--- ray/src/rt/ambcomp.c 2014/05/01 16:01:59 2.43 +++ ray/src/rt/ambcomp.c 2014/08/19 15:04:40 2.64 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: ambcomp.c,v 2.43 2014/05/01 16:01:59 greg Exp $"; +static const char RCSid[] = "$Id: ambcomp.c,v 2.64 2014/08/19 15:04:40 greg Exp $"; #endif /* * Routines to compute "ambient" values using Monte Carlo @@ -8,6 +8,10 @@ static const char RCSid[] = "$Id: ambcomp.c,v 2.43 201 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz * from ACM SIGGRAPH Asia 2012 conference proceedings. * + * Added book-keeping optimization to avoid calculations that would + * cancel due to traversal both directions on edges that are adjacent + * to same-valued triangles. This cuts about half of Hessian math. + * * Declarations of external symbols in ambient.h */ @@ -17,151 +21,111 @@ static const char RCSid[] = "$Id: ambcomp.c,v 2.43 201 #include "ambient.h" #include "random.h" -#ifdef NEWAMB +#ifndef OLDAMB extern void SDsquare2disk(double ds[2], double seedx, double seedy); typedef struct { + COLOR v; /* hemisphere sample value */ + float d; /* reciprocal distance (1/rt) */ + FVECT p; /* intersection point */ +} AMBSAMP; /* sample value */ + +typedef struct { RAY *rp; /* originating ray sample */ - FVECT ux, uy; /* tangent axis unit vectors */ int ns; /* number of samples per axis */ + int sampOK; /* acquired full sample set? */ COLOR acoef; /* division contribution coefficient */ - struct s_ambsamp { - COLOR v; /* hemisphere sample value */ - FVECT p; /* intersection point */ - } sa[1]; /* sample array (extends struct) */ + double acol[3]; /* accumulated color */ + FVECT ux, uy; /* tangent axis unit vectors */ + AMBSAMP sa[1]; /* sample array (extends struct) */ } AMBHEMI; /* ambient sample hemisphere */ -typedef struct s_ambsamp AMBSAMP; +#define AI(h,i,j) ((i)*(h)->ns + (j)) +#define ambsam(h,i,j) (h)->sa[AI(h,i,j)] -#define ambsam(h,i,j) (h)->sa[(i)*(h)->ns + (j)] - typedef struct { FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; double I1, I2; } FFTRI; /* vectors and coefficients for Hessian calculation */ -static AMBHEMI * -inithemi( /* initialize sampling hemisphere */ - COLOR ac, - RAY *r, - double wt +static int +ambsample( /* initial ambient division sample */ + AMBHEMI *hp, + int i, + int j, + int n ) { - AMBHEMI *hp; - double d; - int n, i; - /* set number of divisions */ - if (ambacc <= FTINY && - wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) - wt = d; /* avoid ray termination */ - n = sqrt(ambdiv * wt) + 0.5; - i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ - if (n < i) - n = i; - /* allocate sampling array */ - hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); - if (hp == NULL) - return(NULL); - hp->rp = r; - hp->ns = n; - /* assign coefficient */ - copycolor(hp->acoef, ac); - d = 1.0/(n*n); - scalecolor(hp->acoef, d); - /* make tangent plane axes */ - hp->uy[0] = 0.5 - frandom(); - hp->uy[1] = 0.5 - frandom(); - hp->uy[2] = 0.5 - frandom(); - for (i = 3; i--; ) - if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6)) - break; - if (i < 0) - error(CONSISTENCY, "bad ray direction in inithemi"); - hp->uy[i] = 1.0; - VCROSS(hp->ux, hp->uy, r->ron); - normalize(hp->ux); - VCROSS(hp->uy, r->ron, hp->ux); - /* we're ready to sample */ - return(hp); -} - - -/* Sample ambient division and apply weighting coefficient */ -static int -getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n) -{ + AMBSAMP *ap = &ambsam(hp,i,j); + RAY ar; int hlist[3], ii; double spt[2], zd; + /* generate hemispherical sample */ /* ambient coefficient for weight */ if (ambacc > FTINY) - setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL); + setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); else - copycolor(arp->rcoef, hp->acoef); - if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0) + copycolor(ar.rcoef, hp->acoef); + if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) return(0); if (ambacc > FTINY) { - multcolor(arp->rcoef, hp->acoef); - scalecolor(arp->rcoef, 1./AVGREFL); + multcolor(ar.rcoef, hp->acoef); + scalecolor(ar.rcoef, 1./AVGREFL); } hlist[0] = hp->rp->rno; - hlist[1] = i; - hlist[2] = j; + hlist[1] = j; + hlist[2] = i; multisamp(spt, 2, urand(ilhash(hlist,3)+n)); - if (!n) { /* avoid border samples for n==0 */ - if ((spt[0] < 0.1) | (spt[0] > 0.9)) + /* avoid coincident samples */ + if (!n && (0 < i) & (i < hp->ns-1) && + (0 < j) & (j < hp->ns-1)) { + if ((spt[0] < 0.1) | (spt[0] >= 0.9)) spt[0] = 0.1 + 0.8*frandom(); - if ((spt[1] < 0.1) | (spt[1] > 0.9)) + if ((spt[1] < 0.1) | (spt[1] >= 0.9)) spt[1] = 0.1 + 0.8*frandom(); } - SDsquare2disk(spt, (i+spt[0])/hp->ns, (j+spt[1])/hp->ns); + SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns); zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); for (ii = 3; ii--; ) - arp->rdir[ii] = spt[0]*hp->ux[ii] + + ar.rdir[ii] = spt[0]*hp->ux[ii] + spt[1]*hp->uy[ii] + zd*hp->rp->ron[ii]; - checknorm(arp->rdir); - dimlist[ndims++] = i*hp->ns + j + 90171; - rayvalue(arp); /* evaluate ray */ - ndims--; /* apply coefficient */ - multcolor(arp->rcol, arp->rcoef); + checknorm(ar.rdir); + dimlist[ndims++] = AI(hp,i,j) + 90171; + rayvalue(&ar); /* evaluate ray */ + ndims--; + if (ar.rt <= FTINY) + return(0); /* should never happen */ + multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ + if (ar.rt*ap->d < 1.0) /* new/closer distance? */ + ap->d = 1.0/ar.rt; + if (!n) { /* record first vertex & value */ + if (ar.rt > 10.0*thescene.cusize) + ar.rt = 10.0*thescene.cusize; + VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); + copycolor(ap->v, ar.rcol); + } else { /* else update recorded value */ + hp->acol[RED] -= colval(ap->v,RED); + hp->acol[GRN] -= colval(ap->v,GRN); + hp->acol[BLU] -= colval(ap->v,BLU); + zd = 1.0/(double)(n+1); + scalecolor(ar.rcol, zd); + zd *= (double)n; + scalecolor(ap->v, zd); + addcolor(ap->v, ar.rcol); + } + addcolor(hp->acol, ap->v); /* add to our sum */ return(1); } -static AMBSAMP * -ambsample( /* initial ambient division sample */ - AMBHEMI *hp, - int i, - int j -) -{ - AMBSAMP *ap = &ambsam(hp,i,j); - RAY ar; - /* generate hemispherical sample */ - if (!getambsamp(&ar, hp, i, j, 0)) - goto badsample; - /* limit vertex distance */ - if (ar.rt > 10.0*thescene.cusize) - ar.rt = 10.0*thescene.cusize; - else if (ar.rt <= FTINY) /* should never happen! */ - goto badsample; - VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); - copycolor(ap->v, ar.rcol); - return(ap); -badsample: - setcolor(ap->v, 0., 0., 0.); - VCOPY(ap->p, hp->rp->rop); - return(NULL); -} - - /* Estimate errors based on ambient division differences */ static float * getambdiffs(AMBHEMI *hp) { - float *earr = calloc(hp->ns*hp->ns, sizeof(float)); + float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float)); float *ep; AMBSAMP *ap; double b, d2; @@ -179,25 +143,31 @@ getambdiffs(AMBHEMI *hp) ep[0] += d2; ep[-hp->ns] += d2; } - if (j) { /* from behind */ - d2 = b - bright(ap[-1].v); - d2 *= d2; - ep[0] += d2; - ep[-1] += d2; - } + if (!j) continue; + /* from behind */ + d2 = b - bright(ap[-1].v); + d2 *= d2; + ep[0] += d2; + ep[-1] += d2; + if (!i) continue; + /* diagonal */ + d2 = b - bright(ap[-hp->ns-1].v); + d2 *= d2; + ep[0] += d2; + ep[-hp->ns-1] += d2; } /* correct for number of neighbors */ - earr[0] *= 2.f; - earr[hp->ns-1] *= 2.f; - earr[(hp->ns-1)*hp->ns] *= 2.f; - earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f; + earr[0] *= 8./3.; + earr[hp->ns-1] *= 8./3.; + earr[(hp->ns-1)*hp->ns] *= 8./3.; + earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.; for (i = 1; i < hp->ns-1; i++) { - earr[i*hp->ns] *= 4./3.; - earr[i*hp->ns + hp->ns-1] *= 4./3.; + earr[i*hp->ns] *= 8./5.; + earr[i*hp->ns + hp->ns-1] *= 8./5.; } for (j = 1; j < hp->ns-1; j++) { - earr[j] *= 4./3.; - earr[(hp->ns-1)*hp->ns + j] *= 4./3.; + earr[j] *= 8./5.; + earr[(hp->ns-1)*hp->ns + j] *= 8./5.; } return(earr); } @@ -205,56 +175,126 @@ getambdiffs(AMBHEMI *hp) /* Perform super-sampling on hemisphere (introduces bias) */ static void -ambsupersamp(double acol[3], AMBHEMI *hp, int cnt) +ambsupersamp(AMBHEMI *hp, int cnt) { float *earr = getambdiffs(hp); - double e2sum = 0; + double e2rem = 0; AMBSAMP *ap; RAY ar; - COLOR asum; float *ep; - int i, j, n; + int i, j, n, nss; if (earr == NULL) /* just skip calc. if no memory */ return; - /* add up estimated variances */ - for (ep = earr + hp->ns*hp->ns; ep-- > earr; ) - e2sum += *ep; + /* accumulate estimated variances */ + for (ep = earr + hp->ns*hp->ns; ep > earr; ) + e2rem += *--ep; ep = earr; /* perform super-sampling */ for (ap = hp->sa, i = 0; i < hp->ns; i++) for (j = 0; j < hp->ns; j++, ap++) { - int nss = *ep/e2sum*cnt + frandom(); - setcolor(asum, 0., 0., 0.); - for (n = 1; n <= nss; n++) { - if (!getambsamp(&ar, hp, i, j, n)) { - nss = n-1; - break; - } - addcolor(asum, ar.rcol); - } - if (nss) { /* update returned ambient value */ - const double ssf = 1./(nss + 1); - for (n = 3; n--; ) - acol[n] += ssf*colval(asum,n) + - (ssf - 1.)*colval(ap->v,n); - } - e2sum -= *ep++; /* update remainders */ - cnt -= nss; + if (e2rem <= FTINY) + goto done; /* nothing left to do */ + nss = *ep/e2rem*cnt + frandom(); + for (n = 1; n <= nss && ambsample(hp,i,j,n); n++) + --cnt; + e2rem -= *ep++; /* update remainder */ } +done: free(earr); } +static AMBHEMI * +samp_hemi( /* sample indirect hemisphere */ + COLOR rcol, + RAY *r, + double wt +) +{ + AMBHEMI *hp; + double d; + int n, i, j; + /* set number of divisions */ + if (ambacc <= FTINY && + wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight))) + wt = d; /* avoid ray termination */ + n = sqrt(ambdiv * wt) + 0.5; + i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ + if (n < i) + n = i; + /* allocate sampling array */ + hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); + if (hp == NULL) + error(SYSTEM, "out of memory in samp_hemi"); + hp->rp = r; + hp->ns = n; + hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0; + memset(hp->sa, 0, sizeof(AMBSAMP)*n*n); + hp->sampOK = 0; + /* assign coefficient */ + copycolor(hp->acoef, rcol); + d = 1.0/(n*n); + scalecolor(hp->acoef, d); + /* make tangent plane axes */ + hp->uy[0] = 0.5 - frandom(); + hp->uy[1] = 0.5 - frandom(); + hp->uy[2] = 0.5 - frandom(); + for (i = 3; i--; ) + if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6)) + break; + if (i < 0) + error(CONSISTENCY, "bad ray direction in samp_hemi"); + hp->uy[i] = 1.0; + VCROSS(hp->ux, hp->uy, r->ron); + normalize(hp->ux); + VCROSS(hp->uy, r->ron, hp->ux); + /* sample divisions */ + for (i = hp->ns; i--; ) + for (j = hp->ns; j--; ) + hp->sampOK += ambsample(hp, i, j, 0); + copycolor(rcol, hp->acol); + if (!hp->sampOK) { /* utter failure? */ + free(hp); + return(NULL); + } + if (hp->sampOK < hp->ns*hp->ns) { + hp->sampOK *= -1; /* soft failure */ + return(hp); + } + n = ambssamp*wt + 0.5; + if (n > 8) { /* perform super-sampling? */ + ambsupersamp(hp, n); + copycolor(rcol, hp->acol); + } + return(hp); /* all is well */ +} + + +/* Return brightness of farthest ambient sample */ +static double +back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3) +{ + if (hp->sa[n1].d <= hp->sa[n2].d) { + if (hp->sa[n1].d <= hp->sa[n3].d) + return(colval(hp->sa[n1].v,CIEY)); + return(colval(hp->sa[n3].v,CIEY)); + } + if (hp->sa[n2].d <= hp->sa[n3].d) + return(colval(hp->sa[n2].v,CIEY)); + return(colval(hp->sa[n3].v,CIEY)); +} + + /* Compute vectors and coefficients for Hessian/gradient calcs */ static void -comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop) +comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1) { double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; - int i; + int ii; - VSUB(ftp->r_i, ap0, rop); - VSUB(ftp->r_i1, ap1, rop); - VSUB(ftp->e_i, ap1, ap0); + VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop); + VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop); + VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p); VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); dot_e = DOT(ftp->e_i,ftp->e_i); @@ -266,8 +306,8 @@ comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r + dot_e*ftp->I1 )*0.5*rdot_cp; J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; - for (i = 3; i--; ) - ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i]; + for (ii = 3; ii--; ) + ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii]; } @@ -316,7 +356,7 @@ comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] + 2.0*J3*m4[i][j] ); hess[i][j] += d2*(i==j); - hess[i][j] *= 1.0/PI; + hess[i][j] *= -1.0/PI; } } @@ -338,7 +378,7 @@ rev_hessian(FVECT hess[3]) /* Add to radiometric Hessian from the given triangle */ static void add2hessian(FVECT hess[3], FVECT ehess1[3], - FVECT ehess2[3], FVECT ehess3[3], COLORV v) + FVECT ehess2[3], FVECT ehess3[3], double v) { int i, j; @@ -359,7 +399,7 @@ comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm) f1 = 2.0*DOT(nrm, ftp->rcp); VCROSS(ncp, nrm, ftp->e_i); for (i = 3; i--; ) - grad[i] = (-0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); + grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); } @@ -375,7 +415,7 @@ rev_gradient(FVECT grad) /* Add to displacement gradient from the given triangle */ static void -add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v) +add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v) { int i; @@ -384,33 +424,8 @@ add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, F } -/* Return brightness of furthest ambient sample */ -static COLORV -back_ambval(AMBSAMP *ap1, AMBSAMP *ap2, AMBSAMP *ap3, FVECT orig) -{ - COLORV vback; - FVECT vec; - double d2, d2best; - - VSUB(vec, ap1->p, orig); - d2best = DOT(vec,vec); - vback = colval(ap1->v,CIEY); - VSUB(vec, ap2->p, orig); - d2 = DOT(vec,vec); - if (d2 > d2best) { - d2best = d2; - vback = colval(ap2->v,CIEY); - } - VSUB(vec, ap3->p, orig); - d2 = DOT(vec,vec); - if (d2 > d2best) - return(colval(ap3->v,CIEY)); - return(vback); -} - - /* Compute anisotropic radii and eigenvector directions */ -static int +static void eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3]) { double hess2[2][2]; @@ -432,9 +447,10 @@ eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3 if (i == 1) /* double-root (circle) */ evalue[1] = evalue[0]; if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | - ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) - error(INTERNAL, "bad eigenvalue calculation"); - + ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) { + ra[0] = ra[1] = maxarad; + return; + } if (evalue[0] > evalue[1]) { ra[0] = sqrt(sqrt(4.0/evalue[0])); ra[1] = sqrt(sqrt(4.0/evalue[1])); @@ -492,8 +508,7 @@ ambHessian( /* anisotropic radii & pos. gradient */ } /* compute first row of edges */ for (j = 0; j < hp->ns-1; j++) { - comp_fftri(&fftr, ambsam(hp,0,j).p, - ambsam(hp,0,j+1).p, hp->rp->rop); + comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1)); if (hessrow != NULL) comp_hessian(hessrow[j], &fftr, hp->rp->ron); if (gradrow != NULL) @@ -503,8 +518,7 @@ ambHessian( /* anisotropic radii & pos. gradient */ for (i = 0; i < hp->ns-1; i++) { FVECT hesscol[3]; /* compute first vertical edge */ FVECT gradcol; - comp_fftri(&fftr, ambsam(hp,i,0).p, - ambsam(hp,i+1,0).p, hp->rp->rop); + comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0)); if (hessrow != NULL) comp_hessian(hesscol, &fftr, hp->rp->ron); if (gradrow != NULL) @@ -512,12 +526,11 @@ ambHessian( /* anisotropic radii & pos. gradient */ for (j = 0; j < hp->ns-1; j++) { FVECT hessdia[3]; /* compute triangle contributions */ FVECT graddia; - COLORV backg; - backg = back_ambval(&ambsam(hp,i,j), &ambsam(hp,i,j+1), - &ambsam(hp,i+1,j), hp->rp->rop); + double backg; + backg = back_ambval(hp, AI(hp,i,j), + AI(hp,i,j+1), AI(hp,i+1,j)); /* diagonal (inner) edge */ - comp_fftri(&fftr, ambsam(hp,i,j+1).p, - ambsam(hp,i+1,j).p, hp->rp->rop); + comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j)); if (hessrow != NULL) { comp_hessian(hessdia, &fftr, hp->rp->ron); rev_hessian(hesscol); @@ -529,17 +542,15 @@ ambHessian( /* anisotropic radii & pos. gradient */ add2gradient(gradient, gradrow[j], graddia, gradcol, backg); } /* initialize edge in next row */ - comp_fftri(&fftr, ambsam(hp,i+1,j+1).p, - ambsam(hp,i+1,j).p, hp->rp->rop); + comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j)); if (hessrow != NULL) comp_hessian(hessrow[j], &fftr, hp->rp->ron); if (gradrow != NULL) comp_gradient(gradrow[j], &fftr, hp->rp->ron); /* new column edge & paired triangle */ - backg = back_ambval(&ambsam(hp,i,j+1), &ambsam(hp,i+1,j+1), - &ambsam(hp,i+1,j), hp->rp->rop); - comp_fftri(&fftr, ambsam(hp,i,j+1).p, ambsam(hp,i+1,j+1).p, - hp->rp->rop); + backg = back_ambval(hp, AI(hp,i+1,j+1), + AI(hp,i+1,j), AI(hp,i,j+1)); + comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1)); if (hessrow != NULL) { comp_hessian(hesscol, &fftr, hp->rp->ron); rev_hessian(hessdia); @@ -594,6 +605,64 @@ ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) } +/* Compute potential light leak direction flags for cache value */ +static uint32 +ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1) +{ + const double max_d = 1.0/(minarad*ambacc + 0.001); + const double ang_res = 0.5*PI/(hp->ns-1); + const double ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY)); + double avg_d = 0; + uint32 flgs = 0; + FVECT vec; + double u, v; + double ang, a1; + int i, j; + /* don't bother for a few samples */ + if (hp->ns < 12) + return(0); + /* check distances overhead */ + for (i = hp->ns*3/4; i-- > hp->ns>>2; ) + for (j = hp->ns*3/4; j-- > hp->ns>>2; ) + avg_d += ambsam(hp,i,j).d; + avg_d *= 4.0/(hp->ns*hp->ns); + if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */ + return(0); + if (avg_d >= max_d) /* insurance */ + return(0); + /* else circle around perimeter */ + for (i = 0; i < hp->ns; i++) + for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) { + AMBSAMP *ap = &ambsam(hp,i,j); + if ((ap->d <= FTINY) | (ap->d >= max_d)) + continue; /* too far or too near */ + VSUB(vec, ap->p, hp->rp->rop); + u = DOT(vec, uv[0]); + v = DOT(vec, uv[1]); + if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v) + continue; /* occluder outside ellipse */ + ang = atan2a(v, u); /* else set direction flags */ + for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step) + flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0))); + } + /* add low-angle incident (< 20deg) */ + if (fabs(hp->rp->rod) <= 0.342) { + u = -DOT(hp->rp->rdir, uv[0]); + v = -DOT(hp->rp->rdir, uv[1]); + if ((r0*r0*u*u + r1*r1*v*v) > hp->rp->rot*hp->rp->rot) { + ang = atan2a(v, u); + ang += 2.*PI*(ang < 0); + ang *= 16/PI; + if ((ang < .5) | (ang >= 31.5)) + flgs |= 0x80000001; + else + flgs |= 3L<<(int)(ang-.5); + } + } + return(flgs); +} + + int doambient( /* compute ambient component */ COLOR rcol, /* input/output color */ @@ -602,18 +671,16 @@ doambient( /* compute ambient component */ FVECT uv[2], /* returned (optional) */ float ra[2], /* returned (optional) */ float pg[2], /* returned (optional) */ - float dg[2] /* returned (optional) */ + float dg[2], /* returned (optional) */ + uint32 *crlp /* returned (optional) */ ) { - AMBHEMI *hp = inithemi(rcol, r, wt); - int cnt = 0; + AMBHEMI *hp = samp_hemi(rcol, r, wt); FVECT my_uv[2]; - double d, K, acol[3]; + double d, K; AMBSAMP *ap; - int i, j; - /* check/initialize */ - if (hp == NULL) - return(0); + int i; + /* clear return values */ if (uv != NULL) memset(uv, 0, sizeof(FVECT)*2); if (ra != NULL) @@ -622,40 +689,24 @@ doambient( /* compute ambient component */ pg[0] = pg[1] = 0.0; if (dg != NULL) dg[0] = dg[1] = 0.0; - /* sample the hemisphere */ - acol[0] = acol[1] = acol[2] = 0.0; - for (i = hp->ns; i--; ) - for (j = hp->ns; j--; ) - if ((ap = ambsample(hp, i, j)) != NULL) { - addcolor(acol, ap->v); - ++cnt; - } - if (!cnt) { - setcolor(rcol, 0.0, 0.0, 0.0); - free(hp); - return(0); /* no valid samples */ + if (crlp != NULL) + *crlp = 0; + if (hp == NULL) /* sampling falure? */ + return(0); + + if ((ra == NULL) & (pg == NULL) & (dg == NULL) || + (hp->sampOK < 0) | (hp->ns < 4)) { + free(hp); /* Hessian not requested/possible */ + return(-1); /* value-only return value */ } - if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */ - copycolor(rcol, acol); - free(hp); - return(-1); /* return value w/o Hessian */ - } - cnt = ambssamp*wt + 0.5; /* perform super-sampling? */ - if (cnt > 0) - ambsupersamp(acol, hp, cnt); - copycolor(rcol, acol); /* final indirect irradiance/PI */ - if ((ra == NULL) & (pg == NULL) & (dg == NULL)) { - free(hp); - return(-1); /* no radius or gradient calc. */ - } - if (bright(acol) > FTINY) { /* normalize Y values */ - d = 0.99*cnt/bright(acol); + if ((d = bright(rcol)) > FTINY) { /* normalize Y values */ + d = 0.99*(hp->ns*hp->ns)/d; K = 0.01; - } else { /* geometric Hessian fall-back */ - d = 0.0; + } else { /* or fall back on geometric Hessian */ K = 1.0; pg = NULL; dg = NULL; + crlp = NULL; } ap = hp->sa; /* relative Y channel from here on... */ for (i = hp->ns*hp->ns; i--; ap++) @@ -683,7 +734,7 @@ doambient( /* compute ambient component */ if (ra[1] < minarad) ra[1] = minarad; } - ra[0] *= d = 1.0/sqrt(sqrt(wt)); + ra[0] *= d = 1.0/sqrt(wt); if ((ra[1] *= d) > 2.0*ra[0]) ra[1] = 2.0*ra[0]; if (ra[1] > maxarad) { @@ -691,6 +742,9 @@ doambient( /* compute ambient component */ if (ra[0] > maxarad) ra[0] = maxarad; } + /* flag encroached directions */ + if ((wt >= 0.89*AVGREFL) & (crlp != NULL)) + *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc); if (pg != NULL) { /* cap gradient if necessary */ d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; if (d > 1.0) {