--- ray/src/rt/ambcomp.c 2014/04/29 15:40:00 2.39 +++ ray/src/rt/ambcomp.c 2014/05/01 16:01:59 2.43 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: ambcomp.c,v 2.39 2014/04/29 15:40:00 greg Exp $"; +static const char RCSid[] = "$Id: ambcomp.c,v 2.43 2014/05/01 16:01:59 greg Exp $"; #endif /* * Routines to compute "ambient" values using Monte Carlo @@ -32,8 +32,10 @@ typedef struct { } sa[1]; /* sample array (extends struct) */ } AMBHEMI; /* ambient sample hemisphere */ -#define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)] +typedef struct s_ambsamp AMBSAMP; +#define ambsam(h,i,j) (h)->sa[(i)*(h)->ns + (j)] + typedef struct { FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; double I1, I2; @@ -59,8 +61,7 @@ inithemi( /* initialize sampling hemisphere */ if (n < i) n = i; /* allocate sampling array */ - hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + - sizeof(struct s_ambsamp)*(n*n - 1)); + hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); if (hp == NULL) return(NULL); hp->rp = r; @@ -87,47 +88,66 @@ inithemi( /* initialize sampling hemisphere */ } -static struct s_ambsamp * -ambsample( /* sample an ambient direction */ - AMBHEMI *hp, - int i, - int j -) +/* Sample ambient division and apply weighting coefficient */ +static int +getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n) { - struct s_ambsamp *ap = &ambsamp(hp,i,j); - RAY ar; - double spt[2], zd; - int ii; + int hlist[3], ii; + double spt[2], zd; /* ambient coefficient for weight */ if (ambacc > FTINY) - setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); + setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL); else - copycolor(ar.rcoef, hp->acoef); - if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) - goto badsample; + copycolor(arp->rcoef, hp->acoef); + if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0) + return(0); if (ambacc > FTINY) { - multcolor(ar.rcoef, hp->acoef); - scalecolor(ar.rcoef, 1./AVGREFL); + multcolor(arp->rcoef, hp->acoef); + scalecolor(arp->rcoef, 1./AVGREFL); } - /* generate hemispherical sample */ - SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns, - (j+.1+.8*frandom())/hp->ns ); + hlist[0] = hp->rp->rno; + hlist[1] = i; + hlist[2] = j; + multisamp(spt, 2, urand(ilhash(hlist,3)+n)); + if (!n) { /* avoid border samples for n==0 */ + if ((spt[0] < 0.1) | (spt[0] > 0.9)) + spt[0] = 0.1 + 0.8*frandom(); + if ((spt[1] < 0.1) | (spt[1] > 0.9)) + spt[1] = 0.1 + 0.8*frandom(); + } + SDsquare2disk(spt, (i+spt[0])/hp->ns, (j+spt[1])/hp->ns); zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); for (ii = 3; ii--; ) - ar.rdir[ii] = spt[0]*hp->ux[ii] + + arp->rdir[ii] = spt[0]*hp->ux[ii] + spt[1]*hp->uy[ii] + zd*hp->rp->ron[ii]; - checknorm(ar.rdir); + checknorm(arp->rdir); dimlist[ndims++] = i*hp->ns + j + 90171; - rayvalue(&ar); /* evaluate ray */ - ndims--; + rayvalue(arp); /* evaluate ray */ + ndims--; /* apply coefficient */ + multcolor(arp->rcol, arp->rcoef); + return(1); +} + + +static AMBSAMP * +ambsample( /* initial ambient division sample */ + AMBHEMI *hp, + int i, + int j +) +{ + AMBSAMP *ap = &ambsam(hp,i,j); + RAY ar; + /* generate hemispherical sample */ + if (!getambsamp(&ar, hp, i, j, 0)) + goto badsample; /* limit vertex distance */ if (ar.rt > 10.0*thescene.cusize) ar.rt = 10.0*thescene.cusize; else if (ar.rt <= FTINY) /* should never happen! */ goto badsample; VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); - multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ copycolor(ap->v, ar.rcol); return(ap); badsample: @@ -137,6 +157,94 @@ badsample: } +/* Estimate errors based on ambient division differences */ +static float * +getambdiffs(AMBHEMI *hp) +{ + float *earr = calloc(hp->ns*hp->ns, sizeof(float)); + float *ep; + AMBSAMP *ap; + double b, d2; + int i, j; + + if (earr == NULL) /* out of memory? */ + return(NULL); + /* compute squared neighbor diffs */ + for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) + for (j = 0; j < hp->ns; j++, ap++, ep++) { + b = bright(ap[0].v); + if (i) { /* from above */ + d2 = b - bright(ap[-hp->ns].v); + d2 *= d2; + ep[0] += d2; + ep[-hp->ns] += d2; + } + if (j) { /* from behind */ + d2 = b - bright(ap[-1].v); + d2 *= d2; + ep[0] += d2; + ep[-1] += d2; + } + } + /* correct for number of neighbors */ + earr[0] *= 2.f; + earr[hp->ns-1] *= 2.f; + earr[(hp->ns-1)*hp->ns] *= 2.f; + earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f; + for (i = 1; i < hp->ns-1; i++) { + earr[i*hp->ns] *= 4./3.; + earr[i*hp->ns + hp->ns-1] *= 4./3.; + } + for (j = 1; j < hp->ns-1; j++) { + earr[j] *= 4./3.; + earr[(hp->ns-1)*hp->ns + j] *= 4./3.; + } + return(earr); +} + + +/* Perform super-sampling on hemisphere (introduces bias) */ +static void +ambsupersamp(double acol[3], AMBHEMI *hp, int cnt) +{ + float *earr = getambdiffs(hp); + double e2sum = 0; + AMBSAMP *ap; + RAY ar; + COLOR asum; + float *ep; + int i, j, n; + + if (earr == NULL) /* just skip calc. if no memory */ + return; + /* add up estimated variances */ + for (ep = earr + hp->ns*hp->ns; ep-- > earr; ) + e2sum += *ep; + ep = earr; /* perform super-sampling */ + for (ap = hp->sa, i = 0; i < hp->ns; i++) + for (j = 0; j < hp->ns; j++, ap++) { + int nss = *ep/e2sum*cnt + frandom(); + setcolor(asum, 0., 0., 0.); + for (n = 1; n <= nss; n++) { + if (!getambsamp(&ar, hp, i, j, n)) { + nss = n-1; + break; + } + addcolor(asum, ar.rcol); + } + if (nss) { /* update returned ambient value */ + const double ssf = 1./(nss + 1); + for (n = 3; n--; ) + acol[n] += ssf*colval(asum,n) + + (ssf - 1.)*colval(ap->v,n); + } + e2sum -= *ep++; /* update remainders */ + cnt -= nss; + } + free(earr); +} + + /* Compute vectors and coefficients for Hessian/gradient calcs */ static void comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop) @@ -278,8 +386,7 @@ add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, F /* Return brightness of furthest ambient sample */ static COLORV -back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2, - struct s_ambsamp *ap3, FVECT orig) +back_ambval(AMBSAMP *ap1, AMBSAMP *ap2, AMBSAMP *ap3, FVECT orig) { COLORV vback; FVECT vec; @@ -385,8 +492,8 @@ ambHessian( /* anisotropic radii & pos. gradient */ } /* compute first row of edges */ for (j = 0; j < hp->ns-1; j++) { - comp_fftri(&fftr, ambsamp(hp,0,j).p, - ambsamp(hp,0,j+1).p, hp->rp->rop); + comp_fftri(&fftr, ambsam(hp,0,j).p, + ambsam(hp,0,j+1).p, hp->rp->rop); if (hessrow != NULL) comp_hessian(hessrow[j], &fftr, hp->rp->ron); if (gradrow != NULL) @@ -396,8 +503,8 @@ ambHessian( /* anisotropic radii & pos. gradient */ for (i = 0; i < hp->ns-1; i++) { FVECT hesscol[3]; /* compute first vertical edge */ FVECT gradcol; - comp_fftri(&fftr, ambsamp(hp,i,0).p, - ambsamp(hp,i+1,0).p, hp->rp->rop); + comp_fftri(&fftr, ambsam(hp,i,0).p, + ambsam(hp,i+1,0).p, hp->rp->rop); if (hessrow != NULL) comp_hessian(hesscol, &fftr, hp->rp->ron); if (gradrow != NULL) @@ -406,11 +513,11 @@ ambHessian( /* anisotropic radii & pos. gradient */ FVECT hessdia[3]; /* compute triangle contributions */ FVECT graddia; COLORV backg; - backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1), - &ambsamp(hp,i+1,j), hp->rp->rop); + backg = back_ambval(&ambsam(hp,i,j), &ambsam(hp,i,j+1), + &ambsam(hp,i+1,j), hp->rp->rop); /* diagonal (inner) edge */ - comp_fftri(&fftr, ambsamp(hp,i,j+1).p, - ambsamp(hp,i+1,j).p, hp->rp->rop); + comp_fftri(&fftr, ambsam(hp,i,j+1).p, + ambsam(hp,i+1,j).p, hp->rp->rop); if (hessrow != NULL) { comp_hessian(hessdia, &fftr, hp->rp->ron); rev_hessian(hesscol); @@ -422,16 +529,16 @@ ambHessian( /* anisotropic radii & pos. gradient */ add2gradient(gradient, gradrow[j], graddia, gradcol, backg); } /* initialize edge in next row */ - comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p, - ambsamp(hp,i+1,j).p, hp->rp->rop); + comp_fftri(&fftr, ambsam(hp,i+1,j+1).p, + ambsam(hp,i+1,j).p, hp->rp->rop); if (hessrow != NULL) comp_hessian(hessrow[j], &fftr, hp->rp->ron); if (gradrow != NULL) comp_gradient(gradrow[j], &fftr, hp->rp->ron); /* new column edge & paired triangle */ - backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1), - &ambsamp(hp,i+1,j), hp->rp->rop); - comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p, + backg = back_ambval(&ambsam(hp,i,j+1), &ambsam(hp,i+1,j+1), + &ambsam(hp,i+1,j), hp->rp->rop); + comp_fftri(&fftr, ambsam(hp,i,j+1).p, ambsam(hp,i+1,j+1).p, hp->rp->rop); if (hessrow != NULL) { comp_hessian(hesscol, &fftr, hp->rp->ron); @@ -466,11 +573,11 @@ ambHessian( /* anisotropic radii & pos. gradient */ static void ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) { - struct s_ambsamp *ap; - double dgsum[2]; - int n; - FVECT vd; - double gfact; + AMBSAMP *ap; + double dgsum[2]; + int n; + FVECT vd; + double gfact; dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */ for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) { @@ -478,9 +585,9 @@ ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) VSUB(vd, ap->p, hp->rp->rop); /* brightness over cosine factor */ gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); - /* -sine = -proj_radius/vd_length */ - dgsum[0] += DOT(uv[1], vd) * gfact; - dgsum[1] -= DOT(uv[0], vd) * gfact; + /* sine = proj_radius/vd_length */ + dgsum[0] -= DOT(uv[1], vd) * gfact; + dgsum[1] += DOT(uv[0], vd) * gfact; } dg[0] = dgsum[0] / (hp->ns*hp->ns); dg[1] = dgsum[1] / (hp->ns*hp->ns); @@ -498,12 +605,12 @@ doambient( /* compute ambient component */ float dg[2] /* returned (optional) */ ) { - AMBHEMI *hp = inithemi(rcol, r, wt); - int cnt = 0; - FVECT my_uv[2]; - double d, K, acol[3]; - struct s_ambsamp *ap; - int i, j; + AMBHEMI *hp = inithemi(rcol, r, wt); + int cnt = 0; + FVECT my_uv[2]; + double d, K, acol[3]; + AMBSAMP *ap; + int i, j; /* check/initialize */ if (hp == NULL) return(0); @@ -528,9 +635,16 @@ doambient( /* compute ambient component */ free(hp); return(0); /* no valid samples */ } + if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */ + copycolor(rcol, acol); + free(hp); + return(-1); /* return value w/o Hessian */ + } + cnt = ambssamp*wt + 0.5; /* perform super-sampling? */ + if (cnt > 0) + ambsupersamp(acol, hp, cnt); copycolor(rcol, acol); /* final indirect irradiance/PI */ - if (cnt < hp->ns*hp->ns || /* incomplete sampling? */ - (ra == NULL) & (pg == NULL) & (dg == NULL)) { + if ((ra == NULL) & (pg == NULL) & (dg == NULL)) { free(hp); return(-1); /* no radius or gradient calc. */ }