--- ray/src/rt/ambcomp.c 2014/04/23 06:04:17 2.29 +++ ray/src/rt/ambcomp.c 2014/05/01 16:06:11 2.44 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: ambcomp.c,v 2.29 2014/04/23 06:04:17 greg Exp $"; +static const char RCSid[] = "$Id: ambcomp.c,v 2.44 2014/05/01 16:06:11 greg Exp $"; #endif /* * Routines to compute "ambient" values using Monte Carlo @@ -22,21 +22,23 @@ static const char RCSid[] = "$Id: ambcomp.c,v 2.29 201 extern void SDsquare2disk(double ds[2], double seedx, double seedy); typedef struct { + COLOR v; /* hemisphere sample value */ + FVECT p; /* intersection point */ +} AMBSAMP; /* sample value */ + +typedef struct { RAY *rp; /* originating ray sample */ FVECT ux, uy; /* tangent axis unit vectors */ int ns; /* number of samples per axis */ COLOR acoef; /* division contribution coefficient */ - struct s_ambsamp { - COLOR v; /* hemisphere sample value */ - float p[3]; /* intersection point */ - } sa[1]; /* sample array (extends struct) */ + AMBSAMP sa[1]; /* sample array (extends struct) */ } AMBHEMI; /* ambient sample hemisphere */ -#define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)] +#define ambsam(h,i,j) (h)->sa[(i)*(h)->ns + (j)] typedef struct { - FVECT r_i, r_i1, e_i; - double nf, I1, I2, J2; + FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; + double I1, I2; } FFTRI; /* vectors and coefficients for Hessian calculation */ @@ -59,8 +61,7 @@ inithemi( /* initialize sampling hemisphere */ if (n < i) n = i; /* allocate sampling array */ - hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + - sizeof(struct s_ambsamp)*(n*n - 1)); + hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); if (hp == NULL) return(NULL); hp->rp = r; @@ -70,14 +71,14 @@ inithemi( /* initialize sampling hemisphere */ d = 1.0/(n*n); scalecolor(hp->acoef, d); /* make tangent plane axes */ - hp->uy[0] = 0.1 - 0.2*frandom(); - hp->uy[1] = 0.1 - 0.2*frandom(); - hp->uy[2] = 0.1 - 0.2*frandom(); - for (i = 0; i < 3; i++) - if (r->ron[i] < 0.6 && r->ron[i] > -0.6) + hp->uy[0] = 0.5 - frandom(); + hp->uy[1] = 0.5 - frandom(); + hp->uy[2] = 0.5 - frandom(); + for (i = 3; i--; ) + if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6)) break; - if (i >= 3) - error(CONSISTENCY, "bad ray direction in inithemi()"); + if (i < 0) + error(CONSISTENCY, "bad ray direction in inithemi"); hp->uy[i] = 1.0; VCROSS(hp->ux, hp->uy, r->ron); normalize(hp->ux); @@ -87,75 +88,186 @@ inithemi( /* initialize sampling hemisphere */ } -static struct s_ambsamp * -ambsample( /* sample an ambient direction */ - AMBHEMI *hp, - int i, - int j -) +/* Sample ambient division and apply weighting coefficient */ +static int +getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n) { - struct s_ambsamp *ap = &ambsamp(hp,i,j); - RAY ar; - double spt[2], zd; - int ii; + int hlist[3], ii; + double spt[2], zd; /* ambient coefficient for weight */ if (ambacc > FTINY) - setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); + setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL); else - copycolor(ar.rcoef, hp->acoef); - if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) { - setcolor(ap->v, 0., 0., 0.); - VCOPY(ap->p, hp->rp->rop); - return(NULL); /* no sample taken */ - } + copycolor(arp->rcoef, hp->acoef); + if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0) + return(0); if (ambacc > FTINY) { - multcolor(ar.rcoef, hp->acoef); - scalecolor(ar.rcoef, 1./AVGREFL); + multcolor(arp->rcoef, hp->acoef); + scalecolor(arp->rcoef, 1./AVGREFL); } - /* generate hemispherical sample */ - SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns, - (j+.1+.8*frandom())/hp->ns ); + hlist[0] = hp->rp->rno; + hlist[1] = i; + hlist[2] = j; + multisamp(spt, 2, urand(ilhash(hlist,3)+n)); + if (!n) { /* avoid border samples for n==0 */ + if ((spt[0] < 0.1) | (spt[0] > 0.9)) + spt[0] = 0.1 + 0.8*frandom(); + if ((spt[1] < 0.1) | (spt[1] > 0.9)) + spt[1] = 0.1 + 0.8*frandom(); + } + SDsquare2disk(spt, (i+spt[0])/hp->ns, (j+spt[1])/hp->ns); zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); for (ii = 3; ii--; ) - ar.rdir[ii] = spt[0]*hp->ux[ii] + + arp->rdir[ii] = spt[0]*hp->ux[ii] + spt[1]*hp->uy[ii] + zd*hp->rp->ron[ii]; - checknorm(ar.rdir); + checknorm(arp->rdir); dimlist[ndims++] = i*hp->ns + j + 90171; - rayvalue(&ar); /* evaluate ray */ - ndims--; - multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ + rayvalue(arp); /* evaluate ray */ + ndims--; /* apply coefficient */ + multcolor(arp->rcol, arp->rcoef); + return(1); +} + + +static AMBSAMP * +ambsample( /* initial ambient division sample */ + AMBHEMI *hp, + int i, + int j +) +{ + AMBSAMP *ap = &ambsam(hp,i,j); + RAY ar; + /* generate hemispherical sample */ + if (!getambsamp(&ar, hp, i, j, 0)) + goto badsample; + /* limit vertex distance */ + if (ar.rt > 10.0*thescene.cusize) + ar.rt = 10.0*thescene.cusize; + else if (ar.rt <= FTINY) /* should never happen! */ + goto badsample; + VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); copycolor(ap->v, ar.rcol); - if (ar.rt > 20.0*maxarad) /* limit vertex distance */ - VSUM(ap->p, ar.rorg, ar.rdir, 20.0*maxarad); - else - VCOPY(ap->p, ar.rop); return(ap); +badsample: + setcolor(ap->v, 0., 0., 0.); + VCOPY(ap->p, hp->rp->rop); + return(NULL); } +/* Estimate errors based on ambient division differences */ +static float * +getambdiffs(AMBHEMI *hp) +{ + float *earr = calloc(hp->ns*hp->ns, sizeof(float)); + float *ep; + AMBSAMP *ap; + double b, d2; + int i, j; + + if (earr == NULL) /* out of memory? */ + return(NULL); + /* compute squared neighbor diffs */ + for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) + for (j = 0; j < hp->ns; j++, ap++, ep++) { + b = bright(ap[0].v); + if (i) { /* from above */ + d2 = b - bright(ap[-hp->ns].v); + d2 *= d2; + ep[0] += d2; + ep[-hp->ns] += d2; + } + if (j) { /* from behind */ + d2 = b - bright(ap[-1].v); + d2 *= d2; + ep[0] += d2; + ep[-1] += d2; + } + } + /* correct for number of neighbors */ + earr[0] *= 2.f; + earr[hp->ns-1] *= 2.f; + earr[(hp->ns-1)*hp->ns] *= 2.f; + earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f; + for (i = 1; i < hp->ns-1; i++) { + earr[i*hp->ns] *= 4./3.; + earr[i*hp->ns + hp->ns-1] *= 4./3.; + } + for (j = 1; j < hp->ns-1; j++) { + earr[j] *= 4./3.; + earr[(hp->ns-1)*hp->ns + j] *= 4./3.; + } + return(earr); +} + + +/* Perform super-sampling on hemisphere (introduces bias) */ +static void +ambsupersamp(double acol[3], AMBHEMI *hp, int cnt) +{ + float *earr = getambdiffs(hp); + double e2sum = 0; + AMBSAMP *ap; + RAY ar; + COLOR asum; + float *ep; + int i, j, n; + + if (earr == NULL) /* just skip calc. if no memory */ + return; + /* add up estimated variances */ + for (ep = earr + hp->ns*hp->ns; ep-- > earr; ) + e2sum += *ep; + ep = earr; /* perform super-sampling */ + for (ap = hp->sa, i = 0; i < hp->ns; i++) + for (j = 0; j < hp->ns; j++, ap++) { + int nss = *ep/e2sum*cnt + frandom(); + setcolor(asum, 0., 0., 0.); + for (n = 1; n <= nss; n++) { + if (!getambsamp(&ar, hp, i, j, n)) { + nss = n-1; + break; + } + addcolor(asum, ar.rcol); + } + if (nss) { /* update returned ambient value */ + const double ssf = 1./(nss + 1); + for (n = 3; n--; ) + acol[n] += ssf*colval(asum,n) + + (ssf - 1.)*colval(ap->v,n); + } + e2sum -= *ep++; /* update remainders */ + cnt -= nss; + } + free(earr); +} + + /* Compute vectors and coefficients for Hessian/gradient calcs */ static void -comp_fftri(FFTRI *ftp, float ap0[3], float ap1[3], FVECT rop) +comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop) { - FVECT v1; - double dot_e, dot_er, dot_r, dot_r1; + double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; + int i; VSUB(ftp->r_i, ap0, rop); VSUB(ftp->r_i1, ap1, rop); VSUB(ftp->e_i, ap1, ap0); - VCROSS(v1, ftp->e_i, ftp->r_i); - ftp->nf = 1.0/DOT(v1,v1); + VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); + rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); dot_e = DOT(ftp->e_i,ftp->e_i); dot_er = DOT(ftp->e_i, ftp->r_i); - dot_r = DOT(ftp->r_i,ftp->r_i); - dot_r1 = DOT(ftp->r_i1,ftp->r_i1); - ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) / sqrt(dot_r*dot_r1) ) * - sqrt( ftp->nf ); - ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)/dot_r1 - dot_er/dot_r + - dot_e*ftp->I1 )*0.5*ftp->nf; - ftp->J2 = 0.5/dot_e*( 1.0/dot_r - 1.0/dot_r1 ) - - dot_er/dot_e*ftp->I2; + rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i); + rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1); + ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) * + sqrt( rdot_cp ); + ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r + + dot_e*ftp->I1 )*0.5*rdot_cp; + J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; + for (i = 3; i--; ) + ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i]; } @@ -176,7 +288,7 @@ compose_matrix(FVECT mat[3], FVECT va, FVECT vb) static void comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) { - FVECT v1, v2; + FVECT ncp; FVECT m1[3], m2[3], m3[3], m4[3]; double d1, d2, d3, d4; double I3, J3, K3; @@ -186,20 +298,17 @@ comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1); d3 = 1.0/DOT(ftp->e_i,ftp->e_i); d4 = DOT(ftp->e_i, ftp->r_i); - I3 = 0.25*ftp->nf*( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + - 3.0/d3*ftp->I2 ); + I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 ) + / ( 4.0*DOT(ftp->rcp,ftp->rcp) ); J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3; K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3); /* intermediate matrices */ - VCROSS(v1, nrm, ftp->e_i); - for (j = 3; j--; ) - v2[j] = ftp->I2*ftp->r_i[j] + ftp->J2*ftp->e_i[j]; - compose_matrix(m1, v1, v2); + VCROSS(ncp, nrm, ftp->e_i); + compose_matrix(m1, ncp, ftp->rI2_eJ2); compose_matrix(m2, ftp->r_i, ftp->r_i); compose_matrix(m3, ftp->e_i, ftp->e_i); compose_matrix(m4, ftp->r_i, ftp->e_i); - VCROSS(v1, ftp->r_i, ftp->e_i); - d1 = DOT(nrm, v1); + d1 = DOT(nrm, ftp->rcp); d2 = -d1*ftp->I2; d1 *= 2.0; for (i = 3; i--; ) /* final matrix sum */ @@ -207,7 +316,7 @@ comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] + 2.0*J3*m4[i][j] ); hess[i][j] += d2*(i==j); - hess[i][j] *= -1.0/PI; + hess[i][j] *= 1.0/PI; } } @@ -243,16 +352,14 @@ add2hessian(FVECT hess[3], FVECT ehess1[3], static void comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm) { - FVECT vcp; + FVECT ncp; double f1; int i; - VCROSS(vcp, ftp->r_i, ftp->r_i1); - f1 = 2.0*DOT(nrm, vcp); - VCROSS(vcp, nrm, ftp->e_i); + f1 = 2.0*DOT(nrm, ftp->rcp); + VCROSS(ncp, nrm, ftp->e_i); for (i = 3; i--; ) - grad[i] = (0.5/PI)*( ftp->I1*vcp[i] + - f1*(ftp->I2*ftp->r_i[i] + ftp->J2*ftp->e_i[i]) ); + grad[i] = (-0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); } @@ -279,8 +386,7 @@ add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, F /* Return brightness of furthest ambient sample */ static COLORV -back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2, - struct s_ambsamp *ap3, FVECT orig) +back_ambval(AMBSAMP *ap1, AMBSAMP *ap2, AMBSAMP *ap3, FVECT orig) { COLORV vback; FVECT vec; @@ -320,11 +426,13 @@ eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3 hess2[0][1] = DOT(uv[0], b); hess2[1][0] = DOT(uv[1], a); hess2[1][1] = DOT(uv[1], b); - /* compute eigenvalues */ - if ( quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], - hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 || - (evalue[0] = fabs(evalue[0])) <= FTINY*FTINY || - (evalue[1] = fabs(evalue[1])) <= FTINY*FTINY ) + /* compute eigenvalue(s) */ + i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], + hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]); + if (i == 1) /* double-root (circle) */ + evalue[1] = evalue[0]; + if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | + ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) error(INTERNAL, "bad eigenvalue calculation"); if (evalue[0] > evalue[1]) { @@ -384,8 +492,8 @@ ambHessian( /* anisotropic radii & pos. gradient */ } /* compute first row of edges */ for (j = 0; j < hp->ns-1; j++) { - comp_fftri(&fftr, ambsamp(hp,0,j).p, - ambsamp(hp,0,j+1).p, hp->rp->rop); + comp_fftri(&fftr, ambsam(hp,0,j).p, + ambsam(hp,0,j+1).p, hp->rp->rop); if (hessrow != NULL) comp_hessian(hessrow[j], &fftr, hp->rp->ron); if (gradrow != NULL) @@ -395,8 +503,8 @@ ambHessian( /* anisotropic radii & pos. gradient */ for (i = 0; i < hp->ns-1; i++) { FVECT hesscol[3]; /* compute first vertical edge */ FVECT gradcol; - comp_fftri(&fftr, ambsamp(hp,i,0).p, - ambsamp(hp,i+1,0).p, hp->rp->rop); + comp_fftri(&fftr, ambsam(hp,i,0).p, + ambsam(hp,i+1,0).p, hp->rp->rop); if (hessrow != NULL) comp_hessian(hesscol, &fftr, hp->rp->ron); if (gradrow != NULL) @@ -405,32 +513,32 @@ ambHessian( /* anisotropic radii & pos. gradient */ FVECT hessdia[3]; /* compute triangle contributions */ FVECT graddia; COLORV backg; - backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1), - &ambsamp(hp,i+1,j), hp->rp->rop); + backg = back_ambval(&ambsam(hp,i,j), &ambsam(hp,i,j+1), + &ambsam(hp,i+1,j), hp->rp->rop); /* diagonal (inner) edge */ - comp_fftri(&fftr, ambsamp(hp,i,j+1).p, - ambsamp(hp,i+1,j).p, hp->rp->rop); + comp_fftri(&fftr, ambsam(hp,i,j+1).p, + ambsam(hp,i+1,j).p, hp->rp->rop); if (hessrow != NULL) { comp_hessian(hessdia, &fftr, hp->rp->ron); rev_hessian(hesscol); add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); } - if (gradient != NULL) { + if (gradrow != NULL) { comp_gradient(graddia, &fftr, hp->rp->ron); rev_gradient(gradcol); add2gradient(gradient, gradrow[j], graddia, gradcol, backg); } /* initialize edge in next row */ - comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p, - ambsamp(hp,i+1,j).p, hp->rp->rop); + comp_fftri(&fftr, ambsam(hp,i+1,j+1).p, + ambsam(hp,i+1,j).p, hp->rp->rop); if (hessrow != NULL) comp_hessian(hessrow[j], &fftr, hp->rp->ron); if (gradrow != NULL) comp_gradient(gradrow[j], &fftr, hp->rp->ron); /* new column edge & paired triangle */ - backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1), - &ambsamp(hp,i+1,j), hp->rp->rop); - comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p, + backg = back_ambval(&ambsam(hp,i,j+1), &ambsam(hp,i+1,j+1), + &ambsam(hp,i+1,j), hp->rp->rop); + comp_fftri(&fftr, ambsam(hp,i,j+1).p, ambsam(hp,i+1,j+1).p, hp->rp->rop); if (hessrow != NULL) { comp_hessian(hesscol, &fftr, hp->rp->ron); @@ -454,9 +562,9 @@ ambHessian( /* anisotropic radii & pos. gradient */ if (ra != NULL) /* extract eigenvectors & radii */ eigenvectors(uv, ra, hessian); - if (pg != NULL) { /* tangential position gradient/PI */ - pg[0] = DOT(gradient, uv[0]) / PI; - pg[1] = DOT(gradient, uv[1]) / PI; + if (pg != NULL) { /* tangential position gradient */ + pg[0] = DOT(gradient, uv[0]); + pg[1] = DOT(gradient, uv[1]); } } @@ -465,11 +573,11 @@ ambHessian( /* anisotropic radii & pos. gradient */ static void ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) { - struct s_ambsamp *ap; - double dgsum[2]; - int n; - FVECT vd; - double gfact; + AMBSAMP *ap; + double dgsum[2]; + int n; + FVECT vd; + double gfact; dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */ for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) { @@ -477,9 +585,9 @@ ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) VSUB(vd, ap->p, hp->rp->rop); /* brightness over cosine factor */ gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); - /* -sine = -proj_radius/vd_length */ - dgsum[0] += DOT(uv[1], vd) * gfact; - dgsum[1] -= DOT(uv[0], vd) * gfact; + /* sine = proj_radius/vd_length */ + dgsum[0] -= DOT(uv[1], vd) * gfact; + dgsum[1] += DOT(uv[0], vd) * gfact; } dg[0] = dgsum[0] / (hp->ns*hp->ns); dg[1] = dgsum[1] / (hp->ns*hp->ns); @@ -497,12 +605,12 @@ doambient( /* compute ambient component */ float dg[2] /* returned (optional) */ ) { - AMBHEMI *hp = inithemi(rcol, r, wt); - int cnt = 0; - FVECT my_uv[2]; - double d, acol[3]; - struct s_ambsamp *ap; - int i, j; + AMBHEMI *hp = inithemi(rcol, r, wt); + int cnt = 0; + FVECT my_uv[2]; + double d, K, acol[3]; + AMBSAMP *ap; + int i, j; /* check/initialize */ if (hp == NULL) return(0); @@ -527,20 +635,31 @@ doambient( /* compute ambient component */ free(hp); return(0); /* no valid samples */ } + if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */ + copycolor(rcol, acol); + free(hp); + return(-1); /* return value w/o Hessian */ + } + cnt = ambssamp*wt + 0.5; /* perform super-sampling? */ + if (cnt > 0) + ambsupersamp(acol, hp, cnt); copycolor(rcol, acol); /* final indirect irradiance/PI */ - if (cnt < hp->ns*hp->ns || /* incomplete sampling? */ - (ra == NULL) & (pg == NULL) & (dg == NULL)) { + if ((ra == NULL) & (pg == NULL) & (dg == NULL)) { free(hp); return(-1); /* no radius or gradient calc. */ } - multcolor(acol, hp->acoef); /* normalize Y values */ - if ((d = bright(acol)) > FTINY) - d = 1.0/d; - else + if (bright(acol) > FTINY) { /* normalize Y values */ + d = 0.99*cnt/bright(acol); + K = 0.01; + } else { /* geometric Hessian fall-back */ d = 0.0; + K = 1.0; + pg = NULL; + dg = NULL; + } ap = hp->sa; /* relative Y channel from here on... */ for (i = hp->ns*hp->ns; i--; ap++) - colval(ap->v,CIEY) = bright(ap->v)*d + 0.0314; + colval(ap->v,CIEY) = bright(ap->v)*d + K; if (uv == NULL) /* make sure we have axis pointers */ uv = my_uv; @@ -551,6 +670,14 @@ doambient( /* compute ambient component */ ambdirgrad(hp, uv, dg); if (ra != NULL) { /* scale/clamp radii */ + if (pg != NULL) { + if (ra[0]*(d = fabs(pg[0])) > 1.0) + ra[0] = 1.0/d; + if (ra[1]*(d = fabs(pg[1])) > 1.0) + ra[1] = 1.0/d; + if (ra[0] > ra[1]) + ra[0] = ra[1]; + } if (ra[0] < minarad) { ra[0] = minarad; if (ra[1] < minarad) @@ -563,6 +690,14 @@ doambient( /* compute ambient component */ ra[1] = maxarad; if (ra[0] > maxarad) ra[0] = maxarad; + } + if (pg != NULL) { /* cap gradient if necessary */ + d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; + if (d > 1.0) { + d = 1.0/sqrt(d); + pg[0] *= d; + pg[1] *= d; + } } } free(hp); /* clean up and return */