| 10 |
|
#include "copyright.h" |
| 11 |
|
|
| 12 |
|
#include "ray.h" |
| 13 |
– |
|
| 13 |
|
#include "ambient.h" |
| 15 |
– |
|
| 14 |
|
#include "random.h" |
| 15 |
|
|
| 16 |
+ |
#ifdef NEWAMB |
| 17 |
|
|
| 18 |
+ |
extern void SDsquare2disk(double ds[2], double seedx, double seedy); |
| 19 |
+ |
|
| 20 |
+ |
typedef struct { |
| 21 |
+ |
RAY *rp; /* originating ray sample */ |
| 22 |
+ |
FVECT ux, uy; /* tangent axis directions */ |
| 23 |
+ |
int ns; /* number of samples per axis */ |
| 24 |
+ |
COLOR acoef; /* division contribution coefficient */ |
| 25 |
+ |
struct s_ambsamp { |
| 26 |
+ |
COLOR v; /* hemisphere sample value */ |
| 27 |
+ |
float p[3]; /* intersection point */ |
| 28 |
+ |
} sa[1]; /* sample array (extends struct) */ |
| 29 |
+ |
} AMBHEMI; /* ambient sample hemisphere */ |
| 30 |
+ |
|
| 31 |
+ |
#define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)] |
| 32 |
+ |
|
| 33 |
+ |
|
| 34 |
+ |
static AMBHEMI * |
| 35 |
+ |
inithemi( /* initialize sampling hemisphere */ |
| 36 |
+ |
COLOR ac, |
| 37 |
+ |
RAY *r, |
| 38 |
+ |
double wt |
| 39 |
+ |
) |
| 40 |
+ |
{ |
| 41 |
+ |
AMBHEMI *hp; |
| 42 |
+ |
double d; |
| 43 |
+ |
int n, i; |
| 44 |
+ |
/* set number of divisions */ |
| 45 |
+ |
if (ambacc <= FTINY && |
| 46 |
+ |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) |
| 47 |
+ |
wt = d; /* avoid ray termination */ |
| 48 |
+ |
n = sqrt(ambdiv * wt) + 0.5; |
| 49 |
+ |
i = 1 + 4*(ambacc > FTINY); /* minimum number of samples */ |
| 50 |
+ |
if (n < i) |
| 51 |
+ |
n = i; |
| 52 |
+ |
/* allocate sampling array */ |
| 53 |
+ |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + |
| 54 |
+ |
sizeof(struct s_ambsamp)*(n*n - 1)); |
| 55 |
+ |
if (hp == NULL) |
| 56 |
+ |
return(NULL); |
| 57 |
+ |
hp->rp = r; |
| 58 |
+ |
hp->ns = n; |
| 59 |
+ |
/* assign coefficient */ |
| 60 |
+ |
copycolor(hp->acoef, ac); |
| 61 |
+ |
d = 1.0/(n*n); |
| 62 |
+ |
scalecolor(hp->acoef, d); |
| 63 |
+ |
/* make tangent axes */ |
| 64 |
+ |
hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; |
| 65 |
+ |
for (i = 0; i < 3; i++) |
| 66 |
+ |
if (r->rn[i] < 0.6 && r->rn[i] > -0.6) |
| 67 |
+ |
break; |
| 68 |
+ |
if (i >= 3) |
| 69 |
+ |
error(CONSISTENCY, "bad ray direction in inithemi()"); |
| 70 |
+ |
hp->uy[i] = 1.0; |
| 71 |
+ |
VCROSS(hp->ux, hp->uy, r->rn); |
| 72 |
+ |
normalize(hp->ux); |
| 73 |
+ |
VCROSS(hp->uy, r->rn, hp->ux); |
| 74 |
+ |
/* we're ready to sample */ |
| 75 |
+ |
return(hp); |
| 76 |
+ |
} |
| 77 |
+ |
|
| 78 |
+ |
|
| 79 |
+ |
static int |
| 80 |
+ |
ambsample( /* sample an ambient direction */ |
| 81 |
+ |
AMBHEMI *hp, |
| 82 |
+ |
int i, |
| 83 |
+ |
int j, |
| 84 |
+ |
) |
| 85 |
+ |
{ |
| 86 |
+ |
struct s_ambsamp *ap = &ambsamp(hp,i,j); |
| 87 |
+ |
RAY ar; |
| 88 |
+ |
int hlist[3]; |
| 89 |
+ |
double spt[2], dz; |
| 90 |
+ |
int ii; |
| 91 |
+ |
/* ambient coefficient for weight */ |
| 92 |
+ |
if (ambacc > FTINY) |
| 93 |
+ |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
| 94 |
+ |
else |
| 95 |
+ |
copycolor(ar.rcoef, hp->acoef); |
| 96 |
+ |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) { |
| 97 |
+ |
setcolor(ap->v, 0., 0., 0.); |
| 98 |
+ |
ap->r = 0.; |
| 99 |
+ |
return(0); /* no sample taken */ |
| 100 |
+ |
} |
| 101 |
+ |
if (ambacc > FTINY) { |
| 102 |
+ |
multcolor(ar.rcoef, hp->acoef); |
| 103 |
+ |
scalecolor(ar.rcoef, 1./AVGREFL); |
| 104 |
+ |
} |
| 105 |
+ |
/* generate hemispherical sample */ |
| 106 |
+ |
SDsquare2disk(spt, (i+frandom())/hp->ns, (j+frandom())/hp->ns); |
| 107 |
+ |
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
| 108 |
+ |
for (ii = 3; ii--; ) |
| 109 |
+ |
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
| 110 |
+ |
spt[1]*hp->uy[ii] + |
| 111 |
+ |
zd*hp->rp->ron[ii]; |
| 112 |
+ |
checknorm(ar.rdir); |
| 113 |
+ |
dimlist[ndims++] = i*hp->ns + j + 90171; |
| 114 |
+ |
rayvalue(&ar); /* evaluate ray */ |
| 115 |
+ |
ndims--; |
| 116 |
+ |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
| 117 |
+ |
copycolor(ap->v, ar.rcol); |
| 118 |
+ |
if (ar.rt > 20.0*maxarad) /* limit vertex distance */ |
| 119 |
+ |
ar.rt = 20.0*maxarad; |
| 120 |
+ |
VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); |
| 121 |
+ |
return(1); |
| 122 |
+ |
} |
| 123 |
+ |
|
| 124 |
+ |
|
| 125 |
+ |
static void |
| 126 |
+ |
ambHessian( /* anisotropic radii & pos. gradient */ |
| 127 |
+ |
AMBHEMI *hp, |
| 128 |
+ |
FVECT uv[2], /* returned */ |
| 129 |
+ |
float ra[2], /* returned */ |
| 130 |
+ |
float pg[2] /* returned */ |
| 131 |
+ |
) |
| 132 |
+ |
{ |
| 133 |
+ |
if (ra != NULL) { /* compute Hessian-derived radii */ |
| 134 |
+ |
} else { /* else copy original tangent axes */ |
| 135 |
+ |
VCOPY(uv[0], hp->ux); |
| 136 |
+ |
VCOPY(uv[1], hp->uy); |
| 137 |
+ |
} |
| 138 |
+ |
if (pg == NULL) /* no position gradient requested? */ |
| 139 |
+ |
return; |
| 140 |
+ |
} |
| 141 |
+ |
|
| 142 |
+ |
int |
| 143 |
+ |
doambient( /* compute ambient component */ |
| 144 |
+ |
COLOR rcol, /* input/output color */ |
| 145 |
+ |
RAY *r, |
| 146 |
+ |
double wt, |
| 147 |
+ |
FVECT uv[2], /* returned */ |
| 148 |
+ |
float ra[2], /* returned */ |
| 149 |
+ |
float pg[2], /* returned */ |
| 150 |
+ |
float dg[2] /* returned */ |
| 151 |
+ |
) |
| 152 |
+ |
{ |
| 153 |
+ |
int cnt = 0; |
| 154 |
+ |
FVECT my_uv[2]; |
| 155 |
+ |
AMBHEMI *hp; |
| 156 |
+ |
double d, acol[3]; |
| 157 |
+ |
struct s_ambsamp *ap; |
| 158 |
+ |
int i, j; |
| 159 |
+ |
/* initialize */ |
| 160 |
+ |
if ((hp = inithemi(rcol, r, wt)) == NULL) |
| 161 |
+ |
return(0); |
| 162 |
+ |
if (uv != NULL) |
| 163 |
+ |
memset(uv, 0, sizeof(FVECT)*2); |
| 164 |
+ |
if (ra != NULL) |
| 165 |
+ |
ra[0] = ra[1] = 0.0; |
| 166 |
+ |
if (pg != NULL) |
| 167 |
+ |
pg[0] = pg[1] = 0.0; |
| 168 |
+ |
if (dg != NULL) |
| 169 |
+ |
dg[0] = dg[1] = 0.0; |
| 170 |
+ |
/* sample the hemisphere */ |
| 171 |
+ |
acol[0] = acol[1] = acol[2] = 0.0; |
| 172 |
+ |
for (i = hemi.ns; i--; ) |
| 173 |
+ |
for (j = hemi.ns; j--; ) |
| 174 |
+ |
if (ambsample(hp, i, j)) { |
| 175 |
+ |
ap = &ambsamp(hp,i,j); |
| 176 |
+ |
addcolor(acol, ap->v); |
| 177 |
+ |
++cnt; |
| 178 |
+ |
} |
| 179 |
+ |
if (!cnt) { |
| 180 |
+ |
setcolor(rcol, 0.0, 0.0, 0.0); |
| 181 |
+ |
free(hp); |
| 182 |
+ |
return(0); /* no valid samples */ |
| 183 |
+ |
} |
| 184 |
+ |
d = 1.0 / cnt; /* final indirect irradiance/PI */ |
| 185 |
+ |
acol[0] *= d; acol[1] *= d; acol[2] *= d; |
| 186 |
+ |
copycolor(rcol, acol); |
| 187 |
+ |
if (cnt < hp->ns*hp->ns || /* incomplete sampling? */ |
| 188 |
+ |
(ra == NULL) & (pg == NULL) & (dg == NULL)) { |
| 189 |
+ |
free(hp); |
| 190 |
+ |
return(-1); /* no radius or gradient calc. */ |
| 191 |
+ |
} |
| 192 |
+ |
d = 0.01 * bright(rcol); /* add in 1% before Hessian comp. */ |
| 193 |
+ |
if (d < FTINY) d = FTINY; |
| 194 |
+ |
ap = hp->sa; /* using Y channel from here on... */ |
| 195 |
+ |
for (i = hp->ns*hp->ns; i--; ap++) |
| 196 |
+ |
colval(ap->v,CIEY) = bright(ap->v) + d; |
| 197 |
+ |
|
| 198 |
+ |
if (uv == NULL) /* make sure we have axis pointers */ |
| 199 |
+ |
uv = my_uv; |
| 200 |
+ |
/* compute radii & pos. gradient */ |
| 201 |
+ |
ambHessian(hp, uv, ra, pg); |
| 202 |
+ |
if (dg != NULL) /* compute direction gradient */ |
| 203 |
+ |
ambdirgrad(hp, uv, dg); |
| 204 |
+ |
if (ra != NULL) { /* adjust/clamp radii */ |
| 205 |
+ |
d = pow(wt, -0.25); |
| 206 |
+ |
if ((ra[0] *= d) > maxarad) |
| 207 |
+ |
ra[0] = maxarad; |
| 208 |
+ |
if ((ra[1] *= d) > 2.0*ra[0]) |
| 209 |
+ |
ra[1] = 2.0*ra[0]; |
| 210 |
+ |
} |
| 211 |
+ |
free(hp); /* clean up and return */ |
| 212 |
+ |
return(1); |
| 213 |
+ |
} |
| 214 |
+ |
|
| 215 |
+ |
|
| 216 |
+ |
#else /* ! NEWAMB */ |
| 217 |
+ |
|
| 218 |
+ |
|
| 219 |
|
void |
| 220 |
|
inithemi( /* initialize sampling hemisphere */ |
| 221 |
|
AMBHEMI *hp, |
| 356 |
|
FVECT dg |
| 357 |
|
) |
| 358 |
|
{ |
| 359 |
< |
double b, d; |
| 359 |
> |
double b, d=0; |
| 360 |
|
AMBHEMI hemi; |
| 361 |
|
AMBSAMP *div; |
| 362 |
|
AMBSAMP dnew; |
| 634 |
|
for (i = 0; i < 3; i++) |
| 635 |
|
gv[i] = xd*hp->ux[i] + yd*hp->uy[i]; |
| 636 |
|
} |
| 637 |
+ |
|
| 638 |
+ |
#endif /* ! NEWAMB */ |