |
192 |
> |
ep[0] += d2; |
193 |
> |
ep[-hp->ns-1] += d2; |
194 |
> |
} |
195 |
> |
/* correct for number of neighbors */ |
196 |
> |
earr[0] *= 8./3.; |
197 |
> |
earr[hp->ns-1] *= 8./3.; |
198 |
> |
earr[(hp->ns-1)*hp->ns] *= 8./3.; |
199 |
> |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.; |
200 |
> |
for (i = 1; i < hp->ns-1; i++) { |
201 |
> |
earr[i*hp->ns] *= 8./5.; |
202 |
> |
earr[i*hp->ns + hp->ns-1] *= 8./5.; |
203 |
> |
} |
204 |
> |
for (j = 1; j < hp->ns-1; j++) { |
205 |
> |
earr[j] *= 8./5.; |
206 |
> |
earr[(hp->ns-1)*hp->ns + j] *= 8./5.; |
207 |
> |
} |
208 |
> |
return(earr); |
209 |
> |
} |
210 |
> |
|
211 |
> |
|
212 |
> |
/* Perform super-sampling on hemisphere (introduces bias) */ |
213 |
> |
static void |
214 |
> |
ambsupersamp(AMBHEMI *hp, int cnt) |
215 |
> |
{ |
216 |
> |
float *earr = getambdiffs(hp); |
217 |
> |
double e2rem = 0; |
218 |
> |
AMBSAMP *ap; |
219 |
> |
float *ep; |
220 |
> |
int i, j, n, nss; |
221 |
> |
|
222 |
> |
if (earr == NULL) /* just skip calc. if no memory */ |
223 |
> |
return; |
224 |
> |
/* accumulate estimated variances */ |
225 |
> |
for (ep = earr + hp->ns*hp->ns; ep > earr; ) |
226 |
> |
e2rem += *--ep; |
227 |
> |
ep = earr; /* perform super-sampling */ |
228 |
> |
for (ap = hp->sa, i = 0; i < hp->ns; i++) |
229 |
> |
for (j = 0; j < hp->ns; j++, ap++) { |
230 |
> |
if (e2rem <= FTINY) |
231 |
> |
goto done; /* nothing left to do */ |
232 |
> |
nss = *ep/e2rem*cnt + frandom(); |
233 |
> |
for (n = 1; n <= nss && ambsample(hp,i,j,n); n++) |
234 |
> |
if (!--cnt) goto done; |
235 |
> |
e2rem -= *ep++; /* update remainder */ |
236 |
> |
} |
237 |
> |
done: |
238 |
> |
free(earr); |
239 |
> |
} |
240 |
> |
|
241 |
> |
|
242 |
> |
static AMBHEMI * |
243 |
> |
samp_hemi( /* sample indirect hemisphere */ |
244 |
> |
COLOR rcol, |
245 |
> |
RAY *r, |
246 |
> |
double wt |
247 |
> |
) |
248 |
> |
{ |
249 |
> |
AMBHEMI *hp; |
250 |
> |
double d; |
251 |
> |
int n, i, j; |
252 |
> |
/* insignificance check */ |
253 |
> |
if (bright(rcol) <= FTINY) |
254 |
> |
return(NULL); |
255 |
> |
/* set number of divisions */ |
256 |
> |
if (ambacc <= FTINY && |
257 |
> |
wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight))) |
258 |
> |
wt = d; /* avoid ray termination */ |
259 |
> |
n = sqrt(ambdiv * wt) + 0.5; |
260 |
> |
i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ |
261 |
> |
if (n < i) |
262 |
> |
n = i; |
263 |
> |
/* allocate sampling array */ |
264 |
> |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
265 |
> |
if (hp == NULL) |
266 |
> |
error(SYSTEM, "out of memory in samp_hemi"); |
267 |
> |
hp->rp = r; |
268 |
> |
hp->ns = n; |
269 |
> |
hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0; |
270 |
> |
memset(hp->sa, 0, sizeof(AMBSAMP)*n*n); |
271 |
> |
hp->sampOK = 0; |
272 |
> |
/* assign coefficient */ |
273 |
> |
copycolor(hp->acoef, rcol); |
274 |
> |
d = 1.0/(n*n); |
275 |
> |
scalecolor(hp->acoef, d); |
276 |
> |
/* make tangent plane axes */ |
277 |
> |
if (!getperpendicular(hp->ux, r->ron, 1)) |
278 |
> |
error(CONSISTENCY, "bad ray direction in samp_hemi"); |
279 |
> |
VCROSS(hp->uy, r->ron, hp->ux); |
280 |
> |
/* sample divisions */ |
281 |
> |
for (i = hp->ns; i--; ) |
282 |
> |
for (j = hp->ns; j--; ) |
283 |
> |
hp->sampOK += ambsample(hp, i, j, 0); |
284 |
> |
copycolor(rcol, hp->acol); |
285 |
> |
if (!hp->sampOK) { /* utter failure? */ |
286 |
> |
free(hp); |
287 |
> |
return(NULL); |
288 |
> |
} |
289 |
> |
if (hp->sampOK < hp->ns*hp->ns) { |
290 |
> |
hp->sampOK *= -1; /* soft failure */ |
291 |
> |
return(hp); |
292 |
> |
} |
293 |
> |
n = ambssamp*wt + 0.5; |
294 |
> |
if (n > 8) { /* perform super-sampling? */ |
295 |
> |
ambsupersamp(hp, n); |
296 |
> |
copycolor(rcol, hp->acol); |
297 |
> |
} |
298 |
> |
return(hp); /* all is well */ |
299 |
> |
} |
300 |
> |
|
301 |
> |
|
302 |
> |
/* Return brightness of farthest ambient sample */ |
303 |
> |
static double |
304 |
> |
back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3) |
305 |
> |
{ |
306 |
> |
if (hp->sa[n1].d <= hp->sa[n2].d) { |
307 |
> |
if (hp->sa[n1].d <= hp->sa[n3].d) |
308 |
> |
return(colval(hp->sa[n1].v,CIEY)); |
309 |
> |
return(colval(hp->sa[n3].v,CIEY)); |
310 |
> |
} |
311 |
> |
if (hp->sa[n2].d <= hp->sa[n3].d) |
312 |
> |
return(colval(hp->sa[n2].v,CIEY)); |
313 |
> |
return(colval(hp->sa[n3].v,CIEY)); |
314 |
> |
} |
315 |
> |
|
316 |
> |
|
317 |
> |
/* Compute vectors and coefficients for Hessian/gradient calcs */ |
318 |
> |
static void |
319 |
> |
comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1) |
320 |
> |
{ |
321 |
> |
double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; |
322 |
> |
int ii; |
323 |
> |
|
324 |
> |
VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop); |
325 |
> |
VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop); |
326 |
> |
VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p); |
327 |
> |
VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); |
328 |
> |
rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); |
329 |
> |
dot_e = DOT(ftp->e_i,ftp->e_i); |
330 |
> |
dot_er = DOT(ftp->e_i, ftp->r_i); |
331 |
> |
rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i); |
332 |
> |
rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
333 |
> |
ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) * |
334 |
> |
sqrt( rdot_cp ); |
335 |
> |
ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r + |
336 |
> |
dot_e*ftp->I1 )*0.5*rdot_cp; |
337 |
> |
J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; |
338 |
> |
for (ii = 3; ii--; ) |
339 |
> |
ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii]; |
340 |
> |
} |
341 |
> |
|
342 |
> |
|
343 |
> |
/* Compose 3x3 matrix from two vectors */ |
344 |
> |
static void |
345 |
> |
compose_matrix(FVECT mat[3], FVECT va, FVECT vb) |
346 |
> |
{ |
347 |
> |
mat[0][0] = 2.0*va[0]*vb[0]; |
348 |
> |
mat[1][1] = 2.0*va[1]*vb[1]; |
349 |
> |
mat[2][2] = 2.0*va[2]*vb[2]; |
350 |
> |
mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0]; |
351 |
> |
mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0]; |
352 |
> |
mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1]; |
353 |
> |
} |
354 |
> |
|
355 |
> |
|
356 |
> |
/* Compute partial 3x3 Hessian matrix for edge */ |
357 |
> |
static void |
358 |
> |
comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) |
359 |
> |
{ |
360 |
> |
FVECT ncp; |
361 |
> |
FVECT m1[3], m2[3], m3[3], m4[3]; |
362 |
> |
double d1, d2, d3, d4; |
363 |
> |
double I3, J3, K3; |
364 |
> |
int i, j; |
365 |
> |
/* compute intermediate coefficients */ |
366 |
> |
d1 = 1.0/DOT(ftp->r_i,ftp->r_i); |
367 |
> |
d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
368 |
> |
d3 = 1.0/DOT(ftp->e_i,ftp->e_i); |
369 |
> |
d4 = DOT(ftp->e_i, ftp->r_i); |
370 |
> |
I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 ) |
371 |
> |
/ ( 4.0*DOT(ftp->rcp,ftp->rcp) ); |
372 |
> |
J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3; |
373 |
> |
K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3); |
374 |
> |
/* intermediate matrices */ |
375 |
> |
VCROSS(ncp, nrm, ftp->e_i); |
376 |
> |
compose_matrix(m1, ncp, ftp->rI2_eJ2); |
377 |
> |
compose_matrix(m2, ftp->r_i, ftp->r_i); |
378 |
> |
compose_matrix(m3, ftp->e_i, ftp->e_i); |
379 |
> |
compose_matrix(m4, ftp->r_i, ftp->e_i); |
380 |
> |
d1 = DOT(nrm, ftp->rcp); |
381 |
> |
d2 = -d1*ftp->I2; |
382 |
> |
d1 *= 2.0; |
383 |
> |
for (i = 3; i--; ) /* final matrix sum */ |
384 |
> |
for (j = 3; j--; ) { |
385 |
> |
hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] + |
386 |
> |
2.0*J3*m4[i][j] ); |
387 |
> |
hess[i][j] += d2*(i==j); |
388 |
> |
hess[i][j] *= -1.0/PI; |
389 |
> |
} |
390 |
> |
} |
391 |
> |
|
392 |
> |
|
393 |
> |
/* Reverse hessian calculation result for edge in other direction */ |
394 |
> |
static void |
395 |
> |
rev_hessian(FVECT hess[3]) |
396 |
> |
{ |
397 |
> |
int i; |
398 |
> |
|
399 |
> |
for (i = 3; i--; ) { |
400 |
> |
hess[i][0] = -hess[i][0]; |
401 |
> |
hess[i][1] = -hess[i][1]; |
402 |
> |
hess[i][2] = -hess[i][2]; |
403 |
> |
} |
404 |
> |
} |
405 |
> |
|
406 |
> |
|
407 |
> |
/* Add to radiometric Hessian from the given triangle */ |
408 |
> |
static void |
409 |
> |
add2hessian(FVECT hess[3], FVECT ehess1[3], |
410 |
> |
FVECT ehess2[3], FVECT ehess3[3], double v) |
411 |
> |
{ |
412 |
> |
int i, j; |
413 |
> |
|
414 |
> |
for (i = 3; i--; ) |
415 |
> |
for (j = 3; j--; ) |
416 |
> |
hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] ); |
417 |
> |
} |
418 |
> |
|
419 |
> |
|
420 |
> |
/* Compute partial displacement form factor gradient for edge */ |
421 |
> |
static void |
422 |
> |
comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm) |
423 |
> |
{ |
424 |
> |
FVECT ncp; |
425 |
> |
double f1; |
426 |
> |
int i; |
427 |
> |
|
428 |
> |
f1 = 2.0*DOT(nrm, ftp->rcp); |
429 |
> |
VCROSS(ncp, nrm, ftp->e_i); |
430 |
> |
for (i = 3; i--; ) |
431 |
> |
grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); |
432 |
> |
} |
433 |
> |
|
434 |
> |
|
435 |
> |
/* Reverse gradient calculation result for edge in other direction */ |
436 |
> |
static void |
437 |
> |
rev_gradient(FVECT grad) |
438 |
> |
{ |
439 |
> |
grad[0] = -grad[0]; |
440 |
> |
grad[1] = -grad[1]; |
441 |
> |
grad[2] = -grad[2]; |
442 |
> |
} |
443 |
> |
|
444 |
> |
|
445 |
> |
/* Add to displacement gradient from the given triangle */ |
446 |
> |
static void |
447 |
> |
add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v) |
448 |
> |
{ |
449 |
> |
int i; |
450 |
> |
|
451 |
> |
for (i = 3; i--; ) |
452 |
> |
grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] ); |
453 |
> |
} |
454 |
> |
|
455 |
> |
|
456 |
> |
/* Compute anisotropic radii and eigenvector directions */ |
457 |
> |
static void |
458 |
> |
eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3]) |
459 |
> |
{ |
460 |
> |
double hess2[2][2]; |
461 |
> |
FVECT a, b; |
462 |
> |
double evalue[2], slope1, xmag1; |
463 |
> |
int i; |
464 |
> |
/* project Hessian to sample plane */ |
465 |
> |
for (i = 3; i--; ) { |
466 |
> |
a[i] = DOT(hessian[i], uv[0]); |
467 |
> |
b[i] = DOT(hessian[i], uv[1]); |
468 |
> |
} |
469 |
> |
hess2[0][0] = DOT(uv[0], a); |
470 |
> |
hess2[0][1] = DOT(uv[0], b); |
471 |
> |
hess2[1][0] = DOT(uv[1], a); |
472 |
> |
hess2[1][1] = DOT(uv[1], b); |
473 |
> |
/* compute eigenvalue(s) */ |
474 |
> |
i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], |
475 |
> |
hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]); |
476 |
> |
if (i == 1) /* double-root (circle) */ |
477 |
> |
evalue[1] = evalue[0]; |
478 |
> |
if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | |
479 |
> |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) { |
480 |
> |
ra[0] = ra[1] = maxarad; |
481 |
> |
return; |
482 |
> |
} |
483 |
> |
if (evalue[0] > evalue[1]) { |
484 |
> |
ra[0] = sqrt(sqrt(4.0/evalue[0])); |
485 |
> |
ra[1] = sqrt(sqrt(4.0/evalue[1])); |
486 |
> |
slope1 = evalue[1]; |
487 |
> |
} else { |
488 |
> |
ra[0] = sqrt(sqrt(4.0/evalue[1])); |
489 |
> |
ra[1] = sqrt(sqrt(4.0/evalue[0])); |
490 |
> |
slope1 = evalue[0]; |
491 |
> |
} |
492 |
> |
/* compute unit eigenvectors */ |
493 |
> |
if (fabs(hess2[0][1]) <= FTINY) |
494 |
> |
return; /* uv OK as is */ |
495 |
> |
slope1 = (slope1 - hess2[0][0]) / hess2[0][1]; |
496 |
> |
xmag1 = sqrt(1.0/(1.0 + slope1*slope1)); |
497 |
> |
for (i = 3; i--; ) { |
498 |
> |
b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i]; |
499 |
> |
a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i]; |
500 |
> |
} |
501 |
> |
VCOPY(uv[0], a); |
502 |
> |
VCOPY(uv[1], b); |
503 |
> |
} |
504 |
> |
|
505 |
> |
|
506 |
> |
static void |
507 |
> |
ambHessian( /* anisotropic radii & pos. gradient */ |
508 |
> |
AMBHEMI *hp, |
509 |
> |
FVECT uv[2], /* returned */ |
510 |
> |
float ra[2], /* returned (optional) */ |
511 |
> |
float pg[2] /* returned (optional) */ |
512 |
> |
) |
513 |
> |
{ |
514 |
> |
static char memerrmsg[] = "out of memory in ambHessian()"; |
515 |
> |
FVECT (*hessrow)[3] = NULL; |
516 |
> |
FVECT *gradrow = NULL; |
517 |
> |
FVECT hessian[3]; |
518 |
> |
FVECT gradient; |
519 |
> |
FFTRI fftr; |
520 |
> |
int i, j; |
521 |
> |
/* be sure to assign unit vectors */ |
522 |
> |
VCOPY(uv[0], hp->ux); |
523 |
> |
VCOPY(uv[1], hp->uy); |
524 |
> |
/* clock-wise vertex traversal from sample POV */ |
525 |
> |
if (ra != NULL) { /* initialize Hessian row buffer */ |
526 |
> |
hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1)); |
527 |
> |
if (hessrow == NULL) |
528 |
> |
error(SYSTEM, memerrmsg); |
529 |
> |
memset(hessian, 0, sizeof(hessian)); |
530 |
> |
} else if (pg == NULL) /* bogus call? */ |
531 |
> |
return; |
532 |
> |
if (pg != NULL) { /* initialize form factor row buffer */ |
533 |
> |
gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1)); |
534 |
> |
if (gradrow == NULL) |
535 |
> |
error(SYSTEM, memerrmsg); |
536 |
> |
memset(gradient, 0, sizeof(gradient)); |
537 |
> |
} |
538 |
> |
/* compute first row of edges */ |
539 |
> |
for (j = 0; j < hp->ns-1; j++) { |
540 |
> |
comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1)); |
541 |
> |
if (hessrow != NULL) |
542 |
> |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
543 |
> |
if (gradrow != NULL) |
544 |
> |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
545 |
> |
} |
546 |
> |
/* sum each row of triangles */ |
547 |
> |
for (i = 0; i < hp->ns-1; i++) { |
548 |
> |
FVECT hesscol[3]; /* compute first vertical edge */ |
549 |
> |
FVECT gradcol; |
550 |
> |
comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0)); |
551 |
> |
if (hessrow != NULL) |
552 |
> |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
553 |
> |
if (gradrow != NULL) |
554 |
> |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
555 |
> |
for (j = 0; j < hp->ns-1; j++) { |
556 |
> |
FVECT hessdia[3]; /* compute triangle contributions */ |
557 |
> |
FVECT graddia; |
558 |
> |
double backg; |
559 |
> |
backg = back_ambval(hp, AI(hp,i,j), |
560 |
> |
AI(hp,i,j+1), AI(hp,i+1,j)); |
561 |
> |
/* diagonal (inner) edge */ |
562 |
> |
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j)); |
563 |
> |
if (hessrow != NULL) { |
564 |
> |
comp_hessian(hessdia, &fftr, hp->rp->ron); |
565 |
> |
rev_hessian(hesscol); |
566 |
> |
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
567 |
> |
} |
568 |
> |
if (gradrow != NULL) { |
569 |
> |
comp_gradient(graddia, &fftr, hp->rp->ron); |
570 |
> |
rev_gradient(gradcol); |
571 |
> |
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
572 |
> |
} |
573 |
> |
/* initialize edge in next row */ |
574 |
> |
comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j)); |
575 |
> |
if (hessrow != NULL) |
576 |
> |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
577 |
> |
if (gradrow != NULL) |
578 |
> |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
579 |
> |
/* new column edge & paired triangle */ |
580 |
> |
backg = back_ambval(hp, AI(hp,i+1,j+1), |
581 |
> |
AI(hp,i+1,j), AI(hp,i,j+1)); |
582 |
> |
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1)); |
583 |
> |
if (hessrow != NULL) { |
584 |
> |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
585 |
> |
rev_hessian(hessdia); |
586 |
> |
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
587 |
> |
if (i < hp->ns-2) |
588 |
> |
rev_hessian(hessrow[j]); |
589 |
> |
} |
590 |
> |
if (gradrow != NULL) { |
591 |
> |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
592 |
> |
rev_gradient(graddia); |
593 |
> |
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
594 |
> |
if (i < hp->ns-2) |
595 |
> |
rev_gradient(gradrow[j]); |
596 |
> |
} |
597 |
> |
} |
598 |
> |
} |
599 |
> |
/* release row buffers */ |
600 |
> |
if (hessrow != NULL) free(hessrow); |
601 |
> |
if (gradrow != NULL) free(gradrow); |
602 |
> |
|
603 |
> |
if (ra != NULL) /* extract eigenvectors & radii */ |
604 |
> |
eigenvectors(uv, ra, hessian); |
605 |
> |
if (pg != NULL) { /* tangential position gradient */ |
606 |
> |
pg[0] = DOT(gradient, uv[0]); |
607 |
> |
pg[1] = DOT(gradient, uv[1]); |
608 |
> |
} |
609 |
> |
} |
610 |
> |
|
611 |
> |
|
612 |
> |
/* Compute direction gradient from a hemispherical sampling */ |
613 |
> |
static void |
614 |
> |
ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) |
615 |
> |
{ |
616 |
> |
AMBSAMP *ap; |
617 |
> |
double dgsum[2]; |
618 |
> |
int n; |
619 |
> |
FVECT vd; |
620 |
> |
double gfact; |
621 |
> |
|
622 |
> |
dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */ |
623 |
> |
for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) { |
624 |
> |
/* use vector for azimuth + 90deg */ |
625 |
> |
VSUB(vd, ap->p, hp->rp->rop); |
626 |
> |
/* brightness over cosine factor */ |
627 |
> |
gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); |
628 |
> |
/* sine = proj_radius/vd_length */ |
629 |
> |
dgsum[0] -= DOT(uv[1], vd) * gfact; |
630 |
> |
dgsum[1] += DOT(uv[0], vd) * gfact; |
631 |
> |
} |
632 |
> |
dg[0] = dgsum[0] / (hp->ns*hp->ns); |
633 |
> |
dg[1] = dgsum[1] / (hp->ns*hp->ns); |
634 |
> |
} |
635 |
> |
|
636 |
> |
|
637 |
> |
/* Compute potential light leak direction flags for cache value */ |
638 |
> |
static uint32 |
639 |
> |
ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1) |
640 |
> |
{ |
641 |
> |
const double max_d = 1.0/(minarad*ambacc + 0.001); |
642 |
> |
const double ang_res = 0.5*PI/hp->ns; |
643 |
> |
const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01); |
644 |
> |
double avg_d = 0; |
645 |
> |
uint32 flgs = 0; |
646 |
> |
FVECT vec; |
647 |
> |
double u, v; |
648 |
> |
double ang, a1; |
649 |
> |
OBJREC *m; |
650 |
> |
int i, j; |
651 |
> |
/* don't bother for a few samples */ |
652 |
> |
if (hp->ns < 8) |
653 |
> |
return(0); |
654 |
> |
/* check distances overhead */ |
655 |
> |
for (i = hp->ns*3/4; i-- > hp->ns>>2; ) |
656 |
> |
for (j = hp->ns*3/4; j-- > hp->ns>>2; ) |
657 |
> |
avg_d += ambsam(hp,i,j).d; |
658 |
> |
avg_d *= 4.0/(hp->ns*hp->ns); |
659 |
> |
if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */ |
660 |
> |
return(0); |
661 |
> |
if (avg_d >= max_d) /* insurance */ |
662 |
> |
return(0); |
663 |
> |
/* else circle around perimeter */ |
664 |
> |
for (i = 0; i < hp->ns; i++) |
665 |
> |
for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) { |
666 |
> |
AMBSAMP *ap = &ambsam(hp,i,j); |
667 |
> |
if ((ap->d <= FTINY) | (ap->d >= max_d)) |
668 |
> |
continue; /* too far or too near */ |
669 |
> |
VSUB(vec, ap->p, hp->rp->rop); |
670 |
> |
u = DOT(vec, uv[0]); |
671 |
> |
v = DOT(vec, uv[1]); |
672 |
> |
if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v) |
673 |
> |
continue; /* occluder outside ellipse */ |
674 |
> |
ang = atan2a(v, u); /* else set direction flags */ |
675 |
> |
for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step) |
676 |
> |
flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0))); |
677 |
> |
} |
678 |
> |
return(flgs); |
679 |
> |
} |
680 |
> |
|
681 |
> |
|
682 |
> |
int |
683 |
> |
doambient( /* compute ambient component */ |
684 |
> |
COLOR rcol, /* input/output color */ |
685 |
> |
RAY *r, |
686 |
> |
double wt, |
687 |
> |
FVECT uv[2], /* returned (optional) */ |
688 |
> |
float ra[2], /* returned (optional) */ |
689 |
> |
float pg[2], /* returned (optional) */ |
690 |
> |
float dg[2], /* returned (optional) */ |
691 |
> |
uint32 *crlp /* returned (optional) */ |
692 |
> |
) |
693 |
> |
{ |
694 |
> |
AMBHEMI *hp = samp_hemi(rcol, r, wt); |
695 |
> |
FVECT my_uv[2]; |
696 |
> |
double d, K; |
697 |
> |
AMBSAMP *ap; |
698 |
> |
int i; |
699 |
> |
/* clear return values */ |
700 |
> |
if (uv != NULL) |
701 |
> |
memset(uv, 0, sizeof(FVECT)*2); |
702 |
> |
if (ra != NULL) |
703 |
> |
ra[0] = ra[1] = 0.0; |
704 |
> |
if (pg != NULL) |
705 |
> |
pg[0] = pg[1] = 0.0; |
706 |
> |
if (dg != NULL) |
707 |
> |
dg[0] = dg[1] = 0.0; |
708 |
> |
if (crlp != NULL) |
709 |
> |
*crlp = 0; |
710 |
> |
if (hp == NULL) /* sampling falure? */ |
711 |
> |
return(0); |
712 |
> |
|
713 |
> |
if ((ra == NULL) & (pg == NULL) & (dg == NULL) || |
714 |
> |
(hp->sampOK < 0) | (hp->ns < 6)) { |
715 |
> |
free(hp); /* Hessian not requested/possible */ |
716 |
> |
return(-1); /* value-only return value */ |
717 |
> |
} |
718 |
> |
if ((d = bright(rcol)) > FTINY) { /* normalize Y values */ |
719 |
> |
d = 0.99*(hp->ns*hp->ns)/d; |
720 |
> |
K = 0.01; |
721 |
> |
} else { /* or fall back on geometric Hessian */ |
722 |
> |
K = 1.0; |
723 |
> |
pg = NULL; |
724 |
> |
dg = NULL; |
725 |
> |
crlp = NULL; |
726 |
> |
} |
727 |
> |
ap = hp->sa; /* relative Y channel from here on... */ |
728 |
> |
for (i = hp->ns*hp->ns; i--; ap++) |
729 |
> |
colval(ap->v,CIEY) = bright(ap->v)*d + K; |
730 |
> |
|
731 |
> |
if (uv == NULL) /* make sure we have axis pointers */ |
732 |
> |
uv = my_uv; |
733 |
> |
/* compute radii & pos. gradient */ |
734 |
> |
ambHessian(hp, uv, ra, pg); |
735 |
> |
|
736 |
> |
if (dg != NULL) /* compute direction gradient */ |
737 |
> |
ambdirgrad(hp, uv, dg); |
738 |
> |
|
739 |
> |
if (ra != NULL) { /* scale/clamp radii */ |
740 |
> |
if (pg != NULL) { |
741 |
> |
if (ra[0]*(d = fabs(pg[0])) > 1.0) |
742 |
> |
ra[0] = 1.0/d; |
743 |
> |
if (ra[1]*(d = fabs(pg[1])) > 1.0) |
744 |
> |
ra[1] = 1.0/d; |
745 |
> |
if (ra[0] > ra[1]) |
746 |
> |
ra[0] = ra[1]; |
747 |
> |
} |
748 |
> |
if (ra[0] < minarad) { |
749 |
> |
ra[0] = minarad; |
750 |
> |
if (ra[1] < minarad) |
751 |
> |
ra[1] = minarad; |
752 |
> |
} |
753 |
> |
ra[0] *= d = 1.0/sqrt(wt); |
754 |
> |
if ((ra[1] *= d) > 2.0*ra[0]) |
755 |
> |
ra[1] = 2.0*ra[0]; |
756 |
> |
if (ra[1] > maxarad) { |
757 |
> |
ra[1] = maxarad; |
758 |
> |
if (ra[0] > maxarad) |
759 |
> |
ra[0] = maxarad; |
760 |
> |
} |
761 |
> |
/* flag encroached directions */ |
762 |
> |
if (crlp != NULL) |
763 |
> |
*crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc); |
764 |
> |
if (pg != NULL) { /* cap gradient if necessary */ |
765 |
> |
d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; |
766 |
> |
if (d > 1.0) { |
767 |
> |
d = 1.0/sqrt(d); |
768 |
> |
pg[0] *= d; |
769 |
> |
pg[1] *= d; |
770 |
> |
} |
771 |
> |
} |
772 |
> |
} |
773 |
> |
free(hp); /* clean up and return */ |
774 |
> |
return(1); |
775 |
> |
} |
776 |
> |
|
777 |
|
|
778 |
|
#else /* ! NEWAMB */ |
779 |
|
|