1 |
– |
/* Copyright (c) 1991 Regents of the University of California */ |
2 |
– |
|
1 |
|
#ifndef lint |
2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
2 |
> |
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
6 |
– |
|
4 |
|
/* |
5 |
|
* Routines to compute "ambient" values using Monte Carlo |
6 |
+ |
* |
7 |
+ |
* Hessian calculations based on "Practical Hessian-Based Error Control |
8 |
+ |
* for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz |
9 |
+ |
* from ACM SIGGRAPH Asia 2012 conference proceedings. |
10 |
+ |
* |
11 |
+ |
* Added book-keeping optimization to avoid calculations that would |
12 |
+ |
* cancel due to traversal both directions on edges that are adjacent |
13 |
+ |
* to same-valued triangles. This cuts about half of Hessian math. |
14 |
+ |
* |
15 |
+ |
* Declarations of external symbols in ambient.h |
16 |
|
*/ |
17 |
|
|
18 |
< |
#include "ray.h" |
18 |
> |
#include "copyright.h" |
19 |
|
|
20 |
+ |
#include "ray.h" |
21 |
|
#include "ambient.h" |
14 |
– |
|
22 |
|
#include "random.h" |
23 |
|
|
24 |
+ |
#ifdef NEWAMB |
25 |
+ |
|
26 |
+ |
extern void SDsquare2disk(double ds[2], double seedx, double seedy); |
27 |
+ |
|
28 |
+ |
/* vertex direction bit positions */ |
29 |
+ |
#define VDB_xy 0 |
30 |
+ |
#define VDB_y 01 |
31 |
+ |
#define VDB_x 02 |
32 |
+ |
#define VDB_Xy 03 |
33 |
+ |
#define VDB_xY 04 |
34 |
+ |
#define VDB_X 05 |
35 |
+ |
#define VDB_Y 06 |
36 |
+ |
#define VDB_XY 07 |
37 |
+ |
/* get opposite vertex direction bit */ |
38 |
+ |
#define VDB_OPP(f) (~(f) & 07) |
39 |
+ |
/* adjacent triangle vertex flags */ |
40 |
+ |
static const int adjacent_trifl[8] = { |
41 |
+ |
0, /* forbidden diagonal */ |
42 |
+ |
1<<VDB_x|1<<VDB_y|1<<VDB_Xy, |
43 |
+ |
1<<VDB_y|1<<VDB_x|1<<VDB_xY, |
44 |
+ |
1<<VDB_y|1<<VDB_Xy|1<<VDB_X, |
45 |
+ |
1<<VDB_x|1<<VDB_xY|1<<VDB_Y, |
46 |
+ |
1<<VDB_Xy|1<<VDB_X|1<<VDB_Y, |
47 |
+ |
1<<VDB_xY|1<<VDB_Y|1<<VDB_X, |
48 |
+ |
0, /* forbidden diagonal */ |
49 |
+ |
}; |
50 |
+ |
|
51 |
|
typedef struct { |
52 |
< |
short t, p; /* theta, phi indices */ |
53 |
< |
COLOR v; /* value sum */ |
54 |
< |
float r; /* 1/distance sum */ |
55 |
< |
float k; /* variance for this division */ |
22 |
< |
int n; /* number of subsamples */ |
23 |
< |
} AMBSAMP; /* ambient sample division */ |
52 |
> |
COLOR v; /* hemisphere sample value */ |
53 |
> |
float d; /* reciprocal distance (1/rt) */ |
54 |
> |
FVECT p; /* intersection point */ |
55 |
> |
} AMBSAMP; /* sample value */ |
56 |
|
|
57 |
|
typedef struct { |
58 |
< |
FVECT ux, uy, uz; /* x, y and z axis directions */ |
59 |
< |
short nt, np; /* number of theta and phi directions */ |
58 |
> |
RAY *rp; /* originating ray sample */ |
59 |
> |
FVECT ux, uy; /* tangent axis unit vectors */ |
60 |
> |
int ns; /* number of samples per axis */ |
61 |
> |
COLOR acoef; /* division contribution coefficient */ |
62 |
> |
AMBSAMP sa[1]; /* sample array (extends struct) */ |
63 |
|
} AMBHEMI; /* ambient sample hemisphere */ |
64 |
|
|
65 |
< |
extern double sin(), cos(), sqrt(); |
65 |
> |
#define ambndx(h,i,j) ((i)*(h)->ns + (j)) |
66 |
> |
#define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)] |
67 |
|
|
68 |
+ |
typedef struct { |
69 |
+ |
FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; |
70 |
+ |
double I1, I2; |
71 |
+ |
int valid; |
72 |
+ |
} FFTRI; /* vectors and coefficients for Hessian calculation */ |
73 |
|
|
74 |
+ |
|
75 |
+ |
/* Get index for adjacent vertex */ |
76 |
|
static int |
77 |
< |
ambcmp(d1, d2) /* decreasing order */ |
35 |
< |
AMBSAMP *d1, *d2; |
77 |
> |
adjacent_verti(AMBHEMI *hp, int i, int j, int dbit) |
78 |
|
{ |
79 |
< |
if (d1->k < d2->k) |
80 |
< |
return(1); |
81 |
< |
if (d1->k > d2->k) |
82 |
< |
return(-1); |
83 |
< |
return(0); |
79 |
> |
int i0 = i*hp->ns + j; |
80 |
> |
|
81 |
> |
switch (dbit) { |
82 |
> |
case VDB_y: return(i0 - hp->ns); |
83 |
> |
case VDB_x: return(i0 - 1); |
84 |
> |
case VDB_Xy: return(i0 - hp->ns + 1); |
85 |
> |
case VDB_xY: return(i0 + hp->ns - 1); |
86 |
> |
case VDB_X: return(i0 + 1); |
87 |
> |
case VDB_Y: return(i0 + hp->ns); |
88 |
> |
/* the following should never occur */ |
89 |
> |
case VDB_xy: return(i0 - hp->ns - 1); |
90 |
> |
case VDB_XY: return(i0 + hp->ns + 1); |
91 |
> |
} |
92 |
> |
return(-1); |
93 |
|
} |
94 |
|
|
95 |
|
|
96 |
+ |
/* Get vertex direction bit for the opposite edge to complete triangle */ |
97 |
|
static int |
98 |
< |
ambnorm(d1, d2) /* standard order */ |
47 |
< |
AMBSAMP *d1, *d2; |
98 |
> |
vdb_edge(int db1, int db2) |
99 |
|
{ |
100 |
< |
register int c; |
100 |
> |
switch (db1) { |
101 |
> |
case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y); |
102 |
> |
case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X); |
103 |
> |
case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY); |
104 |
> |
case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy); |
105 |
> |
case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X); |
106 |
> |
case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y); |
107 |
> |
} |
108 |
> |
error(CONSISTENCY, "forbidden diagonal in vdb_edge()"); |
109 |
> |
return(-1); |
110 |
> |
} |
111 |
|
|
112 |
< |
if (c = d1->t - d2->t) |
113 |
< |
return(c); |
114 |
< |
return(d1->p - d2->p); |
112 |
> |
|
113 |
> |
static AMBHEMI * |
114 |
> |
inithemi( /* initialize sampling hemisphere */ |
115 |
> |
COLOR ac, |
116 |
> |
RAY *r, |
117 |
> |
double wt |
118 |
> |
) |
119 |
> |
{ |
120 |
> |
AMBHEMI *hp; |
121 |
> |
double d; |
122 |
> |
int n, i; |
123 |
> |
/* set number of divisions */ |
124 |
> |
if (ambacc <= FTINY && |
125 |
> |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) |
126 |
> |
wt = d; /* avoid ray termination */ |
127 |
> |
n = sqrt(ambdiv * wt) + 0.5; |
128 |
> |
i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ |
129 |
> |
if (n < i) |
130 |
> |
n = i; |
131 |
> |
/* allocate sampling array */ |
132 |
> |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
133 |
> |
if (hp == NULL) |
134 |
> |
return(NULL); |
135 |
> |
hp->rp = r; |
136 |
> |
hp->ns = n; |
137 |
> |
/* assign coefficient */ |
138 |
> |
copycolor(hp->acoef, ac); |
139 |
> |
d = 1.0/(n*n); |
140 |
> |
scalecolor(hp->acoef, d); |
141 |
> |
/* make tangent plane axes */ |
142 |
> |
hp->uy[0] = 0.5 - frandom(); |
143 |
> |
hp->uy[1] = 0.5 - frandom(); |
144 |
> |
hp->uy[2] = 0.5 - frandom(); |
145 |
> |
for (i = 3; i--; ) |
146 |
> |
if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6)) |
147 |
> |
break; |
148 |
> |
if (i < 0) |
149 |
> |
error(CONSISTENCY, "bad ray direction in inithemi"); |
150 |
> |
hp->uy[i] = 1.0; |
151 |
> |
VCROSS(hp->ux, hp->uy, r->ron); |
152 |
> |
normalize(hp->ux); |
153 |
> |
VCROSS(hp->uy, r->ron, hp->ux); |
154 |
> |
/* we're ready to sample */ |
155 |
> |
return(hp); |
156 |
|
} |
157 |
|
|
158 |
|
|
159 |
< |
divsample(dp, h, r) /* sample a division */ |
160 |
< |
register AMBSAMP *dp; |
161 |
< |
AMBHEMI *h; |
60 |
< |
RAY *r; |
159 |
> |
/* Sample ambient division and apply weighting coefficient */ |
160 |
> |
static int |
161 |
> |
getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n) |
162 |
|
{ |
163 |
+ |
int hlist[3], ii; |
164 |
+ |
double spt[2], zd; |
165 |
+ |
/* ambient coefficient for weight */ |
166 |
+ |
if (ambacc > FTINY) |
167 |
+ |
setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL); |
168 |
+ |
else |
169 |
+ |
copycolor(arp->rcoef, hp->acoef); |
170 |
+ |
if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0) |
171 |
+ |
return(0); |
172 |
+ |
if (ambacc > FTINY) { |
173 |
+ |
multcolor(arp->rcoef, hp->acoef); |
174 |
+ |
scalecolor(arp->rcoef, 1./AVGREFL); |
175 |
+ |
} |
176 |
+ |
hlist[0] = hp->rp->rno; |
177 |
+ |
hlist[1] = j; |
178 |
+ |
hlist[2] = i; |
179 |
+ |
multisamp(spt, 2, urand(ilhash(hlist,3)+n)); |
180 |
+ |
if (!n) { /* avoid border samples for n==0 */ |
181 |
+ |
if ((spt[0] < 0.1) | (spt[0] >= 0.9)) |
182 |
+ |
spt[0] = 0.1 + 0.8*frandom(); |
183 |
+ |
if ((spt[1] < 0.1) | (spt[1] >= 0.9)) |
184 |
+ |
spt[1] = 0.1 + 0.8*frandom(); |
185 |
+ |
} |
186 |
+ |
SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns); |
187 |
+ |
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
188 |
+ |
for (ii = 3; ii--; ) |
189 |
+ |
arp->rdir[ii] = spt[0]*hp->ux[ii] + |
190 |
+ |
spt[1]*hp->uy[ii] + |
191 |
+ |
zd*hp->rp->ron[ii]; |
192 |
+ |
checknorm(arp->rdir); |
193 |
+ |
dimlist[ndims++] = ambndx(hp,i,j) + 90171; |
194 |
+ |
rayvalue(arp); /* evaluate ray */ |
195 |
+ |
ndims--; /* apply coefficient */ |
196 |
+ |
multcolor(arp->rcol, arp->rcoef); |
197 |
+ |
return(1); |
198 |
+ |
} |
199 |
+ |
|
200 |
+ |
|
201 |
+ |
static AMBSAMP * |
202 |
+ |
ambsample( /* initial ambient division sample */ |
203 |
+ |
AMBHEMI *hp, |
204 |
+ |
int i, |
205 |
+ |
int j |
206 |
+ |
) |
207 |
+ |
{ |
208 |
+ |
AMBSAMP *ap = &ambsam(hp,i,j); |
209 |
+ |
RAY ar; |
210 |
+ |
/* generate hemispherical sample */ |
211 |
+ |
if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) { |
212 |
+ |
memset(ap, 0, sizeof(AMBSAMP)); |
213 |
+ |
return(NULL); |
214 |
+ |
} |
215 |
+ |
ap->d = 1.0/ar.rt; /* limit vertex distance */ |
216 |
+ |
if (ar.rt > 10.0*thescene.cusize) |
217 |
+ |
ar.rt = 10.0*thescene.cusize; |
218 |
+ |
VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); |
219 |
+ |
copycolor(ap->v, ar.rcol); |
220 |
+ |
return(ap); |
221 |
+ |
} |
222 |
+ |
|
223 |
+ |
|
224 |
+ |
/* Estimate errors based on ambient division differences */ |
225 |
+ |
static float * |
226 |
+ |
getambdiffs(AMBHEMI *hp) |
227 |
+ |
{ |
228 |
+ |
float *earr = (float *)malloc(sizeof(float)*hp->ns*hp->ns); |
229 |
+ |
float *ep; |
230 |
+ |
AMBSAMP *ap; |
231 |
+ |
double b, d2; |
232 |
+ |
int i, j; |
233 |
+ |
|
234 |
+ |
if (earr == NULL) /* out of memory? */ |
235 |
+ |
return(NULL); |
236 |
+ |
/* compute squared neighbor diffs */ |
237 |
+ |
for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) |
238 |
+ |
for (j = 0; j < hp->ns; j++, ap++, ep++) { |
239 |
+ |
ep[0] = FTINY; |
240 |
+ |
b = bright(ap[0].v); |
241 |
+ |
if (i) { /* from above */ |
242 |
+ |
d2 = b - bright(ap[-hp->ns].v); |
243 |
+ |
d2 *= d2; |
244 |
+ |
ep[0] += d2; |
245 |
+ |
ep[-hp->ns] += d2; |
246 |
+ |
} |
247 |
+ |
if (j) { /* from behind */ |
248 |
+ |
d2 = b - bright(ap[-1].v); |
249 |
+ |
d2 *= d2; |
250 |
+ |
ep[0] += d2; |
251 |
+ |
ep[-1] += d2; |
252 |
+ |
} |
253 |
+ |
} |
254 |
+ |
/* correct for number of neighbors */ |
255 |
+ |
earr[0] *= 2.f; |
256 |
+ |
earr[hp->ns-1] *= 2.f; |
257 |
+ |
earr[(hp->ns-1)*hp->ns] *= 2.f; |
258 |
+ |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f; |
259 |
+ |
for (i = 1; i < hp->ns-1; i++) { |
260 |
+ |
earr[i*hp->ns] *= 4./3.; |
261 |
+ |
earr[i*hp->ns + hp->ns-1] *= 4./3.; |
262 |
+ |
} |
263 |
+ |
for (j = 1; j < hp->ns-1; j++) { |
264 |
+ |
earr[j] *= 4./3.; |
265 |
+ |
earr[(hp->ns-1)*hp->ns + j] *= 4./3.; |
266 |
+ |
} |
267 |
+ |
return(earr); |
268 |
+ |
} |
269 |
+ |
|
270 |
+ |
|
271 |
+ |
/* Perform super-sampling on hemisphere (introduces bias) */ |
272 |
+ |
static void |
273 |
+ |
ambsupersamp(double acol[3], AMBHEMI *hp, int cnt) |
274 |
+ |
{ |
275 |
+ |
float *earr = getambdiffs(hp); |
276 |
+ |
double e2rem = 0; |
277 |
+ |
AMBSAMP *ap; |
278 |
+ |
RAY ar; |
279 |
+ |
double asum[3]; |
280 |
+ |
float *ep; |
281 |
+ |
int i, j, n; |
282 |
+ |
|
283 |
+ |
if (earr == NULL) /* just skip calc. if no memory */ |
284 |
+ |
return; |
285 |
+ |
/* accumulate estimated variances */ |
286 |
+ |
for (ep = earr + hp->ns*hp->ns; ep-- > earr; ) |
287 |
+ |
e2rem += *ep; |
288 |
+ |
ep = earr; /* perform super-sampling */ |
289 |
+ |
for (ap = hp->sa, i = 0; i < hp->ns; i++) |
290 |
+ |
for (j = 0; j < hp->ns; j++, ap++) { |
291 |
+ |
int nss = *ep/e2rem*cnt + frandom(); |
292 |
+ |
asum[0] = asum[1] = asum[2] = 0.0; |
293 |
+ |
for (n = 1; n <= nss; n++) { |
294 |
+ |
if (!getambsamp(&ar, hp, i, j, n)) { |
295 |
+ |
nss = n-1; |
296 |
+ |
break; |
297 |
+ |
} |
298 |
+ |
addcolor(asum, ar.rcol); |
299 |
+ |
} |
300 |
+ |
if (nss) { /* update returned ambient value */ |
301 |
+ |
const double ssf = 1./(nss + 1.); |
302 |
+ |
for (n = 3; n--; ) |
303 |
+ |
acol[n] += ssf*asum[n] + |
304 |
+ |
(ssf - 1.)*colval(ap->v,n); |
305 |
+ |
} |
306 |
+ |
e2rem -= *ep++; /* update remainders */ |
307 |
+ |
cnt -= nss; |
308 |
+ |
} |
309 |
+ |
free(earr); |
310 |
+ |
} |
311 |
+ |
|
312 |
+ |
|
313 |
+ |
/* Compute vertex flags, indicating farthest in each direction */ |
314 |
+ |
static uby8 * |
315 |
+ |
vertex_flags(AMBHEMI *hp) |
316 |
+ |
{ |
317 |
+ |
uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8)); |
318 |
+ |
uby8 *vf; |
319 |
+ |
AMBSAMP *ap; |
320 |
+ |
int i, j; |
321 |
+ |
|
322 |
+ |
if (vflags == NULL) |
323 |
+ |
error(SYSTEM, "out of memory in vertex_flags()"); |
324 |
+ |
vf = vflags; |
325 |
+ |
ap = hp->sa; /* compute farthest along first row */ |
326 |
+ |
for (j = 0; j < hp->ns-1; j++, vf++, ap++) |
327 |
+ |
if (ap[0].d <= ap[1].d) |
328 |
+ |
vf[0] |= 1<<VDB_X; |
329 |
+ |
else |
330 |
+ |
vf[1] |= 1<<VDB_x; |
331 |
+ |
++vf; ++ap; |
332 |
+ |
/* flag subsequent rows */ |
333 |
+ |
for (i = 1; i < hp->ns; i++) { |
334 |
+ |
for (j = 0; j < hp->ns-1; j++, vf++, ap++) { |
335 |
+ |
if (ap[0].d <= ap[-hp->ns].d) /* row before */ |
336 |
+ |
vf[0] |= 1<<VDB_y; |
337 |
+ |
else |
338 |
+ |
vf[-hp->ns] |= 1<<VDB_Y; |
339 |
+ |
if (ap[0].d <= ap[1-hp->ns].d) /* diagonal we care about */ |
340 |
+ |
vf[0] |= 1<<VDB_Xy; |
341 |
+ |
else |
342 |
+ |
vf[1-hp->ns] |= 1<<VDB_xY; |
343 |
+ |
if (ap[0].d <= ap[1].d) /* column after */ |
344 |
+ |
vf[0] |= 1<<VDB_X; |
345 |
+ |
else |
346 |
+ |
vf[1] |= 1<<VDB_x; |
347 |
+ |
} |
348 |
+ |
if (ap[0].d <= ap[-hp->ns].d) /* final column edge */ |
349 |
+ |
vf[0] |= 1<<VDB_y; |
350 |
+ |
else |
351 |
+ |
vf[-hp->ns] |= 1<<VDB_Y; |
352 |
+ |
++vf; ++ap; |
353 |
+ |
} |
354 |
+ |
return(vflags); |
355 |
+ |
} |
356 |
+ |
|
357 |
+ |
|
358 |
+ |
/* Return brightness of farthest ambient sample */ |
359 |
+ |
static double |
360 |
+ |
back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags) |
361 |
+ |
{ |
362 |
+ |
const int v0 = ambndx(hp,i,j); |
363 |
+ |
const int tflags = (1<<dbit1 | 1<<dbit2); |
364 |
+ |
int v1, v2; |
365 |
+ |
|
366 |
+ |
if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */ |
367 |
+ |
return(colval(hp->sa[v0].v,CIEY)); |
368 |
+ |
v1 = adjacent_verti(hp, i, j, dbit1); |
369 |
+ |
if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */ |
370 |
+ |
return(colval(hp->sa[v1].v,CIEY)); |
371 |
+ |
v2 = adjacent_verti(hp, i, j, dbit2); |
372 |
+ |
if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */ |
373 |
+ |
return(colval(hp->sa[v2].v,CIEY)); |
374 |
+ |
/* else check if v1>v2 */ |
375 |
+ |
if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2)) |
376 |
+ |
return(colval(hp->sa[v1].v,CIEY)); |
377 |
+ |
return(colval(hp->sa[v2].v,CIEY)); |
378 |
+ |
} |
379 |
+ |
|
380 |
+ |
|
381 |
+ |
/* Compute vectors and coefficients for Hessian/gradient calcs */ |
382 |
+ |
static void |
383 |
+ |
comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags) |
384 |
+ |
{ |
385 |
+ |
const int i0 = ambndx(hp,i,j); |
386 |
+ |
double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; |
387 |
+ |
int i1, ii; |
388 |
+ |
|
389 |
+ |
ftp->valid = 0; /* check if we can skip this edge */ |
390 |
+ |
ii = adjacent_trifl[dbit]; |
391 |
+ |
if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */ |
392 |
+ |
return; |
393 |
+ |
i1 = adjacent_verti(hp, i, j, dbit); |
394 |
+ |
ii = adjacent_trifl[VDB_OPP(dbit)]; |
395 |
+ |
if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */ |
396 |
+ |
return; |
397 |
+ |
/* else go ahead with calculation */ |
398 |
+ |
VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop); |
399 |
+ |
VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop); |
400 |
+ |
VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p); |
401 |
+ |
VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); |
402 |
+ |
rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); |
403 |
+ |
dot_e = DOT(ftp->e_i,ftp->e_i); |
404 |
+ |
dot_er = DOT(ftp->e_i, ftp->r_i); |
405 |
+ |
rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i); |
406 |
+ |
rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
407 |
+ |
ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) * |
408 |
+ |
sqrt( rdot_cp ); |
409 |
+ |
ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r + |
410 |
+ |
dot_e*ftp->I1 )*0.5*rdot_cp; |
411 |
+ |
J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; |
412 |
+ |
for (ii = 3; ii--; ) |
413 |
+ |
ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii]; |
414 |
+ |
ftp->valid++; |
415 |
+ |
} |
416 |
+ |
|
417 |
+ |
|
418 |
+ |
/* Compose 3x3 matrix from two vectors */ |
419 |
+ |
static void |
420 |
+ |
compose_matrix(FVECT mat[3], FVECT va, FVECT vb) |
421 |
+ |
{ |
422 |
+ |
mat[0][0] = 2.0*va[0]*vb[0]; |
423 |
+ |
mat[1][1] = 2.0*va[1]*vb[1]; |
424 |
+ |
mat[2][2] = 2.0*va[2]*vb[2]; |
425 |
+ |
mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0]; |
426 |
+ |
mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0]; |
427 |
+ |
mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1]; |
428 |
+ |
} |
429 |
+ |
|
430 |
+ |
|
431 |
+ |
/* Compute partial 3x3 Hessian matrix for edge */ |
432 |
+ |
static void |
433 |
+ |
comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) |
434 |
+ |
{ |
435 |
+ |
FVECT ncp; |
436 |
+ |
FVECT m1[3], m2[3], m3[3], m4[3]; |
437 |
+ |
double d1, d2, d3, d4; |
438 |
+ |
double I3, J3, K3; |
439 |
+ |
int i, j; |
440 |
+ |
|
441 |
+ |
if (!ftp->valid) { /* preemptive test */ |
442 |
+ |
memset(hess, 0, sizeof(FVECT)*3); |
443 |
+ |
return; |
444 |
+ |
} |
445 |
+ |
/* compute intermediate coefficients */ |
446 |
+ |
d1 = 1.0/DOT(ftp->r_i,ftp->r_i); |
447 |
+ |
d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
448 |
+ |
d3 = 1.0/DOT(ftp->e_i,ftp->e_i); |
449 |
+ |
d4 = DOT(ftp->e_i, ftp->r_i); |
450 |
+ |
I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 ) |
451 |
+ |
/ ( 4.0*DOT(ftp->rcp,ftp->rcp) ); |
452 |
+ |
J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3; |
453 |
+ |
K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3); |
454 |
+ |
/* intermediate matrices */ |
455 |
+ |
VCROSS(ncp, nrm, ftp->e_i); |
456 |
+ |
compose_matrix(m1, ncp, ftp->rI2_eJ2); |
457 |
+ |
compose_matrix(m2, ftp->r_i, ftp->r_i); |
458 |
+ |
compose_matrix(m3, ftp->e_i, ftp->e_i); |
459 |
+ |
compose_matrix(m4, ftp->r_i, ftp->e_i); |
460 |
+ |
d1 = DOT(nrm, ftp->rcp); |
461 |
+ |
d2 = -d1*ftp->I2; |
462 |
+ |
d1 *= 2.0; |
463 |
+ |
for (i = 3; i--; ) /* final matrix sum */ |
464 |
+ |
for (j = 3; j--; ) { |
465 |
+ |
hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] + |
466 |
+ |
2.0*J3*m4[i][j] ); |
467 |
+ |
hess[i][j] += d2*(i==j); |
468 |
+ |
hess[i][j] *= -1.0/PI; |
469 |
+ |
} |
470 |
+ |
} |
471 |
+ |
|
472 |
+ |
|
473 |
+ |
/* Reverse hessian calculation result for edge in other direction */ |
474 |
+ |
static void |
475 |
+ |
rev_hessian(FVECT hess[3]) |
476 |
+ |
{ |
477 |
+ |
int i; |
478 |
+ |
|
479 |
+ |
for (i = 3; i--; ) { |
480 |
+ |
hess[i][0] = -hess[i][0]; |
481 |
+ |
hess[i][1] = -hess[i][1]; |
482 |
+ |
hess[i][2] = -hess[i][2]; |
483 |
+ |
} |
484 |
+ |
} |
485 |
+ |
|
486 |
+ |
|
487 |
+ |
/* Add to radiometric Hessian from the given triangle */ |
488 |
+ |
static void |
489 |
+ |
add2hessian(FVECT hess[3], FVECT ehess1[3], |
490 |
+ |
FVECT ehess2[3], FVECT ehess3[3], double v) |
491 |
+ |
{ |
492 |
+ |
int i, j; |
493 |
+ |
|
494 |
+ |
for (i = 3; i--; ) |
495 |
+ |
for (j = 3; j--; ) |
496 |
+ |
hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] ); |
497 |
+ |
} |
498 |
+ |
|
499 |
+ |
|
500 |
+ |
/* Compute partial displacement form factor gradient for edge */ |
501 |
+ |
static void |
502 |
+ |
comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm) |
503 |
+ |
{ |
504 |
+ |
FVECT ncp; |
505 |
+ |
double f1; |
506 |
+ |
int i; |
507 |
+ |
|
508 |
+ |
if (!ftp->valid) { /* preemptive test */ |
509 |
+ |
memset(grad, 0, sizeof(FVECT)); |
510 |
+ |
return; |
511 |
+ |
} |
512 |
+ |
f1 = 2.0*DOT(nrm, ftp->rcp); |
513 |
+ |
VCROSS(ncp, nrm, ftp->e_i); |
514 |
+ |
for (i = 3; i--; ) |
515 |
+ |
grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); |
516 |
+ |
} |
517 |
+ |
|
518 |
+ |
|
519 |
+ |
/* Reverse gradient calculation result for edge in other direction */ |
520 |
+ |
static void |
521 |
+ |
rev_gradient(FVECT grad) |
522 |
+ |
{ |
523 |
+ |
grad[0] = -grad[0]; |
524 |
+ |
grad[1] = -grad[1]; |
525 |
+ |
grad[2] = -grad[2]; |
526 |
+ |
} |
527 |
+ |
|
528 |
+ |
|
529 |
+ |
/* Add to displacement gradient from the given triangle */ |
530 |
+ |
static void |
531 |
+ |
add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v) |
532 |
+ |
{ |
533 |
+ |
int i; |
534 |
+ |
|
535 |
+ |
for (i = 3; i--; ) |
536 |
+ |
grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] ); |
537 |
+ |
} |
538 |
+ |
|
539 |
+ |
|
540 |
+ |
/* Compute anisotropic radii and eigenvector directions */ |
541 |
+ |
static void |
542 |
+ |
eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3]) |
543 |
+ |
{ |
544 |
+ |
double hess2[2][2]; |
545 |
+ |
FVECT a, b; |
546 |
+ |
double evalue[2], slope1, xmag1; |
547 |
+ |
int i; |
548 |
+ |
/* project Hessian to sample plane */ |
549 |
+ |
for (i = 3; i--; ) { |
550 |
+ |
a[i] = DOT(hessian[i], uv[0]); |
551 |
+ |
b[i] = DOT(hessian[i], uv[1]); |
552 |
+ |
} |
553 |
+ |
hess2[0][0] = DOT(uv[0], a); |
554 |
+ |
hess2[0][1] = DOT(uv[0], b); |
555 |
+ |
hess2[1][0] = DOT(uv[1], a); |
556 |
+ |
hess2[1][1] = DOT(uv[1], b); |
557 |
+ |
/* compute eigenvalue(s) */ |
558 |
+ |
i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], |
559 |
+ |
hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]); |
560 |
+ |
if (i == 1) /* double-root (circle) */ |
561 |
+ |
evalue[1] = evalue[0]; |
562 |
+ |
if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | |
563 |
+ |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) { |
564 |
+ |
ra[0] = ra[1] = maxarad; |
565 |
+ |
return; |
566 |
+ |
} |
567 |
+ |
if (evalue[0] > evalue[1]) { |
568 |
+ |
ra[0] = sqrt(sqrt(4.0/evalue[0])); |
569 |
+ |
ra[1] = sqrt(sqrt(4.0/evalue[1])); |
570 |
+ |
slope1 = evalue[1]; |
571 |
+ |
} else { |
572 |
+ |
ra[0] = sqrt(sqrt(4.0/evalue[1])); |
573 |
+ |
ra[1] = sqrt(sqrt(4.0/evalue[0])); |
574 |
+ |
slope1 = evalue[0]; |
575 |
+ |
} |
576 |
+ |
/* compute unit eigenvectors */ |
577 |
+ |
if (fabs(hess2[0][1]) <= FTINY) |
578 |
+ |
return; /* uv OK as is */ |
579 |
+ |
slope1 = (slope1 - hess2[0][0]) / hess2[0][1]; |
580 |
+ |
xmag1 = sqrt(1.0/(1.0 + slope1*slope1)); |
581 |
+ |
for (i = 3; i--; ) { |
582 |
+ |
b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i]; |
583 |
+ |
a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i]; |
584 |
+ |
} |
585 |
+ |
VCOPY(uv[0], a); |
586 |
+ |
VCOPY(uv[1], b); |
587 |
+ |
} |
588 |
+ |
|
589 |
+ |
|
590 |
+ |
static void |
591 |
+ |
ambHessian( /* anisotropic radii & pos. gradient */ |
592 |
+ |
AMBHEMI *hp, |
593 |
+ |
FVECT uv[2], /* returned */ |
594 |
+ |
float ra[2], /* returned (optional) */ |
595 |
+ |
float pg[2] /* returned (optional) */ |
596 |
+ |
) |
597 |
+ |
{ |
598 |
+ |
static char memerrmsg[] = "out of memory in ambHessian()"; |
599 |
+ |
FVECT (*hessrow)[3] = NULL; |
600 |
+ |
FVECT *gradrow = NULL; |
601 |
+ |
uby8 *vflags; |
602 |
+ |
FVECT hessian[3]; |
603 |
+ |
FVECT gradient; |
604 |
+ |
FFTRI fftr; |
605 |
+ |
int i, j; |
606 |
+ |
/* be sure to assign unit vectors */ |
607 |
+ |
VCOPY(uv[0], hp->ux); |
608 |
+ |
VCOPY(uv[1], hp->uy); |
609 |
+ |
/* clock-wise vertex traversal from sample POV */ |
610 |
+ |
if (ra != NULL) { /* initialize Hessian row buffer */ |
611 |
+ |
hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1)); |
612 |
+ |
if (hessrow == NULL) |
613 |
+ |
error(SYSTEM, memerrmsg); |
614 |
+ |
memset(hessian, 0, sizeof(hessian)); |
615 |
+ |
} else if (pg == NULL) /* bogus call? */ |
616 |
+ |
return; |
617 |
+ |
if (pg != NULL) { /* initialize form factor row buffer */ |
618 |
+ |
gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1)); |
619 |
+ |
if (gradrow == NULL) |
620 |
+ |
error(SYSTEM, memerrmsg); |
621 |
+ |
memset(gradient, 0, sizeof(gradient)); |
622 |
+ |
} |
623 |
+ |
/* get vertex position flags */ |
624 |
+ |
vflags = vertex_flags(hp); |
625 |
+ |
/* compute first row of edges */ |
626 |
+ |
for (j = 0; j < hp->ns-1; j++) { |
627 |
+ |
comp_fftri(&fftr, hp, 0, j, VDB_X, vflags); |
628 |
+ |
if (hessrow != NULL) |
629 |
+ |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
630 |
+ |
if (gradrow != NULL) |
631 |
+ |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
632 |
+ |
} |
633 |
+ |
/* sum each row of triangles */ |
634 |
+ |
for (i = 0; i < hp->ns-1; i++) { |
635 |
+ |
FVECT hesscol[3]; /* compute first vertical edge */ |
636 |
+ |
FVECT gradcol; |
637 |
+ |
comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags); |
638 |
+ |
if (hessrow != NULL) |
639 |
+ |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
640 |
+ |
if (gradrow != NULL) |
641 |
+ |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
642 |
+ |
for (j = 0; j < hp->ns-1; j++) { |
643 |
+ |
FVECT hessdia[3]; /* compute triangle contributions */ |
644 |
+ |
FVECT graddia; |
645 |
+ |
double backg; |
646 |
+ |
backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags); |
647 |
+ |
/* diagonal (inner) edge */ |
648 |
+ |
comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags); |
649 |
+ |
if (hessrow != NULL) { |
650 |
+ |
comp_hessian(hessdia, &fftr, hp->rp->ron); |
651 |
+ |
rev_hessian(hesscol); |
652 |
+ |
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
653 |
+ |
} |
654 |
+ |
if (gradrow != NULL) { |
655 |
+ |
comp_gradient(graddia, &fftr, hp->rp->ron); |
656 |
+ |
rev_gradient(gradcol); |
657 |
+ |
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
658 |
+ |
} |
659 |
+ |
/* initialize edge in next row */ |
660 |
+ |
comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags); |
661 |
+ |
if (hessrow != NULL) |
662 |
+ |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
663 |
+ |
if (gradrow != NULL) |
664 |
+ |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
665 |
+ |
/* new column edge & paired triangle */ |
666 |
+ |
backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags); |
667 |
+ |
comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags); |
668 |
+ |
if (hessrow != NULL) { |
669 |
+ |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
670 |
+ |
rev_hessian(hessdia); |
671 |
+ |
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
672 |
+ |
if (i < hp->ns-2) |
673 |
+ |
rev_hessian(hessrow[j]); |
674 |
+ |
} |
675 |
+ |
if (gradrow != NULL) { |
676 |
+ |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
677 |
+ |
rev_gradient(graddia); |
678 |
+ |
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
679 |
+ |
if (i < hp->ns-2) |
680 |
+ |
rev_gradient(gradrow[j]); |
681 |
+ |
} |
682 |
+ |
} |
683 |
+ |
} |
684 |
+ |
/* release row buffers */ |
685 |
+ |
if (hessrow != NULL) free(hessrow); |
686 |
+ |
if (gradrow != NULL) free(gradrow); |
687 |
+ |
free(vflags); |
688 |
+ |
|
689 |
+ |
if (ra != NULL) /* extract eigenvectors & radii */ |
690 |
+ |
eigenvectors(uv, ra, hessian); |
691 |
+ |
if (pg != NULL) { /* tangential position gradient */ |
692 |
+ |
pg[0] = DOT(gradient, uv[0]); |
693 |
+ |
pg[1] = DOT(gradient, uv[1]); |
694 |
+ |
} |
695 |
+ |
} |
696 |
+ |
|
697 |
+ |
|
698 |
+ |
/* Compute direction gradient from a hemispherical sampling */ |
699 |
+ |
static void |
700 |
+ |
ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) |
701 |
+ |
{ |
702 |
+ |
AMBSAMP *ap; |
703 |
+ |
double dgsum[2]; |
704 |
+ |
int n; |
705 |
+ |
FVECT vd; |
706 |
+ |
double gfact; |
707 |
+ |
|
708 |
+ |
dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */ |
709 |
+ |
for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) { |
710 |
+ |
/* use vector for azimuth + 90deg */ |
711 |
+ |
VSUB(vd, ap->p, hp->rp->rop); |
712 |
+ |
/* brightness over cosine factor */ |
713 |
+ |
gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); |
714 |
+ |
/* sine = proj_radius/vd_length */ |
715 |
+ |
dgsum[0] -= DOT(uv[1], vd) * gfact; |
716 |
+ |
dgsum[1] += DOT(uv[0], vd) * gfact; |
717 |
+ |
} |
718 |
+ |
dg[0] = dgsum[0] / (hp->ns*hp->ns); |
719 |
+ |
dg[1] = dgsum[1] / (hp->ns*hp->ns); |
720 |
+ |
} |
721 |
+ |
|
722 |
+ |
|
723 |
+ |
/* Compute potential light leak direction flags for cache value */ |
724 |
+ |
static uint32 |
725 |
+ |
ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1) |
726 |
+ |
{ |
727 |
+ |
const double max_d = 1.0/(minarad*ambacc + 0.001); |
728 |
+ |
const double ang_res = 0.5*PI/(hp->ns-1); |
729 |
+ |
const double ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY)); |
730 |
+ |
double avg_d = 0; |
731 |
+ |
uint32 flgs = 0; |
732 |
+ |
int i, j; |
733 |
+ |
/* don't bother for a few samples */ |
734 |
+ |
if (hp->ns < 12) |
735 |
+ |
return(0); |
736 |
+ |
/* check distances overhead */ |
737 |
+ |
for (i = hp->ns*3/4; i-- > hp->ns>>2; ) |
738 |
+ |
for (j = hp->ns*3/4; j-- > hp->ns>>2; ) |
739 |
+ |
avg_d += ambsam(hp,i,j).d; |
740 |
+ |
avg_d *= 4.0/(hp->ns*hp->ns); |
741 |
+ |
if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */ |
742 |
+ |
return(0); |
743 |
+ |
if (avg_d >= max_d) /* insurance */ |
744 |
+ |
return(0); |
745 |
+ |
/* else circle around perimeter */ |
746 |
+ |
for (i = 0; i < hp->ns; i++) |
747 |
+ |
for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) { |
748 |
+ |
AMBSAMP *ap = &ambsam(hp,i,j); |
749 |
+ |
FVECT vec; |
750 |
+ |
double u, v; |
751 |
+ |
double ang, a1; |
752 |
+ |
int abp; |
753 |
+ |
if ((ap->d <= FTINY) | (ap->d >= max_d)) |
754 |
+ |
continue; /* too far or too near */ |
755 |
+ |
VSUB(vec, ap->p, hp->rp->rop); |
756 |
+ |
u = DOT(vec, uv[0]) * ap->d; |
757 |
+ |
v = DOT(vec, uv[1]) * ap->d; |
758 |
+ |
if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0) |
759 |
+ |
continue; /* occluder outside ellipse */ |
760 |
+ |
ang = atan2a(v, u); /* else set direction flags */ |
761 |
+ |
for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step) |
762 |
+ |
flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0))); |
763 |
+ |
} |
764 |
+ |
return(flgs); |
765 |
+ |
} |
766 |
+ |
|
767 |
+ |
|
768 |
+ |
int |
769 |
+ |
doambient( /* compute ambient component */ |
770 |
+ |
COLOR rcol, /* input/output color */ |
771 |
+ |
RAY *r, |
772 |
+ |
double wt, |
773 |
+ |
FVECT uv[2], /* returned (optional) */ |
774 |
+ |
float ra[2], /* returned (optional) */ |
775 |
+ |
float pg[2], /* returned (optional) */ |
776 |
+ |
float dg[2], /* returned (optional) */ |
777 |
+ |
uint32 *crlp /* returned (optional) */ |
778 |
+ |
) |
779 |
+ |
{ |
780 |
+ |
AMBHEMI *hp = inithemi(rcol, r, wt); |
781 |
+ |
int cnt; |
782 |
+ |
FVECT my_uv[2]; |
783 |
+ |
double d, K, acol[3]; |
784 |
+ |
AMBSAMP *ap; |
785 |
+ |
int i, j; |
786 |
+ |
/* check/initialize */ |
787 |
+ |
if (hp == NULL) |
788 |
+ |
return(0); |
789 |
+ |
if (uv != NULL) |
790 |
+ |
memset(uv, 0, sizeof(FVECT)*2); |
791 |
+ |
if (ra != NULL) |
792 |
+ |
ra[0] = ra[1] = 0.0; |
793 |
+ |
if (pg != NULL) |
794 |
+ |
pg[0] = pg[1] = 0.0; |
795 |
+ |
if (dg != NULL) |
796 |
+ |
dg[0] = dg[1] = 0.0; |
797 |
+ |
if (crlp != NULL) |
798 |
+ |
*crlp = 0; |
799 |
+ |
/* sample the hemisphere */ |
800 |
+ |
acol[0] = acol[1] = acol[2] = 0.0; |
801 |
+ |
cnt = 0; |
802 |
+ |
for (i = hp->ns; i--; ) |
803 |
+ |
for (j = hp->ns; j--; ) |
804 |
+ |
if ((ap = ambsample(hp, i, j)) != NULL) { |
805 |
+ |
addcolor(acol, ap->v); |
806 |
+ |
++cnt; |
807 |
+ |
} |
808 |
+ |
if (!cnt) { |
809 |
+ |
setcolor(rcol, 0.0, 0.0, 0.0); |
810 |
+ |
free(hp); |
811 |
+ |
return(0); /* no valid samples */ |
812 |
+ |
} |
813 |
+ |
if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */ |
814 |
+ |
copycolor(rcol, acol); |
815 |
+ |
free(hp); |
816 |
+ |
return(-1); /* return value w/o Hessian */ |
817 |
+ |
} |
818 |
+ |
cnt = ambssamp*wt + 0.5; /* perform super-sampling? */ |
819 |
+ |
if (cnt > 8) |
820 |
+ |
ambsupersamp(acol, hp, cnt); |
821 |
+ |
copycolor(rcol, acol); /* final indirect irradiance/PI */ |
822 |
+ |
if ((ra == NULL) & (pg == NULL) & (dg == NULL)) { |
823 |
+ |
free(hp); |
824 |
+ |
return(-1); /* no radius or gradient calc. */ |
825 |
+ |
} |
826 |
+ |
if ((d = bright(acol)) > FTINY) { /* normalize Y values */ |
827 |
+ |
d = 0.99*(hp->ns*hp->ns)/d; |
828 |
+ |
K = 0.01; |
829 |
+ |
} else { /* or fall back on geometric Hessian */ |
830 |
+ |
K = 1.0; |
831 |
+ |
pg = NULL; |
832 |
+ |
dg = NULL; |
833 |
+ |
crlp = NULL; |
834 |
+ |
} |
835 |
+ |
ap = hp->sa; /* relative Y channel from here on... */ |
836 |
+ |
for (i = hp->ns*hp->ns; i--; ap++) |
837 |
+ |
colval(ap->v,CIEY) = bright(ap->v)*d + K; |
838 |
+ |
|
839 |
+ |
if (uv == NULL) /* make sure we have axis pointers */ |
840 |
+ |
uv = my_uv; |
841 |
+ |
/* compute radii & pos. gradient */ |
842 |
+ |
ambHessian(hp, uv, ra, pg); |
843 |
+ |
|
844 |
+ |
if (dg != NULL) /* compute direction gradient */ |
845 |
+ |
ambdirgrad(hp, uv, dg); |
846 |
+ |
|
847 |
+ |
if (ra != NULL) { /* scale/clamp radii */ |
848 |
+ |
if (pg != NULL) { |
849 |
+ |
if (ra[0]*(d = fabs(pg[0])) > 1.0) |
850 |
+ |
ra[0] = 1.0/d; |
851 |
+ |
if (ra[1]*(d = fabs(pg[1])) > 1.0) |
852 |
+ |
ra[1] = 1.0/d; |
853 |
+ |
if (ra[0] > ra[1]) |
854 |
+ |
ra[0] = ra[1]; |
855 |
+ |
} |
856 |
+ |
if (ra[0] < minarad) { |
857 |
+ |
ra[0] = minarad; |
858 |
+ |
if (ra[1] < minarad) |
859 |
+ |
ra[1] = minarad; |
860 |
+ |
} |
861 |
+ |
ra[0] *= d = 1.0/sqrt(sqrt(wt)); |
862 |
+ |
if ((ra[1] *= d) > 2.0*ra[0]) |
863 |
+ |
ra[1] = 2.0*ra[0]; |
864 |
+ |
if (ra[1] > maxarad) { |
865 |
+ |
ra[1] = maxarad; |
866 |
+ |
if (ra[0] > maxarad) |
867 |
+ |
ra[0] = maxarad; |
868 |
+ |
} |
869 |
+ |
/* flag encroached directions */ |
870 |
+ |
if ((wt >= 0.5-FTINY) & (crlp != NULL)) |
871 |
+ |
*crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc); |
872 |
+ |
if (pg != NULL) { /* cap gradient if necessary */ |
873 |
+ |
d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; |
874 |
+ |
if (d > 1.0) { |
875 |
+ |
d = 1.0/sqrt(d); |
876 |
+ |
pg[0] *= d; |
877 |
+ |
pg[1] *= d; |
878 |
+ |
} |
879 |
+ |
} |
880 |
+ |
} |
881 |
+ |
free(hp); /* clean up and return */ |
882 |
+ |
return(1); |
883 |
+ |
} |
884 |
+ |
|
885 |
+ |
|
886 |
+ |
#else /* ! NEWAMB */ |
887 |
+ |
|
888 |
+ |
|
889 |
+ |
void |
890 |
+ |
inithemi( /* initialize sampling hemisphere */ |
891 |
+ |
AMBHEMI *hp, |
892 |
+ |
COLOR ac, |
893 |
+ |
RAY *r, |
894 |
+ |
double wt |
895 |
+ |
) |
896 |
+ |
{ |
897 |
+ |
double d; |
898 |
+ |
int i; |
899 |
+ |
/* set number of divisions */ |
900 |
+ |
if (ambacc <= FTINY && |
901 |
+ |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) |
902 |
+ |
wt = d; /* avoid ray termination */ |
903 |
+ |
hp->nt = sqrt(ambdiv * wt / PI) + 0.5; |
904 |
+ |
i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */ |
905 |
+ |
if (hp->nt < i) |
906 |
+ |
hp->nt = i; |
907 |
+ |
hp->np = PI * hp->nt + 0.5; |
908 |
+ |
/* set number of super-samples */ |
909 |
+ |
hp->ns = ambssamp * wt + 0.5; |
910 |
+ |
/* assign coefficient */ |
911 |
+ |
copycolor(hp->acoef, ac); |
912 |
+ |
d = 1.0/(hp->nt*hp->np); |
913 |
+ |
scalecolor(hp->acoef, d); |
914 |
+ |
/* make axes */ |
915 |
+ |
VCOPY(hp->uz, r->ron); |
916 |
+ |
hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; |
917 |
+ |
for (i = 0; i < 3; i++) |
918 |
+ |
if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6) |
919 |
+ |
break; |
920 |
+ |
if (i >= 3) |
921 |
+ |
error(CONSISTENCY, "bad ray direction in inithemi"); |
922 |
+ |
hp->uy[i] = 1.0; |
923 |
+ |
fcross(hp->ux, hp->uy, hp->uz); |
924 |
+ |
normalize(hp->ux); |
925 |
+ |
fcross(hp->uy, hp->uz, hp->ux); |
926 |
+ |
} |
927 |
+ |
|
928 |
+ |
|
929 |
+ |
int |
930 |
+ |
divsample( /* sample a division */ |
931 |
+ |
AMBSAMP *dp, |
932 |
+ |
AMBHEMI *h, |
933 |
+ |
RAY *r |
934 |
+ |
) |
935 |
+ |
{ |
936 |
|
RAY ar; |
937 |
|
int hlist[3]; |
938 |
|
double spt[2]; |
939 |
|
double xd, yd, zd; |
940 |
|
double b2; |
941 |
|
double phi; |
942 |
< |
register int i; |
943 |
< |
|
944 |
< |
if (rayorigin(&ar, r, AMBIENT, AVGREFL) < 0) |
942 |
> |
int i; |
943 |
> |
/* ambient coefficient for weight */ |
944 |
> |
if (ambacc > FTINY) |
945 |
> |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
946 |
> |
else |
947 |
> |
copycolor(ar.rcoef, h->acoef); |
948 |
> |
if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0) |
949 |
|
return(-1); |
950 |
+ |
if (ambacc > FTINY) { |
951 |
+ |
multcolor(ar.rcoef, h->acoef); |
952 |
+ |
scalecolor(ar.rcoef, 1./AVGREFL); |
953 |
+ |
} |
954 |
|
hlist[0] = r->rno; |
955 |
|
hlist[1] = dp->t; |
956 |
|
hlist[2] = dp->p; |
957 |
|
multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n)); |
958 |
|
zd = sqrt((dp->t + spt[0])/h->nt); |
959 |
|
phi = 2.0*PI * (dp->p + spt[1])/h->np; |
960 |
< |
xd = cos(phi) * zd; |
961 |
< |
yd = sin(phi) * zd; |
960 |
> |
xd = tcos(phi) * zd; |
961 |
> |
yd = tsin(phi) * zd; |
962 |
|
zd = sqrt(1.0 - zd*zd); |
963 |
|
for (i = 0; i < 3; i++) |
964 |
|
ar.rdir[i] = xd*h->ux[i] + |
965 |
|
yd*h->uy[i] + |
966 |
|
zd*h->uz[i]; |
967 |
+ |
checknorm(ar.rdir); |
968 |
|
dimlist[ndims++] = dp->t*h->np + dp->p + 90171; |
969 |
|
rayvalue(&ar); |
970 |
|
ndims--; |
971 |
+ |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
972 |
|
addcolor(dp->v, ar.rcol); |
973 |
+ |
/* use rt to improve gradient calc */ |
974 |
|
if (ar.rt > FTINY && ar.rt < FHUGE) |
975 |
|
dp->r += 1.0/ar.rt; |
976 |
|
/* (re)initialize error */ |
984 |
|
} |
985 |
|
|
986 |
|
|
987 |
+ |
static int |
988 |
+ |
ambcmp( /* decreasing order */ |
989 |
+ |
const void *p1, |
990 |
+ |
const void *p2 |
991 |
+ |
) |
992 |
+ |
{ |
993 |
+ |
const AMBSAMP *d1 = (const AMBSAMP *)p1; |
994 |
+ |
const AMBSAMP *d2 = (const AMBSAMP *)p2; |
995 |
+ |
|
996 |
+ |
if (d1->k < d2->k) |
997 |
+ |
return(1); |
998 |
+ |
if (d1->k > d2->k) |
999 |
+ |
return(-1); |
1000 |
+ |
return(0); |
1001 |
+ |
} |
1002 |
+ |
|
1003 |
+ |
|
1004 |
+ |
static int |
1005 |
+ |
ambnorm( /* standard order */ |
1006 |
+ |
const void *p1, |
1007 |
+ |
const void *p2 |
1008 |
+ |
) |
1009 |
+ |
{ |
1010 |
+ |
const AMBSAMP *d1 = (const AMBSAMP *)p1; |
1011 |
+ |
const AMBSAMP *d2 = (const AMBSAMP *)p2; |
1012 |
+ |
int c; |
1013 |
+ |
|
1014 |
+ |
if ( (c = d1->t - d2->t) ) |
1015 |
+ |
return(c); |
1016 |
+ |
return(d1->p - d2->p); |
1017 |
+ |
} |
1018 |
+ |
|
1019 |
+ |
|
1020 |
|
double |
1021 |
< |
doambient(acol, r, wt, pg, dg) /* compute ambient component */ |
1022 |
< |
COLOR acol; |
1023 |
< |
RAY *r; |
1024 |
< |
double wt; |
1025 |
< |
FVECT pg, dg; |
1021 |
> |
doambient( /* compute ambient component */ |
1022 |
> |
COLOR rcol, |
1023 |
> |
RAY *r, |
1024 |
> |
double wt, |
1025 |
> |
FVECT pg, |
1026 |
> |
FVECT dg |
1027 |
> |
) |
1028 |
|
{ |
1029 |
< |
double b, d; |
1029 |
> |
double b, d=0; |
1030 |
|
AMBHEMI hemi; |
1031 |
|
AMBSAMP *div; |
1032 |
|
AMBSAMP dnew; |
1033 |
< |
register AMBSAMP *dp; |
1033 |
> |
double acol[3]; |
1034 |
> |
AMBSAMP *dp; |
1035 |
|
double arad; |
1036 |
< |
int ndivs, ns; |
1037 |
< |
register int i, j; |
117 |
< |
/* initialize color */ |
118 |
< |
setcolor(acol, 0.0, 0.0, 0.0); |
1036 |
> |
int divcnt; |
1037 |
> |
int i, j; |
1038 |
|
/* initialize hemisphere */ |
1039 |
< |
inithemi(&hemi, r, wt); |
1040 |
< |
ndivs = hemi.nt * hemi.np; |
1041 |
< |
if (ndivs == 0) |
1039 |
> |
inithemi(&hemi, rcol, r, wt); |
1040 |
> |
divcnt = hemi.nt * hemi.np; |
1041 |
> |
/* initialize */ |
1042 |
> |
if (pg != NULL) |
1043 |
> |
pg[0] = pg[1] = pg[2] = 0.0; |
1044 |
> |
if (dg != NULL) |
1045 |
> |
dg[0] = dg[1] = dg[2] = 0.0; |
1046 |
> |
setcolor(rcol, 0.0, 0.0, 0.0); |
1047 |
> |
if (divcnt == 0) |
1048 |
|
return(0.0); |
1049 |
< |
/* set number of super-samples */ |
1050 |
< |
ns = ambssamp * wt + 0.5; |
1051 |
< |
if (ns > 0 || pg != NULL || dg != NULL) { |
127 |
< |
div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP)); |
1049 |
> |
/* allocate super-samples */ |
1050 |
> |
if (hemi.ns > 0 || pg != NULL || dg != NULL) { |
1051 |
> |
div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP)); |
1052 |
|
if (div == NULL) |
1053 |
|
error(SYSTEM, "out of memory in doambient"); |
1054 |
|
} else |
1055 |
|
div = NULL; |
1056 |
|
/* sample the divisions */ |
1057 |
|
arad = 0.0; |
1058 |
+ |
acol[0] = acol[1] = acol[2] = 0.0; |
1059 |
|
if ((dp = div) == NULL) |
1060 |
|
dp = &dnew; |
1061 |
+ |
divcnt = 0; |
1062 |
|
for (i = 0; i < hemi.nt; i++) |
1063 |
|
for (j = 0; j < hemi.np; j++) { |
1064 |
|
dp->t = i; dp->p = j; |
1065 |
|
setcolor(dp->v, 0.0, 0.0, 0.0); |
1066 |
|
dp->r = 0.0; |
1067 |
|
dp->n = 0; |
1068 |
< |
if (divsample(dp, &hemi, r) < 0) |
1069 |
< |
goto oopsy; |
1068 |
> |
if (divsample(dp, &hemi, r) < 0) { |
1069 |
> |
if (div != NULL) |
1070 |
> |
dp++; |
1071 |
> |
continue; |
1072 |
> |
} |
1073 |
> |
arad += dp->r; |
1074 |
> |
divcnt++; |
1075 |
|
if (div != NULL) |
1076 |
|
dp++; |
1077 |
< |
else { |
1077 |
> |
else |
1078 |
|
addcolor(acol, dp->v); |
148 |
– |
arad += dp->r; |
149 |
– |
} |
1079 |
|
} |
1080 |
< |
if (ns > 0) { /* perform super-sampling */ |
1080 |
> |
if (!divcnt) { |
1081 |
> |
if (div != NULL) |
1082 |
> |
free((void *)div); |
1083 |
> |
return(0.0); /* no samples taken */ |
1084 |
> |
} |
1085 |
> |
if (divcnt < hemi.nt*hemi.np) { |
1086 |
> |
pg = dg = NULL; /* incomplete sampling */ |
1087 |
> |
hemi.ns = 0; |
1088 |
> |
} else if (arad > FTINY && divcnt/arad < minarad) { |
1089 |
> |
hemi.ns = 0; /* close enough */ |
1090 |
> |
} else if (hemi.ns > 0) { /* else perform super-sampling? */ |
1091 |
|
comperrs(div, &hemi); /* compute errors */ |
1092 |
< |
qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */ |
1092 |
> |
qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */ |
1093 |
|
/* super-sample */ |
1094 |
< |
for (i = ns; i > 0; i--) { |
1095 |
< |
copystruct(&dnew, div); |
1096 |
< |
if (divsample(&dnew, &hemi, r) < 0) |
1097 |
< |
goto oopsy; |
1098 |
< |
/* reinsert */ |
1099 |
< |
dp = div; |
1100 |
< |
j = ndivs < i ? ndivs : i; |
1094 |
> |
for (i = hemi.ns; i > 0; i--) { |
1095 |
> |
dnew = *div; |
1096 |
> |
if (divsample(&dnew, &hemi, r) < 0) { |
1097 |
> |
dp++; |
1098 |
> |
continue; |
1099 |
> |
} |
1100 |
> |
dp = div; /* reinsert */ |
1101 |
> |
j = divcnt < i ? divcnt : i; |
1102 |
|
while (--j > 0 && dnew.k < dp[1].k) { |
1103 |
< |
copystruct(dp, dp+1); |
1103 |
> |
*dp = *(dp+1); |
1104 |
|
dp++; |
1105 |
|
} |
1106 |
< |
copystruct(dp, &dnew); |
1106 |
> |
*dp = dnew; |
1107 |
|
} |
1108 |
|
if (pg != NULL || dg != NULL) /* restore order */ |
1109 |
< |
qsort(div, ndivs, sizeof(AMBSAMP), ambnorm); |
1109 |
> |
qsort(div, divcnt, sizeof(AMBSAMP), ambnorm); |
1110 |
|
} |
1111 |
|
/* compute returned values */ |
1112 |
|
if (div != NULL) { |
1113 |
< |
for (i = ndivs, dp = div; i-- > 0; dp++) { |
1113 |
> |
arad = 0.0; /* note: divcnt may be < nt*np */ |
1114 |
> |
for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) { |
1115 |
|
arad += dp->r; |
1116 |
|
if (dp->n > 1) { |
1117 |
|
b = 1.0/dp->n; |
1123 |
|
} |
1124 |
|
b = bright(acol); |
1125 |
|
if (b > FTINY) { |
1126 |
< |
b = ndivs/b; |
1126 |
> |
b = 1.0/b; /* compute & normalize gradient(s) */ |
1127 |
|
if (pg != NULL) { |
1128 |
|
posgradient(pg, div, &hemi); |
1129 |
|
for (i = 0; i < 3; i++) |
1134 |
|
for (i = 0; i < 3; i++) |
1135 |
|
dg[i] *= b; |
1136 |
|
} |
196 |
– |
} else { |
197 |
– |
if (pg != NULL) |
198 |
– |
for (i = 0; i < 3; i++) |
199 |
– |
pg[i] = 0.0; |
200 |
– |
if (dg != NULL) |
201 |
– |
for (i = 0; i < 3; i++) |
202 |
– |
dg[i] = 0.0; |
1137 |
|
} |
1138 |
< |
free((char *)div); |
1138 |
> |
free((void *)div); |
1139 |
|
} |
1140 |
< |
b = 1.0/ndivs; |
207 |
< |
scalecolor(acol, b); |
1140 |
> |
copycolor(rcol, acol); |
1141 |
|
if (arad <= FTINY) |
1142 |
|
arad = maxarad; |
1143 |
< |
else { |
1144 |
< |
arad = (ndivs+ns)/arad; |
212 |
< |
if (arad > maxarad) |
213 |
< |
arad = maxarad; |
214 |
< |
} |
1143 |
> |
else |
1144 |
> |
arad = (divcnt+hemi.ns)/arad; |
1145 |
|
if (pg != NULL) { /* reduce radius if gradient large */ |
1146 |
|
d = DOT(pg,pg); |
1147 |
|
if (d*arad*arad > 1.0) |
1155 |
|
pg[i] *= d; |
1156 |
|
} |
1157 |
|
} |
1158 |
< |
return(arad/sqrt(wt)); |
1159 |
< |
oopsy: |
1160 |
< |
if (div != NULL) |
231 |
< |
free((char *)div); |
232 |
< |
return(0.0); |
1158 |
> |
if ((arad /= sqrt(wt)) > maxarad) |
1159 |
> |
arad = maxarad; |
1160 |
> |
return(arad); |
1161 |
|
} |
1162 |
|
|
1163 |
|
|
1164 |
< |
inithemi(hp, r, wt) /* initialize sampling hemisphere */ |
1165 |
< |
register AMBHEMI *hp; |
1166 |
< |
RAY *r; |
1167 |
< |
double wt; |
1164 |
> |
void |
1165 |
> |
comperrs( /* compute initial error estimates */ |
1166 |
> |
AMBSAMP *da, /* assumes standard ordering */ |
1167 |
> |
AMBHEMI *hp |
1168 |
> |
) |
1169 |
|
{ |
241 |
– |
register int i; |
242 |
– |
/* set number of divisions */ |
243 |
– |
if (wt < (.25*PI)/ambdiv+FTINY) { |
244 |
– |
hp->nt = hp->np = 0; |
245 |
– |
return; /* zero samples */ |
246 |
– |
} |
247 |
– |
hp->nt = sqrt(ambdiv * wt / PI) + 0.5; |
248 |
– |
hp->np = PI * hp->nt + 0.5; |
249 |
– |
/* make axes */ |
250 |
– |
VCOPY(hp->uz, r->ron); |
251 |
– |
hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; |
252 |
– |
for (i = 0; i < 3; i++) |
253 |
– |
if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6) |
254 |
– |
break; |
255 |
– |
if (i >= 3) |
256 |
– |
error(CONSISTENCY, "bad ray direction in inithemi"); |
257 |
– |
hp->uy[i] = 1.0; |
258 |
– |
fcross(hp->ux, hp->uy, hp->uz); |
259 |
– |
normalize(hp->ux); |
260 |
– |
fcross(hp->uy, hp->uz, hp->ux); |
261 |
– |
} |
262 |
– |
|
263 |
– |
|
264 |
– |
comperrs(da, hp) /* compute initial error estimates */ |
265 |
– |
AMBSAMP *da; /* assumes standard ordering */ |
266 |
– |
register AMBHEMI *hp; |
267 |
– |
{ |
1170 |
|
double b, b2; |
1171 |
|
int i, j; |
1172 |
< |
register AMBSAMP *dp; |
1172 |
> |
AMBSAMP *dp; |
1173 |
|
/* sum differences from neighbors */ |
1174 |
|
dp = da; |
1175 |
|
for (i = 0; i < hp->nt; i++) |
1213 |
|
} |
1214 |
|
|
1215 |
|
|
1216 |
< |
posgradient(gv, da, hp) /* compute position gradient */ |
1217 |
< |
FVECT gv; |
1218 |
< |
AMBSAMP *da; /* assumes standard ordering */ |
1219 |
< |
register AMBHEMI *hp; |
1216 |
> |
void |
1217 |
> |
posgradient( /* compute position gradient */ |
1218 |
> |
FVECT gv, |
1219 |
> |
AMBSAMP *da, /* assumes standard ordering */ |
1220 |
> |
AMBHEMI *hp |
1221 |
> |
) |
1222 |
|
{ |
1223 |
< |
register int i, j; |
1223 |
> |
int i, j; |
1224 |
|
double nextsine, lastsine, b, d; |
1225 |
|
double mag0, mag1; |
1226 |
|
double phi, cosp, sinp, xd, yd; |
1227 |
< |
register AMBSAMP *dp; |
1227 |
> |
AMBSAMP *dp; |
1228 |
|
|
1229 |
|
xd = yd = 0.0; |
1230 |
|
for (j = 0; j < hp->np; j++) { |
1262 |
|
} |
1263 |
|
mag0 *= 2.0*PI / hp->np; |
1264 |
|
phi = 2.0*PI * (double)j/hp->np; |
1265 |
< |
cosp = cos(phi); sinp = sin(phi); |
1265 |
> |
cosp = tcos(phi); sinp = tsin(phi); |
1266 |
|
xd += mag0*cosp - mag1*sinp; |
1267 |
|
yd += mag0*sinp + mag1*cosp; |
1268 |
|
} |
1269 |
|
for (i = 0; i < 3; i++) |
1270 |
< |
gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/PI; |
1270 |
> |
gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI; |
1271 |
|
} |
1272 |
|
|
1273 |
|
|
1274 |
< |
dirgradient(gv, da, hp) /* compute direction gradient */ |
1275 |
< |
FVECT gv; |
1276 |
< |
AMBSAMP *da; /* assumes standard ordering */ |
1277 |
< |
register AMBHEMI *hp; |
1274 |
> |
void |
1275 |
> |
dirgradient( /* compute direction gradient */ |
1276 |
> |
FVECT gv, |
1277 |
> |
AMBSAMP *da, /* assumes standard ordering */ |
1278 |
> |
AMBHEMI *hp |
1279 |
> |
) |
1280 |
|
{ |
1281 |
< |
register int i, j; |
1281 |
> |
int i, j; |
1282 |
|
double mag; |
1283 |
|
double phi, xd, yd; |
1284 |
< |
register AMBSAMP *dp; |
1284 |
> |
AMBSAMP *dp; |
1285 |
|
|
1286 |
|
xd = yd = 0.0; |
1287 |
|
for (j = 0; j < hp->np; j++) { |
1298 |
|
dp += hp->np; |
1299 |
|
} |
1300 |
|
phi = 2.0*PI * (j+.5)/hp->np + PI/2.0; |
1301 |
< |
xd += mag * cos(phi); |
1302 |
< |
yd += mag * sin(phi); |
1301 |
> |
xd += mag * tcos(phi); |
1302 |
> |
yd += mag * tsin(phi); |
1303 |
|
} |
1304 |
|
for (i = 0; i < 3; i++) |
1305 |
< |
gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/(hp->nt*hp->np); |
1305 |
> |
gv[i] = xd*hp->ux[i] + yd*hp->uy[i]; |
1306 |
|
} |
1307 |
+ |
|
1308 |
+ |
#endif /* ! NEWAMB */ |